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Interval Uncertain Optimization of Vehicle Suspension for
Ride Comfort

C. Jiang1,2, S. Yu1, H.C. Xie1 and B.C. Li1

Abstract: Based on the interval analysis method, this paper proposes an uncer-
tain optimization model for the ride comfort in vehicles and achieves the optimal
design of vehicle ride comfort under the condition of complicated uncertainty. The
spring stiffness and shock absorber damping of suspension is regarded as the design
parameters, while the root mean square (RMS) of the vehicle body acceleration is
treated as the design objective and the corresponding constraints are composed of
suspension stiffness, natural frequency and RMS of suspension dynamic deflection.
Moreover, the uncertainties of key parameters, such as sprung mass, tire stiffness,
vehicle speed and road roughness, are also considered and quantified by interval
analysis method. After that, an interval uncertain optimization model of vehicle
suspension is established for ride comfort, which is subsequently converted to an
ordinary deterministic optimization problem through a transformation model. Fi-
nally, the proposed method is applied to three typical vehicle suspension dynamic
systems with two degrees of freedom, four degrees of freedom and seven degrees
of freedom.

Keywords: vehicle suspension, ride comfort, uncertain optimization, interval anal-
ysis.

1 Introduction

Vehicle ride comfort is one of the main criteria for evaluating the performance of
vehicles. Due to the uneven road excitation, changes in the engine torque, shaft
unbalanced rotation and asymmetrical tire rotation, vibration will be caused dur-
ing the driving of vehicles, which will result in passenger discomfort and cargo
damage, and lead to wearing and fatigue damage of vehicle parts as well as lower
the transport efficiency. Additionally, the vibration of vehicles is one of the major
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sources of interior vehicle noise. The intense vibration of vehicles may cause tires
to bounce off the ground, affecting the power performance, braking performance,
and handling stability of vehicles [Yu (2000)]. The study of vehicle comfort opti-
mization can improve the design parameters, enhance vehicle ride comfort, restrict
the impact of vibration and shock on human bodies, and keep the cargo intact.
Fruitful results have emerged from research in this field. Shi (2011) verified that
the optimized matching of suspension system parameters is an important method
for improving the vehicle ride comfort. Ni et al. (2006) obtained optimal comfort
through the matching of suspension parameters for a type of passive suspension.
Baumal et al. (1998) used the road-holding ability of the vehicle and the suspension
working space as constraints and used the genetic algorithm to optimize the vehicle
suspension system to obtain the minimum extreme acceleration of the passenger
seat. Based on finite element analysis, Eriksson et al. (2000) used the stiffness and
damping as design variables to improve the ride comfort of a city bus. Georgiou
et al. (2007) optimized a 1/4 vehicle model with two degrees of freedom and ob-
tained the optimal suspension stiffness and damping. Lu et al. (2007) established
the multi-body dynamic model of vehicles and used the RMS of total acceleration
as the evaluation criterion to optimize the system parameters of a leaf-spring bear-
ing suspension. Naudé et al. (2003) established the two-dimensional multi-body
dynamics for a vehicle and optimized the vehicle damper characteristics. Vilela et
al. (2003) employed the virtual prototype technology to optimize the stiffness and
damping parameters of a vehicle suspension system to improve the comfort. Jabeen
(2013) applied the genetic algorithm to optimize the nonlinear suspension system
under different road conditions. Sun et al. (2007) used the minimal pavement dy-
namic load as the design criterion and applied the genetic algorithm to optimize the
system parameters of a truck’s passive suspension.

Most of the aforementioned studies on vehicle suspension comfort are based on
considerable assumptions and simplifications, namely, presuming that all the key
parameters (e.g., stiffness, damping, road excitation, vehicle velocity, and mass)
in the analysis of a vehicle suspension system can be given precise values. Con-
sequently, the mechanical performance can be analyzed as a deterministic system,
and the conventional deterministic method of optimization design can be applied to
obtain a solution. However, in actual projects, due to the impact of manufacturing
and measurement errors, and complex working conditions, many critical factors
that affect the vehicle ride comfort are often associated with uncertainty; these fac-
tors include (but are not limited to) the sprung mass, tire stiffness, vehicle speed,
and pavement roughness. Regarding these factors, a tiny deviation in a parame-
ter might not cause considerable fluctuation in the suspension system performance,
whereas the coupling of multiple parameters might result in considerable devia-
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tions in the suspension system performance; consequently, it seems difficult for the
optimized design solution obtained under the deterministic assumption to satisfy
the actual criterion of ride comfort design. Therefore, a thorough consideration
of uncertainty in the vehicle suspension system and whereby the establishment of
an uncertain optimization method for vehicle comfort are of important engineering
significance to ensure the reliability and stability of vehicle comfort design as well
as the overall performance of suspension.

Based on the interval analysis method, the present study formulates an uncertain
optimization model and the corresponding solution algorithm for ride comfort of
vehicles, which can effectively ensure the reliability and stability of vehicle comfort
design. By using the interval analysis method, It is only required to obtain the
lower and upper bounds of all the uncertain parameters that affect the ride comfort
rather than their accurate probability distributions, which to some extent avoids
the dependence of traditional probabilistic methods on a large number of samples
and hence renders the uncertainty modeling and optimization design of a vehicle
suspension system more convenient and efficient. The rest of this paper is organized
as follows: section 2 introduces the basic theory of automobile vibration, section 3
establishes the optimization model of vehicle suspension for ride comfort, section
4 establishes the uncertain optimization model and the corresponding algorithm
based on the interval analysis method, section 5 analyzes several examples, and
section 6 concludes the work presented in this paper.

2 Basic theory of automobile vibration [Weaver et al. (1990); Sun et al.
(2012); Yu and Lin (2005); Jin et al. (2002)]

According to actual conditions in engineering problems, the vehicle suspension
system can be simplified as a multi-degree of freedom vibration model. Using
the Newton method or Lagrange equation to implement the dynamic analysis of a
suspension vibration model, the vibration differential equation can be established
as follow:

MZ̈+CŻ+KZ = KtQ (1)

where Z, Ż, Z̈ are the displacement, velocity and acceleration vectors, respectively;
Q is the excitation vector; M is the mass matrix; C is the damping matrix; K is
the stiffness matrix; and Kt is the tire stiffness matrix. The dimensions of the
above matrices and vectors are determined by the degree of freedom for the vehicle
vibration model.

The aforementioned problem can be treated as a linear vibration system. During the
comfort analysis, based on the pavement power spectral density and the frequency
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response function derived from the input vehicle suspension system parameters,
the power spectral and standard deviation of individual vibration responses are ob-
tained, which are used to analyze the influence of vibration system parameters on
different physical quantities and to evaluate the ride comfort [Yu (2000)].

By implementing Fourier transform on both sides of the vibration differential equa-
tion, we can derive the frequency response function of the vibrating system, H(ω):

H(ω) =
(
−ω

2M+ jωC+K
)−1×Kt (2)

where ω is the circular frequency of vibration for the vehicle body, and element Hi j

on the ith row and jth column in matrix H(ω) represents the frequency response
function from the road input at the jth wheel to the ith degree of freedom of the
vehicle system.

For the response point of the ith degree of freedom in the vibration model, the auto-
spectral density of displacement response GZi (ω), velocity power spectral density
GŻi

(ω), and acceleration power spectral density GZ̈i
(ω) are:

Gzi (ω) = Hi (ω)∗Gq (ω)Hi (ω)T (3)

Gżi (ω) = ω
2×Gzi (ω) (4)

Gz̈i (ω) = ω
4×Gzi (ω) (5)

where Hi (ω) is the ith row of the frequency response function H(ω), Gq (ω) is the
road power spectral matrix, ‘∗’ means conjugation of the matrix, and ‘T ’ means
transposition of the matrix.

The vibration response with a random pavement input has the same probability of
being positive or negative, and hence the average is approximately zero and the
variance is equal to the mean square value. Therefore, the mean square value of the
acceleration of the response point for the ith degree of freedom is:

σ
2
Z̈i
=
∫

ω2

ω1

GZ̈i
(ω)dω (6)

where ω2 and ω1 are the upper and lower bounds of frequency, respectively.

If the vehicle vibration model has N tires, the dynamic tire load on the road for the
jth tire is:

Fjd = k j (Z j−q j) (7)

where k j, Z j, and q j are the stiffness, displacement, and road excitation of tire j.
The frequency response function of the relative dynamic load of the jth tire to input
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Q is:
H (ω)Fjnd

=
Fjd

G jqn
=

k j

G j
×

Z j−q j

qn

H(ω)Fjd
=
[
H (ω)Fj1d

, ...,H (ω)FjNd

] (8)

where G j is the static load on tire j, n = 1, ...,N.

The dynamic load of the tire is also a Gaussian stochastic process with an average
of zero, and thus, the mean square value of the relative dynamic load of the jth tire
is:

σ
2
Fjd

=
∫

ω2

ω1

H(ω)∗Fjd
Gq (ω)H(ω)T

Fjd
dω (9)

The dynamic deflection of suspension above the jth tire is:

D jd = Zx−Z j (10)

where Zx is the displacement corresponding to the joint of the vehicle body and
suspension. The frequency response function of the suspension dynamic deflection
above the jth tire to input Q is:

H (ω)D jnd
=

Zx−Z j

qn

H(ω)D jd
=
[
H (ω)D j1d

, ...,H (ω)D jNd

] (11)

Therefore, the mean square value of the relative dynamic deflection of the suspen-
sion is:

σ
2
D jd

=
∫

ω2

ω1

H(ω)∗D jd
Gq (ω)H(ω)T

D jd
dω (12)

3 Optimization modeling of vehicle suspension for ride comfort

3.1 Selection of the design variables

The suspension spring supports the weight of vehicle and can mitigate the impact
of uneven pavements. The shock absorber damping mainly plays a role in suppress-
ing the vibration. The larger the damping force, the faster the vibration disappears,
whereas the elastic components that are connected with it in parallel would not
fully play their roles. Meanwhile, the relatively large damping force might damage
the connected parts and the vehicle frame. There is a contradictory relationship be-
tween impact mitigation and vibration suppression, which should be unified under
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the premise of normal operating conditions that ensure the safety of vehicles and
passengers. This relationship is the basis for the design of matching between sus-
pension spring stiffness and shock absorber damping. Therefore, in this study, we
use suspension spring stiffness and shock absorber damping as the design variables
X of the optimization problem:

X = [k,c] (13)

where k represents the suspension spring stiffness vector, c represents the linear
damping vector of the shock absorber, and their dimension p is related to the de-
grees of freedom of the vehicle vibration model.

3.2 Determination of the objective function

The method of evaluating the vehicle ride comfort is usually developed according
to the response of the human body to vibration and the influence on maintaining the
cargo integrity, and uses some physical quantities of vibration (e.g., frequency, am-
plitude, and acceleration) as the evaluation criteria of ride comfort. The root mean
square (RMS) of vehicle body acceleration is one of the commonly used criteria
for evaluating the vehicle ride comfort. When the RMS of acceleration is relatively
large, the passenger will feel uncomfortable and tired and may even experience
adverse health effects [Yu (2000)]. Therefore, under conditions in which spring
stiffness and shock absorber damping can ensure the normal use of the suspension,
the RMS of vehicle acceleration should be kept as small as possible so that the
ride is comfortable. Therefore, in this study, we use the RMS of vehicle body ac-
celeration for the center of mass as the objective function f (X) for ride comfort
optimization:

min
X

f (X) = σz̈ (X) (14)

3.3 Establishment of the constraints

To ensure good ride comfort, the vehicle suspension must usually be relatively soft,
and the static deflection h is relatively large. However, h cannot be too large since
the restriction of the suspension structural arrangement. Therefore, the stiffness
constraint for suspension is:

mg
/

hR ≤ k ≤ mg
/

hL (15)

where m represents the equivalent suspension mass relative to spring k, and hR

and hL are the upper and lower design limits, respectively, of suspension static
deflection h.
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The damping ratio ζ is usually employed to evaluate the decaying speed of vibra-
tion. If ζ is too large, it will transfer a relatively large road impact or even cause
vehicles to bounce off the road surface and to lose the adhesive force; when ζ is
relatively small, the sustaining period of vibration will become longer, which is not
good for the ride comfort. Consequently, there is the following constraint:

ζL ≤
c

2
√

k×m
≤ ζR (16)

where c represents the shock absorber damping coefficient matched with spring k,
and ζR and ζL are the upper and lower bounds, respectively, of damping ratio ζ .

By decreasing the natural frequency s0, we can substantially decrease the vibra-
tional acceleration of the vehicle, which is favorable for vehicle comfort. However,
if the natural frequency s0 is too low, the suspension dynamic deflection Dd in-
creases, and the probability of the suspension colliding with a bump stop increases,
which is not good for ride comfort and operational reliability. Therefore, the natural
frequency s0 should satisfy the following relationship:

s0L ≤
√

k
/

m
/

2π ≤ s0R (17)

where s0R and s0L are the upper and lower bounds, respectively, of the natural fre-
quency s0.

The suspension stroke [Dd] of the vehicle cannot be very large (due to the structural
constraint) and is usually 7-9 cm. To ensure that the probability of suspension im-
pact on a bump stop is at most 0.3%, the RMS of the suspension dynamic deflection
σD jd should satisfy the following equation [Yu (2000)]:

σD jd ≤ [Dd ]
/

3 (18)

The relative dynamic load of the wheel significantly affects the vehicle safety.
When the relative dynamic load of the wheel is greater than 1, the wheel might
bounce off the road surface and lose the force of adhesion to the pavement, and the
vehicle will lose the capability of driving, braking, and steering. To maintain the
probability of wheels bouncing off the pavement at a value below 0.15%, the RMS
of the relative dynamic tire load σFjd should satisfy the following equation:

σFjd ≤ 1
/

3 (19)

In summary, an optimization model of vehicle suspension for ride comfort can be
formulated as:

min
X

f (X) = σz̈ (X)
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s.t.

g1 (X) =−mg
/

k ≤−hL

g2 (X) = mg
/

k ≤ hR

g3 (X) =−c
/

2
√

k×m≤−ζL

g4 (X) = c
/

2
√

k×m≤ ζR

g5 (X) =−
√

k
/

m
/

2π ≤−s0L

g6 (X) =
√

k
/

m
/

2π ≤ s0R

g7 (X) = σDd ≤ [Dd ]
/

3

g8 (X) = σFd ≤ 1
/

3

X = [k,c] (20)

4 Interval uncertain optimization

Due to the influence of manufacturing, measuring errors and ambient conditions,
there are many uncertain factors that affect the vehicle ride comfort, such as the
sprung mass, unsprung mass, tire stiffness, vehicle speed, pavement roughness,
spring stiffness, and the shock absorber damping. The coupling of these uncertain
parameters could cause considerable deviations of the suspension system perfor-
mance and thus makes it difficult for the design under the deterministic assumption
to satisfy the requirement of vehicle comfort design under actual conditions. In this
paper, we mainly consider the uncertainty of four parameters (i.e., sprung mass m,
tire stiffness kt , vehicle speed v, and pavement roughness Gq) as they have criti-
cal effects on vehicle ride comfort; these parameters are expressed as the vector
U = [m,kt ,v,Gq]. For example, the sprung mass exhibits considerable fluctuations
due to the influence of manufacturing error, the number of passengers, and the
amount of cargo; the tire stiffness is also significantly affected by the tire pres-
sure and temperature, which generally cannot be precisely quantified. Even for
pavements with the same grade, the pavement roughness exhibits significant un-
certainty caused by influences from construction conditions, years of service, and
the environment. Due to the variations in the work environment, loading condi-
tions, habits of the driving personnel, and material degradation, it is difficult to
state that these parameters obey a certain type of probability distribution, and thus,
they generally cannot be effectively processed using traditional probability-based
uncertainty analysis method. However, it is relatively easy to obtain the variation
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interval for these parameters based on general experience and existing samples. For
example, it is not difficult to determine the variation range of the sprung mass m
based on no-load condition and extreme loading condition of the vehicle. Using
a B-class road as another example, the geometric mean of the road roughness co-
efficient Gq is 64× 10−6m3, whereas its variation interval has been provided by
the relevant national standards. Therefore, in this paper, we introduce the interval
analysis method for conveniently and efficiently evaluating the uncertainty in key
parameters of the suspension system, thereby providing a new approach for the
uncertain optimization design of vehicle ride comfort.

Using the interval analysis method [Moore (1979); Ben and Elishakoff (1990); Qiu
and Wang (2005); Gao et al. (2010)], we only need to know the upper and lower
bounds of the uncertain parameter U = [m,kt ,v,Gq] of the suspension system:

U I
i =

[
UL

i ,U
R
i
]
=
{

U |i U
L
i ≤U≤i UR

i

}
=
{

U |i U
e
i −Uw

i ≤U≤i Ue
i +Uw

i

}
, i = 1,2,3,4

(21)

where U I
i , UL

i , and UR
i are the variation interval and the lower and upper bounds of

the parameter Ui; Ue
i =

UL
i +UR

i
2 and Uw

i =
UR

i −UL
i

2 are the midpoint and radius of Ui,
respectively. The uncertainty level of interval U I

i , ε
(
U I

i
)
, is defined as:

ε
(
U I

i
)
=

Uw
i
|Ue

i |
×100% (22)

After applying the interval approach to process the uncertain parameters in the
suspension system, the optimization problem of ride comfort in Eq. (20) can be
converted to the following interval uncertain optimization problem:

min
X

f (X,U) = σz̈ (X,U)

s.t.

gi (X,U)≤ bI
i = [bL

i ,b
R
i ], i = 1,2, ..., l

U I
i =

[
UL

i ,U
R
i
]
, i = 1,2,3,4

X = [k,c] , U = [m,kt ,v,Gq] (23)

where bI
i =
[
bL

i ,b
R
i
]

represents the allowable interval of the ith constraint. In practi-
cal design, the allowable limit of a constraint function is often not a specific value,
and instead, it should have a transitional state. In many cases, the constraint limit is
treated as an interval, which can well describe this transition state or fuzziness and
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thus renders the uncertain optimization model of ride comfort more reflective of ac-
tual situations. Notably, in our interval optimization, we can also directly provide
precise values for the constraint limits according to the practical situation, which
does not affect the solving procedure of the following interval optimization.

At present, the interval analysis and optimization method have been applied to
several engineering fields [Li et al. (2011); Wu et al. (2014); Wu et al. (2013);
Li et al. (2013); Li et al. (2013)]. We adopted our previously developed interval
optimization methods [Jiang et al. (2008); Jiang et al. (2008); Jiang et al. (2012);
Zhao et al. (2010)] to solve the aforementioned problem. First, by optimizing the
interval midpoint of the objective function, we can convert the interval objective
function f (X,U) to the following deterministic objective function:

min
X

f e (X) =
f L (X)+ f R (X)

2
(24)

where f e (X) represents the midpoint value of the objective function interval at
any point X. f L (X) and f R (X) are the lower and upper bounds of the objective
function, respectively, and they can be derived through optimization:

f L (X) = min
U∈UI

f (X,U)

f R (X) = max
U∈UI

f (X,U)
(25)

The possibility degree of the interval can be used to quantitatively describe the de-
gree that one interval is greater or smaller than another interval. In our previous
work [Jiang et al. (2012)], a reliability-based possibility degree of interval (RPDI)
was proposed, which can perform the quantitative comparison between crossing in-
tervals and completely separated intervals. Based on this RPDI model, the interval
constraints in Eq. (23) can be converted to the following deterministic constraints:

P
(
gI

i (X)≤ bI
i
)
≥ λi, i = 1,2, ..., l (26)

where P ∈ [−∞,+∞] represents the RPDI and λi represents the RPDI level of the
ith constraint; a larger RPDI level means a higher reliability requirement. The
bounds of the constraint interval gI

i (X) =
[
gL

i (X) ,gR
i (X)

]
, i = 1,2, ..., l can also

be obtained through optimization:

gL
i (X) = min

U∈UI
gi (X,U) , i = 1,2, ..., l

gR
i (X) = max

U∈UI
gi (X,U) , i = 1,2, ..., l

(27)

Through the above treatments, Eq. (23) can be transformed to:

min
X

f e (X)



Interval Uncertain Optimization of Vehicle Suspension for Ride Comfort 453

s.t.

P
(
gI

i (X)≤ bI
i
)
≥ λi, i = 1,2, ..., l

U I
i =

[
UL

i ,U
R
i
]
, i = 1,2,3,4

X = [k,c] , U = [m,kt ,v,Gq] (28)

Obviously, Eq. (28) is a traditional deterministic optimization problem and thus can
be solved using conventional optimization methods, such as sequential quadratic
programming (SQP).

5 Numerical example analysis and discussion

In this section, the interval optimization method of vehicle ride comfort proposed
in this paper is applied to three common vehicle vibration models with two degrees
of freedom, four degrees of freedom, and seven degrees of freedom. To reduce the
vertical vibration of the vehicle under-frame, the simple vibration model with two
degrees of freedom is predominantly used; the half-car model with four degrees of
freedom can evaluate the impact of vehicle pitching vibration on ride comfort; the
spatial model with seven degrees of freedom mainly considers the three degrees
of freedom (i.e., vertical, pitch, and roll) of the vehicle mass and the four vertical
degrees of freedom for the mass of four wheels, which is relatively complicated
and can fully describe the movement condition of the vehicle.

5.1 Vehicle vibration model with two degrees of freedom

The vehicle vibration model with two degrees of freedom is illustrated in Fig. 1.
The parameters of the suspension system are selected as follows: m1 = 40.5kg for
unsprung mass, k = 18000N/m for suspension spring stiffness, and c = 1500N ·s/m
for shock absorber damping.

The uncertainty levels ε of the four interval parameters are all 7%, namely, mI
2 ∈

[325.5,374.5]kg for sprung mass, kI
t ∈ [178560,205440]N/m for tire stiffness, vI ∈

[18.6,21.4]m/s for vehicle speed, and GI
q ∈ [59.52×10−6,68.48×10−6]m3 for the

pavement roughness coefficient. The formulated interval optimization problem of
ride comfort is as follows:

min
X

f (X,U) = σz̈2 (X,U)
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Figure 1: Vehicle vibration model with two degrees of freedom.

s.t.

g1 (X,U) =−m2g
/

k ≤ [−0.15,−0.135]

g2 (X,U) = m2g
/

k ≤ [0.3,0.33]

g3 (X,U) =−c
/

2
√

k×m2 ≤ [−0.2,−0.18]

g4 (X,U) = c
/

2
√

k×m2 ≤ [0.4,0.44]

g5 (X,U) =−
√

k
/

m2

/
2π ≤ [−1.0,−0.9]

g6 (X,U) =
√

k
/

m2

/
2π ≤ [1.5,1.65]

g7 (X,U) = σDd ≤ [0.023,0.03]

g8 (X,U) = σFd ≤ 1
/

3

mI
2 ∈ [325.5,374.5]kg,kI

t ∈ [178560,205440]N
/

m

vI ∈ [18.6,21.4]m
/

s,GI
q ∈
[
59.52×10−6,68.48×10−6]m3

X = [k,c], U = [m2,kt ,v,Gq] (29)

5.1.1 Sensitivity analysis of the uncertain parameters

First, we analyze the effects of four uncertain parameters on the responses, such as
the RMS of vehicle acceleration σZ̈2

, the RMS of suspension dynamic deflection
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σDd , and the RMS of the relative dynamic tire load σFd . Using the method proposed
in [Yu (2000)], when we analyze the sensitivity of a certain parameter, we vary its
value in the range within 50% of the midpoint value, and other parameters are fixed
at the midpoint of the interval. We use the RMS of the vibration response for the
midpoint value of the variables as the reference, and the gain is expressed in dB.
Using the gain of the RMS of vehicle acceleration as the example, there is the
following equation:

Lσ̈Z2
= 20lg[σZ̈2

(ui)
/

σZ̈2
(uw)] (30)

where σZ̈2
(uw) is the RMS of vehicle acceleration when the parameter to be an-

alyzed takes the midpoint value, and σZ̈2
(ui) is the RMS of vehicle acceleration

when the parameter takes other values. Using the same approach, we can derive
the RMS of suspension dynamic deflection and the gain of the RMS of the relative
dynamic tire load.

The influence of the pavement roughness coefficient Gq on the RMS of the vibra-
tion response is depicted in Figure 2(a). Shown in this figure, as the pavement
roughness varies, the variation curves for the RMS of vehicle accelerates, the RMS
of suspension dynamic deflects, and the RMS of tire dynamic load completely over-
laps with each other, and the three vibration responses are all extremely sensitive
to the variation in the pavement roughness. The influence of vehicle speed v on the
three vibration responses is shown in Figure 2(b). By comparing Figures 2(a) and
2(b), it is observed that the influences of the vehicle speed and pavement roughness
on the three vibration responses are identical because both of them have a linear re-
lationship with the power spectral density of pavement input and are not related to
the frequency response function of the vibration system. The faster the speed, the
higher the suspension vibration frequency; in addition, the shock and vibration on
the vehicle and passengers would be more intense. The influence of the tire radial
stiffness kt on the three vibration responses is presented in Figure 2(c). According
to the curve shown in the figure, the variation of tire stiffness has a small influ-
ence on the suspension dynamic deflection. When the tire stiffness increases, the
variation of the dynamic load between the wheels and pavement increases, and the
grounding safety of the wheels worsens. The tire stiffness has a significant influ-
ence on the vehicle acceleration, and a soft tire helps to improve the ride comfort.
The influence of the sprung mass m2 on the three vibration responses is displayed in
Figure 2(d). We can observe that, as the sprung mass increases, the RMS of vehicle
acceleration and the RMS of the relative dynamic tire load decreases, whereas the
RMS of suspension dynamic deflection increases. The increase in sprung mass can
effectively improve the ride comfort. In summary, the influences from the pave-
ment roughness coefficient, vehicle speed, tire stiffness, and sprung mass on the
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ride comfort are relatively sensitive, and thus, it is crucial to consider the uncer-
tainties of these parameters when studying the optimization of ride comfort.

4 5 6 7 8 9

x 10
-5

-3

-2

-1

0

1

2

 

 

3/ mG q

2

/
D

F
Z

d
d

L
L

L
dB





、

、

2Z
L



dD
L

dF
L

10 12 14 16 18 20 22 24 26 28 30
-3

-2

-1

0

1

2

 

 

1/  smu a

2

/
D

F
Z

d
d

L
L

L
dB





、

、

10 12 14 16 18 20 22 24 26 28 30
-3

-2

-1

0

1

2

 

 

2Z
L



dD
L

dF
L

 

                                                 (a)                                                                         (b) 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

x 10
5

-5

-4

-3

-2

-1

0

1

2

3

4

 

 

1/ mNkt

2

/
D

F
Z

d
d

L
L

L
dB





、

、

2Z
L



dD
L

dF
L

200 250 300 350 400 450 500
-4

-2

0

2

4

6

8

 

 

kgm /2

2

/
D

F
Z

d
d

L
L

L
dB





、

、

2Z
L



dD
L

dF
L

 

                                                 (c)                                                                         (d) 

 Figure 2: Effects of uncertain parameters on the RMS of the vehicle vibration
responses.

5.1.2 Results of the interval optimization

For convenience, we give the same RPDI level λ for all the interval constraints
and consider the scenarios with different λ values in the range of 1.0-1.5. The
optimization result of Eq. (29) is presented in Fig. 3 and Table 1.

According to Fig. 3, as λ increases, the upper and lower bounds and midpoint
of the objective function all increase because a relatively high RPDI level means
a more stringent restriction on the given interval constraints and thus results in a
relatively small feasible region and a relatively poor value of the objective function.
In addition, we find that, although the objective function interval generally exhibits
an upward trend as λ increases, its interval width roughly remains constant because
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Figure 3: Variation curves of the interval optimization results of the vehicle vibra-
tion model with two degrees of freedom with respect to the RPDI level.

Table 1: Results of the interval optimization of vehicle ride comfort with two de-
grees of freedom for different RPDI levels.

λ k/N·m−1 c/N·s·m−1 σZ̈2
/m·s−2 Midpoint

1.0 14845 945 [0.4469, 0.6097] 0.5283
1.1 15367 978 [0.4546, 0.6207] 0.5377
1.2 15906 1013 [0.4627, 0.6318] 0.5473
1.3 16462 1048 [0.4709, 0.6430] 0.5570
1.4 17037 1085 [0.4794, 0.6543] 0.5669
1.5 17630 1122 [0.4879, 0.6656] 0.5758

the uncertainty level of the parameters remains unchanged, whereas the variation
interval of the objective function is mainly caused by the parameter uncertainty.

According to Table 1, for λ = 1, the optimal suspension design parameters are
k = 14845N/m and c= 945N ·s/m, and the objective function for the optimal design
solution is σz̈2 = [0.4469,0.6097]m/s2, and inside this interval, the human body
will experience some subjective discomfort. The intervals of individual constraints
are g1 (X,U) = [−0.2472,−0.2149]m, g2 (X,U) = [0.2149,0.2472]m, g3 (X,U) =
[−0.2146,−0.2000], g4 (X,U)= [0.2000,0.2146], g5 (X,U)= [−1.0730,−1.0000]
Hz, g6 (X,U)= [1.0000,1.0730]Hz, g7 (X,U)= [0.0064,0.0079]m, and g8 (X,U)=
[0.0941,0.1406]. By comparing the limit values on the right side of the constraints
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in Eq. (29), we can observe that, under the optimal parameters of suspension de-
sign, the constraint variation caused by parameter uncertainty is strictly controlled
in the required design range.
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Figure 4: Variation curves of the interval optimization results of the vehicle vibra-
tion model with two degrees of freedom with respect to the uncertainty level.

Table 2: Results of the interval optimization for the vehicle vibration model with
two degrees of freedom for different parameter uncertainty levels.

ε k/N·m−1 c/N·s·m−1 σZ̈2
/m·s−2 Midpoint

1% 13958 889 [0.5011, 0.5235] 0.5123
2% 14100 898 [0.4923, 0.5374] 0.5149
3% 14244 906 [0.4834, 0.5515] 0.5175
4% 14391 916 [0.4744, 0.5658] 0.5201
5% 14540 926 [0.4653, 0.5802] 0.5228
6% 14691 935 [0.4562, 0.5949] 0.5256
7% 14845 945 [0.4469, 0.6097] 0.5283
8% 15001 955 [0.4375, 0.6247] 0.5311

In addition, we set the RPDI level to λ = 1 and evaluate the situations with dif-
ferent parameter uncertainty levels in the range of 1%-8%. The results of interval
optimization are shown in Fig. 4 and Table 2. We can find that, as the parame-
ter uncertainty level increases, the interval of the objective function (i.e., the RMS
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of vehicle acceleration) for the optimal design widens because the relatively large
parameter uncertainty will inevitably cause a relatively large response uncertainty;
the midpoint of the objective function, namely, the average RMS of vehicle accel-
eration, slightly increases, while overall, it is relatively stable. Due to the increase
in the interval width of the RMS of vehicle acceleration and the midpoint value,
the increase in the parameter uncertainty level is not conducive to the design of
vehicle ride comfort. Therefore, in the practical design of vehicle suspension, we
should minimize the measurement and manufacturing error and attempt to control
the uncertainty of some key parameters within a small range.

5.2 Vehicle vibration model with four degrees of freedom

The half-car vibration model with four degrees of freedom is depicted in Fig. 5.
The parameters of the suspension system are selected as follows: the masses of the
front and rear tires are m1 = 40.5kg and m2 = 45.4kg, respectively; the moment of
inertia of the vehicle around the pitch axis is Ix = 1222kg ·m2; the distances from
the front and rear axles to the center of vehicle mass are a = 1.25m and b = 1.51m,
respectively; k3 and k4 are the spring stiffness of the front and rear suspension,
respectively; and c3 and c4 are the damping of the front and rear suspension, re-
spectively.
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Figure 5: Vehicle vibration model with four degrees of freedom.

The interval parameters are mI
3 ∈ [641.7,738.3]kg for sprung mass, kI

t ∈ [178560,
205440]N/m for tire stiffness, vI ∈ [18.6,21.4]m/s for vehicle speed, and GI

q ∈
[59.52× 10−6,64.48× 10−6]m3 for the coefficient of pavement roughness; all un-
certainty levels ε are 7%. The formulated interval optimization problem for vehicle
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ride comfort is as follows:

min
X

f (X,U) = σz̈3 (X,U)

s.t.

g1i (X,U) =−m3ig
/

ki ≤ [−0.135,0.15] , i = 3,4

g2i (X,U) = m3ig
/

ki ≤ [0.3,0.33]

g3i (X,U) =−ci

/
2
√

ki×m3i ≤ [−0.2,−0.18]

g4i (X,U) = ci

/
2
√

ki×m3i ≤ [0.4,0.44]

g5i (X,U) =−
√

ki
/

m3i

/
2π ≤ [−1.0,−0.9]

g6i (X,U) =
√

ki
/

m3i

/
2π ≤ [1.5,1.65]

g7 j (X,U) = σD jd ≤ [0.023,0.03] , j = 1,2

g8 j (X,U) = σFjd ≤ 1
/

3

mI
3 ∈ [641.7,738.3]kg,kI

j ∈ [178560,205440]N
/

m

vI ∈ [18.6,21.4]m/s,GI
q ∈
[
59.52×10−6,68.48×10−6]m3

X = [k3,k4,c3,c4], U = [m3,kt ,v,Gq] (31)

where i= 3,4 represents the front and rear suspensions, j = 1,2 represents the front
and rear wheels, m33 = m3b

/
(a+b), and m34 = m3a

/
(a+b).

We considered many different RPDI levels and performed the interval optimization
of ride comfort. The optimization results are presented in Fig. 6 and Table 3.

Table 3: Results of the interval optimization of vehicle ride comfort with four de-
grees of freedom for different RPDI levels.

λ k3/N·m−1 k4/N·m−1 c3/N·s·m−1 c4/N·s·m−1 σZ̈3
/m·s−2 Midpoint

1.0 13195 16070 925 929 [0.2917, 0.4060] 0.3489
1.1 13368 16927 948 970 [0.2950, 0.4114] 0.3532
1.2 13540 17817 970 1013 [0.2985, 0.4170] 0.3578
1.3 14324 18130 1015 1039 [0.3061, 0.4267] 0.3664
1.4 15742 17844 1083 1049 [0.3180, 0.4411] 0.3796
1.5 17198 17558 1151 1058 [0.3308, 0.4566] 0.3937

As shown in the figure, as λ increases, the upper and lower bounds and the midpoint
of the objective function (i.e., the RMS of the acceleration of the center of vehicle
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Figure 6: Variation curves of the interval optimization results of the vehicle vibra-
tion model with four degrees of freedom with respect to the RPDI level.

mass) all increase. In contrast with example 1, the variation here exhibits a certain
nonlinearity. For λ = 1, the parameters of optimal suspension design are k3 =
13195N/m, k4 = 16070N/m, c3 = 925N · s/m, and c4 = 929N · s/m. Under this
design solution, because the variation range of the RMS of acceleration caused by
the parameter uncertainty is σZ̈3

= [0.2917,0.4060]m/s2, the subjective feeling of
the human body is comfortable, and the ride comfort is good. If we intend to add
the reliability of constraint and set the RPDI level to λ = 1.5, then the parameters of
optimal suspension design are k3 = 17198N/m, k4 = 17558N/m, c3 = 1151N · s/m,
and c4 = 1058N · s/m; under this design, the possible variation range of the RMS
of acceleration is σZ̈3

= [0.3308,0.4566]m/s2. The subjective feeling of the human
body will be slightly uncomfortable, and the ride comfort is reduced.

Similar to the vibration system with two degrees of freedom, we fix the RPDI
level at λ = 1 and evaluate the scenarios with different parameter uncertainty levels
between 1% and 8%. The interval optimization results are presented in Fig. 7 and
Table 4.

Identical to the vibration system with two degrees of freedom, the interval of the
objective function (i.e., the RMS of the acceleration of the center of vehicle mass)
under the optimal design solution widens as the parameter uncertainty level in-
creases, whereas the midpoint slightly increases while remaining relatively stable.
For ε = 1%, the midpoint value of the RMS of acceleration is 0.3378m/s2; for
ε = 8%, the midpoint value is 0.3508m/s2, which is only 3.8% greater than the
former value.
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Figure 7: Variation curves of the interval optimization results of the vehicle vibra-
tion model with four degrees of freedom with respect to the uncertainty level.

Table 4: Results of the interval optimization for the vehicle vibration model with
four degrees of freedom for different parameter uncertainty levels.

ε k3/N·m−1 k4N·m−1 c3/N·s·m−1 c4/N·s·m−1 σZ̈3
/m·s−2 Midpoint

1% 12455 15061 872 872 [0.3298, 0.3457] 0.3378
2% 12578 15218 881 881 [0.3236, 0.3556] 0.3396
3% 12702 15380 889 890 [0.3174, 0.3655] 0.3415
4% 12825 15546 898 900 [0.3111, 0.3756] 0.3434
5% 12948 15716 907 909 [0.3048, 0.3856] 0.3452
6% 13072 15891 916 919 [0.2983, 0.3958] 0.3471
7% 13195 16070 925 929 [0.2917, 0.4060] 0.3489
8% 13318 16255 935 939 [0.2851, 0.4164] 0.3508

5.3 Vehicle vibration model with seven degrees of freedom

The vehicle vibration model with seven degrees of freedom is displayed in Fig. 8.
The suspension system parameters are selected as follows: the masses of the front
and rear wheels are m1 = 40.5kg and m2 = 45.4kg, respectively; the moments of
inertia of the vehicle around the pitch axis and roll axis are Ix = 2444kg ·m2 and Iy =
380kg ·m2, respectively; the distances from the front and rear axles to the center of
vehicle mass are a = 1.25m and b = 1.51m, respectively; the tread is d = 1.48m; k5
and k6 are the spring stiffness of the front and rear suspensions, respectively; and
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c5 and c6 are the damping of the front and rear suspensions, respectively.
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Figure 8: Vehicle vibration model with seven degrees of freedom.

The RMS of acceleration of the center of vehicle mass is the objective function,
and the design parameters are X = [k5,k6,c5,c6]. We used the sprung mass m5,
tire stiffness kt , vehicle speedv, and pavement roughness coefficient Gq as the in-
terval parameters, all with an uncertainty level of 7%. The sprung mass is mI

5 ∈
[1283.4,1476.6]kg, the tire stiffness is kI

t ∈ [178560,205440]N/m, the vehicle speed
is vI ∈ [18.6,21.4]m/s, and the pavement roughness coefficient is GI

q ∈ [59.52×
10−6,64.48× 10−6]m3. The formulated interval optimization problem of vehicle
ride comfort is as follows:

min
X

f (X,U) = σz̈5 (X,U)

s.t.
g1i (X,U) =−m5ig

/
ki ≤ [−0.135,−0.15], i = 5,6

g2i (X,U) = m5ig
/

ki ≤ [0.3,0.33]

g3i (X,U) =−ci

/
2
√

ki×m5i ≤ [−0.2,−0.18]

g4i (X,U) = ci

/
2
√

ki×m5i ≤ [0.4,0.44]

g5i (X,U) =−
√

ki
/

m5i

/
2π ≤ [−1.0,−0.9]

g6i (X,U) =
√

ki
/

m5i

/
2π ≤ [1.5,1.65]

g7 j (X,U) = σD jd ≤ [0.023,0.03] , j = 1,2,3,4

g8 j (X,U) = σFjd ≤ 1
/

3
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mI
5 ∈ [1283.4,1476.6]kg,kI

j ∈ [178560,205440]N
/

m

vI ∈ [18.6,21.4]m
/

s,GI
q ∈
[
59.52×10−6,68.48×10−6]m3

X = [k5,k6,c5,c6], U = [m5,kt ,v,Gq] (32)

where i = 5,6 represents the front and rear suspensions, j = 1,2,3,4 represents the
four wheels, m55 = m5b

/
2(a+b), and m56 = m5a

/
2(a+b).

We still consider a variety of different RPDI levels, and the interval optimization
results are presented in Fig. 9 and Table 5.
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Figure 9: Variation curves of the interval optimization results of the vehicle vibra-
tion model with seven degrees of freedom with respect to the RPDI level.

Table 5: Results of the interval optimization of vehicle ride comfort with seven
degrees of freedom for different RPDI levels.

λ k5/N·m−1 k6/N·m−1 c5/N·s·m−1 c6/N·s·m−1 σZ̈5
/m·s−2 Midpoint

1.0 14125 15140 1200 902 [0.2732, 0.3705] 0.3219
1.1 14692 15602 1221 931 [0.2782, 0.3772] 0.3277
1.2 15688 15669 1304 950 [0.2840, 0.3853] 0.3347
1.3 14945 17508 1263 1021 [0.2863, 0.3882] 0.3373
1.4 16750 16838 1409 1019 [0.2939, 0.3988] 0.3464
1.5 17201 17556 1433 1058 [0.2988, 0.4056] 0.3522
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According to the computational results, as λ increases, the objective function (i.e.,
the upper and lower bound and midpoint of the RMS of the acceleration at the cen-
ter of vehicle mass) also increases. For λ = 1, the parameters of optimal suspension
design are k5 = 14125N/m, k6 = 15140N/m, c5 = 1200N ·s/m, and c6 = 902N ·s/m.
For this design solution, the variation range of the RMS of acceleration caused
by the parameter uncertainty is σZ̈5

= [0.2732,0.3705]m/s2; therefore, the subjec-
tive feeling of the human body is relatively comfortable, and the ride comfort is
good. If we increase the interval constraint reliability by increasing the RPDI level
to λ = 1.5, then the possible variation range of the RMS of the acceleration is
σZ̈5

= [0.2988,0.4056]m/s2. Although the ride comfort is lower than that of λ = 1,
it still meets the requirement of practical comfort design.

6 Conclusions

By introducing the interval analysis method, an uncertain optimization model of
vehicle suspension for ride comfort is formulated, which can improve the reliabil-
ity of vehicle design and stability of vehicle riding. It is only necessary to obtain
the upper and lower bounds of all uncertain parameters that affect the vehicle ride
comfort, rather than their precise probability distributions. Thus we can to some
degree avoid the relatively stronger dependence of traditional probabilistic methods
on a large number of samples and renders the uncertainty modeling and optimiza-
tion design of vehicle ride comfort more convenient and efficient. The method in
this paper is applied to three typical vehicle suspension vibration models with two
degrees of freedom, four degrees of freedom, and seven degrees of freedom. The
computational results indicate that the optimal suspension design parameters can
be obtained through interval optimization, which can control the variation interval
of the constraint within the range of design requirements under an uncertain en-
vironment, thereby ensuring the reliability of the constraints while improving the
objective for ride comfort. By increasing the reliability-based possibility degree
of interval level, we can increase the reliability of constraints, but this treatment
could also decrease the vehicle ride comfort. Therefore, it is necessary to provide a
reasonable reliability-based possibility degree of interval level of constraints in the
practical design of vehicle ride comfort.
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