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Speedup of Elastic–Plastic Analysis of Large-scale Model
with Crack Using Partitioned Coupling Method

with Subcycling Technique

Yasunori Yusa1 and Shinobu Yoshimura1

Abstract: To speed up the elastic–plastic analysis of a large-scale model with
a crack in which plasticity is observed near the crack, the partitioned coupling
method is applied. In this method, the entire analysis model is decomposed into
two non-overlapped domains (i.e., global and local domains), and the two domains
are analyzed with an iterative method. The cracked local domain is modeled as
an elastic–plastic body, whereas the large-scale global domain is modeled as an
elastic body. A subcycling technique is utilized for incremental analysis to reduce
the number of global elastic analyses. For a benchmark problem with 6 million
degrees of freedom, the developed partitioned coupling solver with the subcycling
technique was 3.34 times faster than the developed conventional FEM solver.

Keywords: Fracture mechanics, plasticity, nonlinear finite element method, cou-
pled analysis, iterative methods.

1 Introduction

Fracture mechanics plays a significant role in evaluating structural integrity with
maintenance codes such as ASME Boiler and Pressure Vessel Code Section X-
I (Rules for Inservice Inspection of Nuclear Power Plant Components) and the
JSME Code for Nuclear Power Generation Facilities (Rules on Fitness-for-service
for Nuclear Power Plants). Although linear elastic fracture mechanics (LEFM)
is utilized for fatigue and stress corrosion cracking (SCC) in such codes, elastic–
plastic cracks are not generally considered at present. Recently, mainly due to
disasters such as earthquakes and tsunamis, it has become important to study the
behavior of a cracked structure in a plastic state. There is an issue in analyzing
a cracked structure with plasticity. Elastic–plastic analysis with a nonlinear finite
element method (FEM) requires much more computation time than linear elastic
analysis. Plasticity is, however, observed near the crack in the case of small strain,
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whereas a large portion far from the crack can be regarded as an elastic body. A
structure of complicated shape in the real world tends to be modeled as a large-
scale finite element model. For this issue, we have studied a partitioned coupling
method [Yusa and Yoshimura (2013)], which was imported from the field of fluid–
structure interaction coupling [Minami and Yoshimura (2010)]. In this method, the
entire analysis model is decomposed into two non-overlapped domains, i.e., global
and local domains. The two domains are analyzed separately and iteratively with
an iterative method to satisfy both geometrical compatibility and force equilibrium
on the global–local interface.

Various methods that utilize two meshes or a mesh with a non-numerical solution
have been proposed. S-version FEM (SFEM) [Fish (1992)] was proposed to reduce
the number of finite elements required for a sufficiently accurate solution and to re-
duce the human effort in meshing. In SFEM, a fine local mesh that may contain
a crack is superimposed on a coarse global mesh, and the two meshes are con-
nected with Lagrange multipliers. Elastic–plastic problems were analyzed explic-
itly using SFEM [Nakasumi, Suzuki, Fujii, and Ohtsubo (2002); Okada, Endoh,
and Kikuchi (2007)]. Nakasumi, Suzuki, Fujii, and Ohtsubo (2002) analytical-
ly gave that the elastic constants on the local mesh can be different from those
on the global mesh. Okada, Endoh, and Kikuchi (2007) applied the SFEM for
an elastic–plastic fracture problem and evaluated the J-integral. In their studies,
incremental analysis was employed without an implicit iterative method such as
the Newton–Raphson method. Nodal unbalance evaluation, which is necessary for
implicit iterative methods, is troublesome in SFEM since the effect of the local
reaction force is complicatedly added to that of the global reaction force. Suzu-
ki, Ohtsubo, Nakasumi, and Shinmura (2002) utilized iterative methods with S-
FEM and analyzed benchmark problems with a general-purpose commercial code.
The iterative substructure method [Nishikawa, Serizawa, and Murakawa (2007)]
is a similar method to SFEM with regard to meshing. In this method, an itera-
tive method is used to obtain a converged solution. Thermal elastic–plastic prob-
lems in welding were analyzed by Nishikawa, Serizawa, and Murakawa (2007).
The global–local method [Whitcomb (1991)], which is also known as the zooming
method, is a popular approach in structural analysis. In this method, the numerical
result of a global analysis is given to a local model as the boundary conditions,
and then, the local model is analyzed in detail. Since the result of the local anal-
ysis cannot affect the global analysis, in general, either geometrical compatibility
or force equilibrium is not satisfied. Iterative global–local analysis was studied
by Whitcomb (1991) to solve this issue. These three iterative methods [Suzuki,
Ohtsubo, Nakasumi, and Shinmura (2002); Nishikawa, Serizawa, and Murakawa
(2007); Whitcomb (1991)] described above are not sophisticated with regard to it-
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erative algorithms. In the present study, a quasi-Newton method, which showed the
best performance of several iterative algorithms with several line search algorithms
in fluid–structure interaction benchmarks [Minami and Yoshimura (2010)], is used.
In addition, in the case of elastic–plastic problems or generally nonlinear problems,
methods based on the principle of superposition would not be appropriate since the
principle does not hold. Extended FEM (XFEM) [Moës, Dolbow, and Belytschko
(1999)] was proposed to avoid meshing efforts concerning a crack. In the XFEM,
a Heaviside function representing the crack discontinuity is superimposed on the
finite element interpolation functions. The XFEM has been applied for various
problems [Abdelaziz and Hamouine (2008)], which include elastic–plastic fracture
problems. Elguedj, Gravouil, and Combescure (2006) employed the Hutchinson–
Rice–Rosengren (HRR) field [Hutchinson (1968); Rice and Rosengren (1968)] to
represent the singularity of an elastic–plastic crack. Prabel, Combescure, Gravouil,
and Marie (2007) solved a dynamic crack propagation problem in elastic–plastic
media using XFEM linear function approximation. Samaniego and Belytschko
(2005) modeled shear bands in plasticity using XFEM. The elastic finite element
alternating method (FEAM) [Nishioka and Atluri (1983)] was proposed to connec-
t the analytical solutions of the stress intensity factors (SIFs) with the uncracked
structure mesh. In FEAM, the analytical solution and the mesh are solved iterative-
ly, and a converged solution is obtained. The elastic FEAM was then extended to
elastic–plastic FEAM [Pyo, Okada, and Atluri (1995)] by coupling the FEAM with
the initial stress algorithm [Nikishkov and Atluri (1994)]. Compared to XFEM and
FEAM, our method can be applied for any plasticity models as far as the mod-
el can be applied for conventional FEM. FEAM was extended to SGBEM–FEM
alternating method that utilizes symmetric Galerkin boundary element method (S-
GBEM) instead of a theoretical solution [Nikishkov, Park, and Atluri (2001)]. In
SGBEM–FEM, a global uncracked FEM mesh and a local cracked SGBEM mesh
are solved alternately to satisfy force equilibrium, using forces on a mesh interface
and forces on a crack surface. Various two- and three-dimensional problems of frac-
ture and fatigue crack growth were analyzed by SGBEM–FEM [Dong and Atluri
(2013a,b)]. The domain decomposition method (DDM) based on the precondi-
tioned conjugate gradient (PCG) methods [Yoshimura, Shioya, Noguchi, and Miya-
mura (2002); Ogino, Shioya, Kawai, and Yoshimura (2005); Miyamura, Noguchi,
Shioya, Yoshimura, and Yagawa (2002)] has been used for parallel finite element
analysis (FEA). In DDM, the entire analysis model is decomposed into multiple
subdomains, and the PCG solver is employed for the subdomain interface. Since
multiple FEAs are performed for every subdomain at every PCG iteration, this ap-
proach gives high parallelism. The ADVENTURE System by Yoshimura, Shioya,
Noguchi, and Miyamura (2002) includes a parallel solid mechanics solver based
on DDM. Ogino, Shioya, Kawai, and Yoshimura (2005) solved an elastodynamic
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problem of a large-scale structure using the solver on a supercomputer. Miyamura,
Noguchi, Shioya, Yoshimura, and Yagawa (2002) applied DDM for a large-scale
elastic–plastic problem. Plasticity is observed everywhere in their study, whereas
it is modeled to be observed locally near the crack in the present study. The latter
approach can lead to an efficient simulation since a large portion far from the crack
is modeled as an elastic body.

In this paper, the partitioned coupling method, which has already been applied
for a linear elastic fracture problem [Yusa and Yoshimura (2013)], is applied for
an elastic–plastic problem with a crack. The cracked local domain is modeled as
an elastic–plastic body, whereas the large-scale global domain is modeled as an
elastic body. The subcycling technique [Farhat, Lesoinne, and Maman (1995)] is
utilized for incremental analysis to reduce the number of global elastic analyses.
The methodology is presented in detail in Section 2. A benchmark problem is then
analyzed using the present method and conventional FEM in Section 3, and the
computational performance of these methods is carefully examined. A conclusion
is finally given in Section 4.

2 Method

2.1 Partitioned Coupling Method

First of all, the entire analysis model is decomposed into two non-overlapped do-
mains, as shown in Fig. 1. Since the two domains are analyzed separately in a
partitioned coupling method, in general, either geometrical compatibility or force
equilibrium on the global–local interface is not satisfied. However, they become
satisfied by an iterative solution technique. Here, the analysis on the local domain,
Ω L, is represented as

f(k+1)
Γ

= L
(

u(k)
Γ

)
(1)

and the analysis on the global domain, Ω G, is represented as

ũ(k+1)
Γ

= G
(

f(k+1)
Γ

)
. (2)

Here, k is the iteration step, uΓ is the displacement vector on the global–local inter-
face, Γ , ũΓ is the predicted displacement vector on Γ , and fΓ is the force vector on
Γ . L is a function in which local analysis is performed under an enforced displace-
ment boundary condition, uΓ , on Γ , and the negative of the reaction force vector,
fΓ , is returned. G is also a function in which global analysis is performed under
an external force boundary condition, fΓ , on Γ , and the displacement vector, uΓ , is



Speedup of Elastic–Plastic Analysis of Large-scale Model with Crack 91

returned. These functions themselves would be nonlinear owing to plasticity. From
Eq. 1 and Eq. 2,

ũ(k+1)
Γ

= G
(

L
(

u(k)
Γ

))
(3)

is obtained. A residual vector, R, is now defined as a function of

R(uΓ )≡ uΓ −G(L(uΓ )) . (4)

When geometrical compatibility on the global–local interface is satisfied, the resid-
ual should vanish as

R(uΓ ) = 0. (5)

This nonlinear equation is to be solved by an iterative solution algorithm described
in the next paragraph. Equation 5 is checked numerically with a tolerance, τ , as

‖R(uΓ )‖
‖G(L(uΓ ))‖

≤ τ (6)

in the present study. In addition, force equilibrium also becomes satisfied when
geometrical compatibility is satisfied at the k-th iteration step as

R
(

u(k)
Γ

)
= u(k)

Γ
−G

(
L
(

u(k)
Γ

))
= 0. (7)

From this equation,

u(k)
Γ

= G
(

L
(

u(k)
Γ

))
(8)

is obtained. The function of L is applied to both sides, and then Eq. 1 is used.
Finally,

f(k+1)
Γ

−L
(

G
(

f(k+1)
Γ

))
= 0 (9)

is derived. The left side of this equation is the force-based residual vector, whose
form is similar to Eq. 4.

In the present study, the limited-memory Broyden method [Minami and Yoshimura
(2010); Kelley (2003)] is adopted to solve Eq. 5. The limited-memory Broyden
method is a quasi-Newton method and satisfies the secant condition

B(k+1)s(k) = r(k+1)− r(k). (10)
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Figure 1: Decomposed analysis model and assumed boundary conditions on
global–local interface.

Here, B is an approximate Jacobian matrix,

s(k) ≡ u(k)
Γ
−u(k−1)

Γ
(11)

is the search direction vector, and

r(k+1) ≡ R
(

u(k)
Γ

)
(12)

is the residual vector. The Broyden updating formula is here defined as

B(k+1) = B(k)+
r(k+1)s(k)T∥∥s(k)

∥∥2 . (13)

Using the Sherman–Morrison formula,

(
M+uvT)−1

=

(
I− M−1u

1+vTM−1u
vT
)

M−1, (14)

where M is an invertible matrix, and u and v are vectors whose size is the same as
the matrix size, one can derive

s(k+1) ≡−B(k+1)−1
r(k+1) =

p(k+1,k)

1− s(k)Tp(k+1,k)

‖s(k)‖2

(15)
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and

p(k+1,i+1) ≡−B(i+1)−1
r(k+1) = p(k+1,i)+

s(i)Tp(k+1,i)∥∥s(i)
∥∥2 s(i+1). (16)

A dense matrix, B, is eliminated in the above equations so that this method does not
require a large amount of memory. The algorithm of the limited-memory Broyden
method is summarized as follows.

s(0)←−B(0)−1
(

u(−1)
Γ
−G

(
L
(

u(−1)
Γ

)))
u(0)

Γ
← u(−1)

Γ
+ s(0)

k← 0
while

∥∥r(k)
∥∥/∥∥∥ũ(k)

Γ

∥∥∥> τ do

ũ(k+1)
Γ

← G
(

L
(

u(k)
Γ

))
r(k+1)← u(k)

Γ
− ũ(k+1)

Γ

p(k+1,0)←−B(0)−1r(k+1)

for i← 0 to k−1 do
p(k+1,i+1)← p(k+1,i)+ s(i)Tp(k+1,i)

‖s(i)‖2 s(i+1)

end for
s(k+1)← p(k+1,k)

/(
1− s(k)Tp(k+1,k)

‖s(k)‖2

)
u(k+1)

Γ
← u(k)

Γ
+ s(k+1)

k← k+1
end while

An initial inverse approximate Jacobian matrix, B(0)−1
, is a user-defined parameter,

which is determined to be a diagonal matrix whose diagonal entries are 0.1 in the
present study.

2.2 Subcycling Technique

Owing to strain path dependence, elastic–plastic analysis with nonlinear FEM gen-
erally requires incremental analysis as follows:

for loop of incremental steps do
Analysis with Newton–Raphson method

end for

One can select two approaches for incremental analysis with the partitioned cou-
pling method.

The first approach is the incremental approach, in which partitioned coupling iter-
ations are conducted at every incremental step. The algorithm of the incremental
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approach is described as follows.
for loop of incremental steps do

while loop of partitioned coupling iterations do
Local analysis with Newton–Raphson method
Global analysis

end while
end for

An initial guess, u(−1)
Γ

, of the Broyden method described in the previous subsection
is zerofilled at the first incremental step or filled with a previous converged solution,
u(k+1)

Γ
, at other incremental steps. However, in this approach, the global domain is

analyzed with incremental steps, even though it is an elastic body.

The second approach is the subcycling approach, in which incremental steps are
conducted at each partitioned coupling iteration. This approach enables the reduc-
tion of the number of global analyses. The subcycling technique is occasionally
used in the field of fluid–structure interaction coupling [Farhat, Lesoinne, and Ma-
man (1995)], especially with staggered algorithms. This technique is preferred
because the time scale required for fluid analysis is smaller than that for structural
analysis. This situation is very similar to the present study. The algorithm of the
subcycling approach is described in the following:

for loop of partitioned coupling iterations do
Decision of number of incremental steps
while loop of incremental steps do

Local analysis with Newton–Raphson method
end while
Global analysis
Turning back incremental time (restoring internal variables such as equivalent
plastic strain and yield stress)

end for

In this algorithm, the number of incremental steps is determined at each partitioned
coupling iteration by a simple formula:

Number of incremental steps =
⌊

εchar

∆εchar

⌋
+1. (17)

εchar is calculated as

εchar =

√
∑i=x,y,z

(
uΓimax

−uΓimin

)2

√
∑i=x,y,z (ximax− ximin)

2
, (18)
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Figure 2: Dimension parameters and boundary conditions of pressure vessel model.

and ∆εchar is a user-defined parameter. uΓi denotes an assumed enforced displace-
ment boundary condition on the global–local interface, and xi represents the nodal
coordinates. ∆εchar is determined to be 0.01 % in the present study.

3 Benchmark

A cracked pressure vessel model with 6 million degrees of freedom (DOFs) was
analyzed by the developed partitioned coupling solver as well as the developed
conventional FEM solver. The dimension parameters and boundary conditions of
the model are shown in Fig. 2. An 18-deg through-wall crack is introduced at the
nozzle part. The decomposed mesh is visualized in Fig. 3 by using a handy graphics
and GUI library, AutoGL [Kawai (2006)]. The numbers of elements, nodes, and
DOFs in the global mesh are 1,308,720, 2,117,000, and 6,351,000, respectively.
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Those in the local mesh are 54,710, 80,066, and 240,198, respectively. The ratio
of the number of global DOFs to the number of local DOFs is 26:1. The numbers
of nodes and DOFs in the global–local interface are 960 and 2,880, respectively.
The employed material parameters are a Young’s modulus of 210 GPa, a Poisson’s
ratio of 0.3, and an initial yield stress, σy0 , of 250 MPa. The employed stress–strain
curve is

σ̄ = σy0 +F (ε̄ p)n , (19)

where σ̄ denotes the equivalent stress, and ε̄ p denotes the equivalent plastic strain.
The plastic hardening parameters, F and n, are 1300 MPa and 0.45, respective-
ly. The von Mises’ criterion, an associated flow rule, and isotropic hardening are
adopted in the elastoplasticity modeling. The radial return method and a consistent
tangential stiffness matrix are used in the Newton–Raphson method. The tolerance
of the Newton–Raphson method is set as 10−6, while that of the Broyden method
is set as 10−3. In the incremental partitioned coupling analysis and the conven-
tional FEA, the number of incremental steps is set as 11, which is equivalent to
∆εchar = 0.01 % in this problem.

The von Mises’ equivalent stress distribution computed by the subcycling parti-
tioned coupling solver is visualized in Fig. 4. Its deformation is magnified by 100.
The computed yielding zone is visualized in Fig. 5. The result of the partitioned
coupling analysis seems almost the same as that of the conventional FEA.

The performance of iterative algorithms including the Newton–Raphson method
and the Broyden method was examined. The given and measured number of par-
titioned coupling iterations and incremental steps are described in Tab. 1. Conver-
gence histories of the Broyden method are shown in Fig. 6. The horizontal axis
represents the partitioned coupling iteration count, k, while the vertical axis rep-
resents the relative residual norm,

∥∥r(k)
∥∥/∥∥∥ũ(k)

Γ

∥∥∥. In the incremental partitioned
coupling method, the number of partitioned coupling iterations was measured as
11, and the number of incremental steps was given by the analyst as 11. Converged
solutions were obtained successfully in 10–14 iterations at each incremental step.
On the other hand, in the subcycling method, the number of partitioned coupling
iterations was measured as 17, and the number of incremental steps was calculated
18 times by Eq. 17. Note that the number of iterations was counted from zero. The
number of partitioned coupling iterations was a little larger than the number in the
incremental partitioned coupling method, probably because the nonlinearity with
path dependence is stronger. The number of incremental steps was small in the ear-
ly part of the partitioned coupling iterations since the diagonal entries of the initial
inverse approximate Jacobian matrix, B(0)−1

, were determined to be small values.
Then, the number of incremental steps became 11 as the solution approached the
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Figure 3: Mesh of pressure vessel model. Entire mesh (top left), mesh near skirt
(bottom left), sectioned mesh near skirt (top middle), sectioned mesh near nozzle
(bottom middle), decomposed mesh near nozzle (top right), and local mesh (bottom
right).

true solution. The measured number of Newton–Raphson iterations is shown in
Tab. 2. In conventional FEM, plastic yielding began at the second incremental step,
and the Newton–Raphson iterations were performed afterwards. In the incremental
partitioned coupling method, the partitioned coupling iterations were conducted at
each incremental step, so the Newton–Raphson iterations were performed at each
partitioned coupling iteration in each incremental step. In the subcycling parti-
tioned coupling method, incremental analyses were conducted at each partitioned
coupling iteration, so the Newton–Raphson iterations were performed at each in-
cremental step in each partitioned coupling iteration. The measured number of
linear system solutions is described in Tab. 3. In the incremental partitioned cou-
pling method, the linear system solutions were solved many times in both the global
and local analyses due to the partitioned coupling iterations. On the other hand, in
the subcycling method, the number of linear systems in the global analysis was
reduced, while small linear systems were solved many times in the local analysis.
This feature can reduce computational time.

The computational performance was measured on a personal computer with an In-
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Figure 4: Computed equivalent stress distribution of pressure vessel model. Entire
model (top left), model near skirt (bottom left), sectioned model near skirt (top
middle), sectioned model near nozzle (bottom middle), decomposed model near
nozzle (top right), and local model (bottom right).

tel Core i7-3930K Sandy Bridge CPU, 64 GB of DDR3 SDRAM PC3-12800, and
a Debian GNU/Linux 6.0 squeeze operating system. Intel C Compiler 13.0 was
used with the -fast flag, and the PARDISO linear system solver in Intel Math K-
ernel Library (MKL) 10.2 was used for matrix LDL factorization and the triangular
solution, which is also called forward and backward substitutions. The incremental
partitioned coupling analysis was 3.40 times faster than conventional FEA, and the
subcycling analysis was 3.34 times faster. Detailed computation time and memo-
ry usage are described in Tab. 4. Speedup of the incremental partitioned coupling
method was caused by a constant stiffness matrix in the global domain. The large
stiffness matrix in the global elastic domain remained constant throughout the anal-
ysis. The matrix was factorized only once, and then, multiple triangular solutions
were conducted. On the other hand, speedup of the subcycling method was caused
by a reduction in the number of global analyses. Eighteen global analyses were con-
ducted in the present method, whereas conventional FEA required 47. If a linear
system solver based on the preconditioned conjugate gradient method, which has
been used for very-large-scale problems [Yoshimura, Shioya, Noguchi, and Miya-
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Figure 5: Computed yielding zone of pressure vessel model. Result of partitioned
coupling analysis (left) and of conventional FEA (right).
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Figure 6: Convergence histories of partitioned coupling method in pressure vessel
model analysis

mura (2002); Ogino, Shioya, Kawai, and Yoshimura (2005); Miyamura, Noguchi,
Shioya, Yoshimura, and Yagawa (2002)], is selected for the global analysis, the
subcycling partitioned coupling solver would still remain fast, but the incremental
solver would become slow. This is because the constant matrix does not contribute
to speedup in the PCG methods.
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Table 1: Given and measured number of partitioned coupling iterations and incre-
mental steps in pressure vessel model analysis

FEM Partitioned Coupling Method Partitioned Coupling Method
Incremental Subcycling

Numbers of Partitioned Coupling Iterations
N/A 14, 13, 12, 12, 12, 12, 12, 12, 12, 10, 10 17
Numbers of Incremental Steps
11 11 1, 4, 4, 5, 8, 10, 11, 11, 11, 11,

11, 11, 11, 11, 11, 11, 11, 11

Table 2: Measured number of Newton–Raphson iterations in pressure vessel model
analysis

Incremental FEM Partitioned Coupling Method Partitioned Coupling Method
Step Incremental Subcycling

1 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 3, 2, 2 4 3 3 0 3 3 3 3 2 3 3 2 2 3 2 2 2
3 3 0, 3, 2, 3, 0, 3, 3, 4, 3, 3, 3, 3, 3 5 4 4 2 3 3 3 3 3 3 3 3 3 3 3 4 3
4 3 0, 4, 3, 3, 1, 3, 4, 3, 4, 3, 3, 3, 3 4 5 4 2 4 3 3 4 3 3 3 3 4 3 3 4 3
5 3 0, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3, 3, 3 4 2 4 4 4 4 4 4 4 4 3 4 3 4 4
6 4 0, 4, 3, 4, 2, 3, 3, 4, 3, 4, 4, 4, 4 3 4 4 4 4 4 4 4 4 5 4 4 3 4
7 4 0, 4, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 3 4 4 4 3 4 5 4 4 4 4 4 4 4 4
8 4 0, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 3 3 4 4 4 4 4 4 4 4 4 4 4 3 4
9 4 0, 4, 4, 4, 3, 5, 4, 4, 4, 3, 4, 4, 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 4 0, 4, 4, 4, 2, 4, 4, 6, 4, 5, 4 4 4 4 4 4 5 4 4 4 4 4 4 4
11 4 0, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4 4 4 3 4 4 4 4 4 4 4 3 4

Table 3: Measured number of linear system solutions in pressure vessel model
analysis

FEM Partitioned Coupling Method Partitioned Coupling Method
Incremental Subcycling

Global Analysis 47 142 18
Local Analysis 531 699

4 Conclusion

In this paper, the partitioned coupling method was applied for elastic–plastic anal-
ysis of a large-scale model with a crack. In the method, the entire analysis model is
decomposed into two non-overlapped domains (i.e., global and local domains), and
the two domains are analyzed with an iterative method. The cracked local domain
was modeled as an elastic–plastic body, whereas the large-scale global domain was
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Table 4: Measured computation time and memory usage in pressure vessel model
analysis

FEM Partitioned Coupling Method Partitioned Coupling Method
Incremental Subcycling

Measured Computation Time
Total Elapsed Time 47,800 s 14,060 s 14,307 s

Speedup 1.00 3.40 3.34
Matrix Generation 114.2 s × 47 113 s + 4.7 s × 531 113 s + 4.6 s × 699

Matrix Factorization 871.7 s × 47 731 s + 13.1 s × 531 732 s + 13.2 s × 699
Triangular Solution 18.0 s × 47 16.4 s × 142 + 0.5 s × 531 16.4 s × 18 + 0.6 s × 699

Stress Integration 5.2 s × 47 2.6 s × 142 + 0.7 s × 531 2.8 s × 18 + 0.2 s × 699
Other 375 s 403 s 97 s

Matrix Generation 11.2 % 0.8 % + 17.6 % 0.8 % + 22.7 %
Matrix Factorization 85.7 % 5.2 % + 49.6 % 5.1 % + 64.3 %
Triangular Solution 1.8 % 16.6 % + 1.9 % 2.1 % + 2.9 %

Stress Integration 0.5 % 2.7 % + 2.7 % 0.3 % + 1.1 %
Other 0.8 % 2.9 % 0.7 %

Measured Memory Usage
Total Memory Usage 60.3 GB 58.2 GB 58.2 GB

modeled as an elastic body. The subcycling technique was utilized for incremental
analysis to reduce the number of global elastic analyses. In Section 2, the model-
ing of the partitioned coupling method with the limited-memory Broyden method
and the subcycling technique with a simple formula to determine the number of
incremental steps were presented in detail. A cracked pressure vessel model with 6
million degrees of freedom was analyzed in Section 3. The number of partitioned
coupling iterations, incremental steps, Newton–Raphson iterations, and linear sys-
tem solutions were carefully examined, and the computational performance was
also measured. The incremental partitioned coupling solver was 3.40 times faster
than the conventional FEM solver, and the subcycling partitioned coupling solver
was 3.34 times faster. This is because the number of linear system solutions was
reduced by the subcycling technique, and the large stiffness matrix in the glob-
al domain remained constant throughout the analysis. In the partitioned coupling
method with the subcycling technique, this feature would remain if a linear system
solver based on a preconditioned conjugate gradient method were selected instead
of the direct LDL solver used in the present study.

In the future, modeling of more nonlinear and complicated phenomena such as
large strain, crack surface contact, and crack propagation will become possible in
the local domain, as will effective analysis with the partitioned coupling method,
in which two different solvers work together.
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