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Solving the Cauchy Problem of the Nonlinear Steady-state
Heat Equation Using Double Iteration Process

Weichung Yeih1,2, I-Yao Chan1, Chia-Ming Fan1, Jiang-Jhy Chang1 and
Chein-Shan Liu3

Abstract: In this paper, the Cauchy inverse problem of the nonlinear steady-state
heat equation is studied. The double iteration process is used to tackle this problem
in which the outer loop is developed based on the residual norm based algorithm
(RNBA) while the inner loop determines the evolution direction and the modified
Tikhonov’s regularization method (MTRM) developed by Liu (Liu, 2012) is adopt-
ed. For the conventional iteration processes, a fixed evolution direction such as F,
B−1F, BT F or αF+(1-α)BT F is used where F is the residual vector, B is the Jaco-
bian matrix, the superscript ‘-1’ denotes the inverse, the superscript ‘T’ denotes the
transpose of a matrix and α denotes the optimal coefficient. Unlike the convention-
al approaches, the current approach tries to find an appropriate direction from the
initial guess BT F using the MTRM and the final evolution direction is determined
once the value of a0 is less than the critical value ac. Since it may consume too
much computation time for searching this appropriate evolution direction such that
it makes this process computationally noneconomic, we terminate the inner itera-
tion process as well as the whole process once the number of the iteration steps for
the inner iteration exceeds a given maximum value, says Imax. Six examples are
illustrated to show the validity of the current approach and results show that the
proposed method is very efficient and accurate.

Keywords: Cauchy problem, steady-state, modified Tikhonov’s regularization
method.

1 Introduction

In this paper, the nonlinear steady-state heat equation is studied. The nonlinearity
occurs from the fact that the heat conduction coefficient is temperature-dependent.
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There are many applications for this kind of materials. For example, the nanofluid
[Mintsa, Roy, Nguyen and Doucet (2009)], single-walled carbon nanotubes [Hone,
Whitney, Piskoti and A. Zettl (1999)] and porous silicon [Gesele, Linsmeier, Drach,
Fricke and Arens-Fischer (1997)] have been used and they all have temperature-
dependent conductivity. To deal with the problems for this kind of materials numer-
ically, one can use the Kirchhoff transformation to convert the nonlinear governing
equation into a linear one [Bialecki and Nowak (1981)]. In the existing literatures,
most researchers focused on the standard boundary value problem. Only limited
literatures deal with the inverse problems. Cannon (1967) studied the steady-state
heat equation subject to the boundary condition: Neumann boundary condition on
the whole boundary and Dirichlet boundary condition on part of the boundary. In-
gham and Yuan (1993) solved the inverse problem of determining the unknown
temperature-dependent thermal conductivity and temperature distribution by pre-
scribing the temperature boundary condition on the whole boundary and several
interior points. To authors’ best knowledge, the inverse Cauchy problem (seeking
the temperature distribution subject to the Dirichlet data and Neumann data on part
of the boundary and no information on the remaining) for this nonlinear elliptic
type equation has rarely been investigated. In the following, we will give a brief
review for the development of solvers of nonlinear algebraic equations especially
for ill-posed system.

Nonlinear problems are often encountered in science and engineering. Many phe-
nomena are modeled as nonlinear equations. For numerical calculations, after dis-
cretization a set of nonlinear algebraic equation is constructed. To solve nonlin-
ear algebraic equations, there exist many well-developed methods. The most well
known method is the so-called Newton-Raphson method [Tjalling (1955)] (also
known as the Newton method) where the iteration process is written as:

xk+1 = xk +B−1
k Fk (1)

where x denotes the unknown vector. It is known that the Newton-Raphson method
converges very fast. However, when the system is large the inverse of the Jaco-
bian matrix will become impossible. In addition, if the Jacobian matrix is very
ill-conditioned it is non-trivial to have accurate estimate for its inverse. This may
result in numerical instability for the Newton’s method. It means that for the in-
verse problems which are known for their ill-posedness using the Newton’s method
will yield inaccurate answers.

Therefore, for nonlinear ill-posed problems other alternatives are suggested. In the
Landweber [Landweber (1951)] iteration method, the direction of BT F is used and
the iteration is written as:

xk+1 = xk +BT
k Fk. (2)
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However, the Landweber iteration method may not overcome the ill-posed behav-
iors for some systems and the Tikhonov’s regularization method [Tikhonov & Ar-
senin (1977)] is usually adopted. However, for conventional Tikhonov’s regular-
ization method, to determine the optimal regularization parameter requires a lot
of computation efforts such as the L-curve method [Hanson (1992)] or the dis-
crepancy principles [Morozov (1984, 1966)]. An easier method to determine the
regularization method has been proposed by Liu and Kuo (2011).

Other alternatives to tackle the ill-posed problems are derived from the evolution
dynamics. For example, the fictitious time integration method (FTIM) was pro-
posed by Liu and Atluri (2008) where the direction F is chosen. Similarly, the
dynamic Jacobian inverse free method (DJIFM) proposed by Ku, Yeih and Liu
(2011) has adopted the direction F multiplying with a modification factor to ensure
that the trajectory of the unknown vector lies on the manifold. The exponentially
convergent scalar homotopy method (ECSHA) adopts the direction of BT F which
is very similar to the Landweber iteration method. However, ECSHA multiplies
the direction of evolution by a modification factor which ensures that the trajectory
of the unknown vector lies on the manifold. Several literatures using ECSHA to
deal with ill-posed problems can be found, such as Chan and Fan (2013) and Chan,
Fan and Yeih (2011). Liu and Atluri (2011a) proposed to use a direction mixed by
F and BT F. Following this work, Yeih, Ku, Liu and Chan (2013) found the optimal
direction mixed by many known directions.

However, all the above-mentioned methods adopt a specific known direction. From
numerical experience, selecting a specific direction will encounter slow conver-
gence for some cases. Recently, Yeih, Chan, Ku, Fan and Guan (2014) has pro-
posed a double iteration process to tackle the ill-posed problem in which for each
step the direction of evolution is determined from an inner iteration process and this
direction does not keep a same format such as F or BT F. Theoretically speaking,
this method tries to find a direction as close B−1F as possible and avoid numerical
instability at the same time.

In this paper, we investigate the nonlinear ill-posed inverse problem: the Cauchy
inverse problem of the nonlinear steady-state heat equation. The double iteration
process will be used. Aside from this section, the following sections will be ar-
ranged. In Section 2, mathematical backgrounds will be given. In Section 3, six
numerical examples will be illustrated to show the validity of this method. In the
final section, a brief conclusion will be given based on the findings in previous
sections.
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2 Mathematical backgrounds

2.1 Problem formulation

The nonlinear steady-state heat equation for a 2D compact region is written as:

∇ · (k (T )∇T ) =
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
= 0 (3)

where k is the temperature-dependent heat conduction coefficient and T is the tem-
perature. There are several kinds of boundary conditions:

T = T̄ on Γ1 (Dirichlet boundary condition) (4)

q≡ k
∂T
∂n

= q̄ on Γ2 (Neumann boundary condition) (5)

q = k
∂T
∂n

= h(Tf −T )−σε̄
(
T 4−T 4

s
)

on Γ3 (Robin boundary condition) (6)

where q is the heat flux, n denotes the outward normal direction on the boundary, σ

is the Stefan-Boltzmann constant, Tf is the temperature of the surrounding medium,
ε̄ is the temperature-dependent emissivity between the surface Γ3 and radiating
medium at temperature Ts, h is a constant and (•̄) quantities indicate prescribed
boundary values. Γi denotes part of the boundary. For a standard boundary value
problem, for each point on the boundary only one kind of boundary condition can
be given and boundary condition should be given on the whole boundary. It is well
known that the standard boundary value problem is well-posed mathematically.

The inverse Cauchy problem is somewhat different from the standard boundary
value problem. Overprescribed Cauchy data are given on part of the boundary,
for example Dirichlet and Neumann boundary conditions or Dirichlet and Robin
boundary conditions are both given on part of the boundary. Meanwhile, on the
remaining part of boundary no information is given. Inverse Cauchy problems are
known as an ill-posed system. To solve this ill-posed system numerically, a robust
and sound solver is necessary to overcome the numerical instability.

It is worth to mention here that by using a new variable

ψ ≡
T∫

T0

k(T )dT , (7)

Eq.(3) will be transformed into a Laplace equation while the boundary conditions
in eqs.(4)-(5) are still linear with respect to the variable ψ and Eq.(6) will become
nonlinear. This technique is known as the Kirchhoff transformation. After solving
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the boundary value problems of the new variableψ , the inverse Kirchhoff trans-
formation is then adopted to obtain the solution for the physical quantity T . In
this paper, we do not adopt the Kirchhoff transformation technique and keep the
original partial differential equation system nonlinear.

2.2 Multiquadric radial basis functions

Assume the physical quantity we concern can be expressed by the radial basis func-
tions as:

T (xi) =
m

∑
j=1

φi j (r̄ (xi,s j))c j, (8)

where xi is the position vector of i-th observation point, s j is the position vector of
the j-th source point, r̄ is the radial distance between xi and s j, and c j is the undeter-
mined coefficient. φ is the radial basis function and in this paper the multiquadric
radial basis function is selected as:

φi j (r̄ (xi,s j))≡
√∥∥xi− s j

∥∥2
+ c2 (9)

in which c is a shape parameter and the value of c is 1.5 throughout this paper. The
value of c influences the results of inverse Cauchy problems. However, if the value
of c is appropriate, the influence is not significant as mentioned later in example
1. The optimal selection of c is not within the scope of this article and is left as an
open problem.

More details of the multiquadric radial basis function can refer to [Hardy (1990)].
Substituting the expression in eq.(8) into eq.(3) to eq.(6) for the inverse Cauchy
problem, we will construct a system of nonlinear algebraic equations for unknown
coefficient c j. Unfortunately this nonlinear algebraic equation system is ill-posed
such that conventional numerical solvers fail due to the numerical instability. One
can easily observe that the leading matrix for the radial basis functions is a full
matrix which usually makes the ill-posed nature worse.

2.3 Residual norm based algorithm

The following derivation can be found in many related articles such as [Liu and
Atluri (2012); Liu and Atluri (2011b)]. Let us begin with a nonlinear algebraic
system written as:

F(x) = 0. (10)

To solve this nonlinear algebraic equation system, an equivalent scalar equation can
be written as

‖F(x)‖2 = 0. (11)
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Let us construct a space-time manifold as:

h(x, t) =
1
2
‖F(x)‖2− 1

2
1

Q(t)
‖F(x0)‖2 = 0 (12)

where x0 is the initial guess and Q(t) satisfies that Q(t) > 0, Q(0) = 1, and it is a
monotonically increasing function of t with Q(∞) = ∞.

In order to keep the trajectory of the solution x on the manifold, the following
consistency equation should be satisfied:

Dh
Dt

=
∂h
∂ t

+∇h · dx
dt

= 0. (13)

Since equation (13) is a scalar equation, it is impossible to determine the evolution
of the unknown vector (i.e., dx

dt ) uniquely. Let us assume that the evolution of the
unknown vector is in the direction of u and we have:

ẋ =
dx
dt

= λu (14)

where λ is the proportional constant. After some manipulations, the evolution
equation of x can be found as

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT (x)v
u (15)

where v=Bu. Now let us consider the evolution of the residual vector as:

Ḟ(x(t)) = Bẋ. (16)

Substituting equation (15) into equation (16), it follows

Ḟ(x(t)) =
−Q̇(t)
2Q(t)

‖F(x)‖2

FT (x)v
v. (17)

Using the forward Euler scheme, we can discretize equation (17) as:

F(x(t +∆t)) = F(x(t))−∆t
Q̇(t)

2Q(t)
‖F(x)‖2

FT (x)v
v. (18)

where ∆t is the time increment. By defining β := ∆t Q̇(t)
2Q(t) and using equation (18),

one can derive an algebraic equation for βg as

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (19)
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where a0 =
‖F(x)‖2‖v‖2

(FT (x)v)2 =
{
‖F(x)‖‖v‖
(FT (x)v)

}2
=
( 1

cosθ

)2in which θ denotes the angle be-
tween the residual vector F and the vector v. From the Cauchy-Schwarz inequality,
it can be easily verified that a0 ≥ 1. Now let us define s := Q(t)

Q(t+∆t) =
‖F(x(t+∆t))‖2

‖F(x(t))‖2 ,
and s represents the ratio between the square norm of the residual vector in the next
state and the square norm of the residual vector in the current state. It is for sure
that we hopes≤ 1, such that for each state the norm of the residual vector decreas-
es. Equation (19) now can be rewritten as a0β 2−2β +1− s = 0 and we can obtain

β =
1−
√

1−(1−s)a0
a0

if 1-(1-s)a0 ≥ 0. For simplicity, we let 1− (1− s)a0 = r2 (r is
a relaxation parameter which will be explained later) and use the definition of a0,
one can obtain:

s = 1−
(
1− r2

)(
FT (x)v

)2

‖F(x)‖2 ‖v‖2 . (20)

Now let us use the forward Euler scheme on equation (15), we can obtain the fol-
lowing equation

x(t +∆t) = x(t)− (1− r)
FT (x)v
‖v‖2 u. (21)

For a selected value of r, we can rewrite equation (21) as an iteration formula [Liu
and Atluri (2011b)]:

xk+1 = xk− (1− r)
FT (xk)vk

‖vk‖2 uk. (22)

In the above equation, the relaxation parameter is used to make the iteration stabler.
In a recent published paper [Liu (2013)], Liu further found the optimal value of r
needs to satisfy the following relationship to guarantee the trajectory of x remain
on the manifold:

r =
∥∥∥1− a0

2

∥∥∥ (23)

Liu (2013) and Ku and Yeih (2012) all reported that the value of a0 is between 1
and 4 if we hope the trajectory of x remains on the manifold. From the definition
of a0, we know that the value of a0 relates to the vector F and v (or equivalently
u). The problem now is how to find a vector v (or equivalent u) such that a0 is
between 1 and 4. If such a direction is found, we then select the value of r as
r =

∥∥1− a0
2

∥∥ in equation (22). To find an appropriate direction u then becomes
the key. Theoretically speaking, if a0=1 then the residual norm decreases in the
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fast manner. This means that the best direction u will satisfy that Bu−F = 0 (or
u = B−1F if the inverse of the Jacobian matrix exists), it means that the Newton’s
iteration method is the best alternative. However, for ill-posed systems to seek
the inverse of the Jacobian matrix sometimes is impossible due to its numerical
instability. Therefore, one requires an algorithm to find an appropriate u for the
nonlinear ill-posed systems. To achieve this, we give a brief review of the modified
Tikhonov’s regularization method (MTRM) in the following subsection.

2.4 Modified Tikhonov’s regularization method

The details of the following descriptions can be found in [Liu (2012)]. Considering
the following linear algebraic system as:

Bu = F. (24)

We use the following preconditioner written as:

P1 := BT + ᾱB+, (25)

and apply this preconditioner to equation (24) then we will obtain(
BT B+ ᾱIn

)
u = BT F+ ᾱB+F (26)

with that B+B = In, i.e., B+is the pseudo-inverse.

It is quite interesting to find that the regularized equation in equation (26) is very
similar to that of the conventional Tikhonv’s regularization method. However, in
equation (26) the regularization parameter ᾱ appears in the both sides of equation
while for the conventional Tikhonov’s regularization method it appears only in the
left-hand side.

Liu (2012) proposed that one can use equation (26) to formulate an iteration process
as:(
BT B+ ᾱIn

)
up+1 = BT F+ ᾱup (27)

The convergence criterion of the iteration process for equation (27) can be set as:
‖up+1−up‖ ≤ ς where ς is a preselected small tolerance. Liu also provided a
theoretical proof of the convergence as the following theorem states:

[Theorem 1] For Eq. (27) with ᾱ > 0 the iterative sequence up converges to the
true solution utrue monotonically.

Although the convergence of the sequence is guaranteed, in computation reality
to reach the final numerical convergence it may take too many steps such that it
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becomes not economic at all. It means that if one tries to find the solution of an
ill-posed linear system, a lot of computation effort will be paid for the iteration
process (equation (27)) and sometimes it makes this iteration not economic at all.

This algorithm needs to be further examined while it is used to solve the best di-
rection u such that Bu-F=0. Since for each step in the iteration process stated in
equation (22) for solving the nonlinear problem, this linear algebraic equation Bu-
F=0 needs to be done if one tries to find the optimal direction. However, to find
the solution of this linear problem may cost too many iteration steps for iteration
process equation (27). Remember that we are not really interested in finding the
best direction we only want to find an appropriate u such that a0 is between 1 and 4.
Therefore, we can check this criterion for each step of the inner iteration (equation
(27)) and terminate the inner iteration when the value of a0 is less than a prescribed
critical value ac. Of course, it may still take too many steps to let a0 being less
than this prescribed critical value ac for a severely ill-posed system. It is set that
if the number of iteration steps for the inner loop exceeds a preselected maximum
number Imax, we then stop the inner loop as well as the outer loop. It means that
to find an appropriate direction of evolution using the proposed algorithm already
becomes not economic and the whole process should be terminated. If the values
of ac and Imax are selected appropriately, the numerical results are acceptable as
shown in the next section.

2.5 Double iteration process

Based on the abovementioned backgrounds, a double iteration process has been
proposed [Yeih, Chan, Ku, Fan and Guan (2014)] and stated as the followings.

Double Iteration Process (DIP): 

Give initial guess x0 

Give prescribed parameters  , . 

Outer Iteration: 

For k=0,1,2,… Repeat 

Calculate the residual vector Fk(xk) and the Jacobain matrix Bk(xk) 

  Inner Iteration: 

  Give the initial guess of u as 0

T

k k

T

k k


B F

u
B F

, 

  For p=1,2,…, Imax 

     Solve up+1 by   1

T T

n p p   B B I u B F u  

     Construct 1 1p k p v B u  

      
 

  

22

1

0 21

k p

p T

k p

a





F x v

F x v
 

    (a) If  0 1 cp
a a


 , then    0 0 1k p

a a


 , 1 1,  k p k p  u u v v and one terminates the 

inner iteration, otherwise continue. 

    (b) If p=Imax, terminates the whole process. 

    End of Inner Iteration 

Calculate 
 0

1
2

k
k

a
r    

 
k

k

kk

T

kk r u
v

vxF
xx

21 )1(   

If RMSE   or (b) is true then the outer iteration process stops; otherwise continue.  

End of Outer Iteration Process. 

 

From the abovementioned double iteration process, we can find that the proposed
method does not really try to solve the linear algebraic equation Bu-F=0 since it
is expected that for the ill-posed system it may take too many iteration steps to ac-
complish this for the inner iteration. In order to avoid that, once the value of a0 is
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If RMSE   or (b) is true then the outer iteration process stops; otherwise continue.  

End of Outer Iteration Process. 

 

less than the prescribed value ac we claim that the appropriate direction has been
found already. Of course we need to remind ourselves that while ac approaches to
one the inner iteration takes more and more steps. We expect that it may happen
that finding an appropriate direction may still requires unreasonably many steps. A
criterion then is set as: when the number of iteration steps for the inner iteration ex-
ceeds that maximum value Imax one can stop the whole process since it becomes not
economic for further searching. The appropriate values of ac, ᾱ and Imax influence
the convergence speed a lot and how to choose them depends on experience.

According to our numerical experiences, the value of ac is suggested to in the range
from 2 to 4. Once the value of ac is less than 2, to seek the appropriate direction in
the inner loop then consumes too many iteration steps. The value of Imax actually
depends on the selection of ac. If the value of ac is between 2 and 4, the value of
Imax is suggested to be in the range of 30,000 to 80,000 according to our numerical
experiences. The selection of ε depends on the system we want to solve. If the
system is a well-posed system, the value of ε can be very small such as 10−7.
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However, if the system is an ill-posed system the value of ε should not be very big
and usually 10−3 or 10−4 is appropriate. It should be mentioned here that actually
for an ill-posed system the value of ε can be set as a small value for DIP since this
tight convergence criterion cannot be reached and the whole DIP will be terminated
due to the number of the inner iteration steps exceeds the maximum value Imax. It
means the selection of ε is not critical at all. The value of ᾱ needs to be larger than
the smallest eigenvalue of BT B which varies step by step. In calculation reality,
a big enough value is selected. However, if ᾱ is too big the iteration process for
eq.(27) becomes slow.

3 Numerical examples

3.1 Example 1

In this example, a circular domain is considered. The radius of the circle is 1
and the center locates at (5,5). The temperature dependent conductivity k(T ) = T .
The exact solution is selected as T (x,y) =

√
2xy. Cauchy boundary conditions

(Dirichlet and Neumann) are prescribed for the upper half circle, i.e., 0 ≤ θ̄ ≤ π

where θ̄ denotes the angle in cylindrical coordinate measuring from the center.
On the remaining boundary, no information is given. In order to know how well
our proposed method can be for noisy data, two cases are studied: data without
any noise and data with maximum 5% absolute relative random errors. Totally, 41
points are prescribed on the boundary and for 21 of them the Cauchy data are given.
A set of 145 uniformly distributed interior points are selected to solve the system.
The setup of source points used for the radial basis functions is illustrated in figure
1, the solid black dots represent source points.

After the weights of radial basis functions are obtained, a set of 313 uniformly
distributed points and 41 boundary points are used to construct the temperature
distribution contour. The value of ac is 2, the value of ᾱ is 0.0001, the converge
criterion ε=0.001 and the maximum iteration steps for the inner loop Imax=30,000.
The initial guesses for the unknown weights of the radial basis functions are all
0.01.

In figure 2, the root mean square errors (RMSEs) for both cases are plotted with
respect to the number of iteration steps for the outer loop. It can be observed that for
both cases the RMSEs are not less than the convergence criterion ε=0.001 before
terminations. We further check the values of a0 for both cases as shown in figure 3.
One can find that for the case using data without any noise the value of a0 exceeds
the critical value ac =2 after 15 steps and for the case using data with maximum
5% absolute relative random errors the value of a0 exceeds the critical value ac =2
after 7 steps. It means that for both cases, the double iteration process terminates
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Figure 1: Distribution of source points for the radial basis functions in example 1.

Figure 2: The root mean square errors versus the number of iteration steps for the
outer loop in example 1.
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Figure 3: The profiles of a0 for both cases in example 1.

Figure 4: Profiles of accumulated steps used in the inner loops in example 1.
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Figure 5: Comparisons between the exact solution and numerical solutions using
0% and 5% random error noise data.
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Figure 6: Relative absolute error contours for the case using 5% random error data.
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Figure 7: The maximum relative absolute error percentage for the case using 5%
random error versus the shape parameter c.

because searching for the appropriate direction becomes not economic. In figure 4,
we examine the total accumulate iteration steps for the inner loops for both cases.
It can be found that for both cases the final accumulated steps for the inner loop
are less than 105 steps. Since the most time-consuming step in the double iteration
process occurs in the inner iteration loop, we can find that our proposed method
indeed save computation efforts. Nevertheless, we still need to check whether or
not the solution is acceptable. In figure 5, it can be seen that for the case using
0% error data the solution perfectly matches the exact solution while for the case
using 5% absolute relative random error data the solution deviates from the exact
solution a little bit. From figure 6, we can understand how the relative absolute
error percentage distribution for the case using 5% absolute relative random error
data is. It can be found the maximum absolute relative error percentage is about
2.4%. This result is quite good for the inverse Cauchy problem, especially the
case we are studying now is nonlinear. Before closing this example, we use the
parameters in this example and change the value of shape parameter c for the MQ
radial basis functions and examine the maximum relative error for all representation
points for each c. The range of c is from 0.5 to 20, and the increment in c is 0.05.
The absolute relative random error up to 5% is added in Cauchy data. The result
is shown in figure 7 and one can see that within this range the maximum relative
error for each c is less than 12%. Actually, if the value of c is less than 0.5, the
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maximum absolute relative error is very large (up to 300% or more). From this
figure, one also can find that if c is in this range the influence of c is not significant.
Therefore, in all cases studied in this article the value of c is set as 1.5.

3.2 Example 2

In this example, an annular region is considered. The outer radius for this annular
region is 3 while the inner radius is 1.5. The center of this annular region is (0,0).
The temperature dependent conductivity k(T ) = T . The exact solution is designed
as T (x,y) =

√
2ln(x2 + y2). Totally 80 points are arranged on the boundary, 40

on the inner circle and 40 on the outer circle. Totally 108 uniformly distributed
interior points are selected as the source points for the radial basis functions. The
setup for the source points are shown in figure 8. After obtaining the weights, the
temperature distribution is plotted using 228 uniformly distributed interior points
and 80 boundary points.

Two Cauchy problems are investigated here: for the first problem the Cauchy data
are prescribed for the outer circle and no information is prescribed for the inner
circle, for the second problem the Cauchy data are prescribed for the inner circle
and no information is prescribed for the outer circle. For each Cauchy problem,
the numerical solutions are obtained using data without any noise and data with
maximum 5% relative absolute random errors. The value of ac is 3.5, the value
of ᾱ is 0.0001, the converge criterion ε=0.0001 and the maximum iteration steps
for the inner loop Imax=50,000. The initial guesses for the unknown weights of the
radial basis functions are all 0.01.

The numerical results for both cases are illustrated in figures 9 and 10, respectively.
It can be found that the numerical results using data without any noise are better
than that using data with maximum 5% absolute relative random errors. Basically,
no much difference can be found in both cases. The accuracies for both cases are
very similar. The performances of the double iteration process are tabulated in table
1. The CPU times in this table represents the performances using Pentium ® dual-
core CPU E5200 at 2.50 GHz operating frequency. One can find out that due to
the nonlinearity, as using data with maximum 5% absolute relative random error
the maximum absolute relative error percentages are about 10% for both cases. In
addition, from figures 8 and 9, one can find that the error tends to be larger near the
boundary without information. Although the maximum relative error percentages
for both cases are similar, it still can be told that using Cauchy data on the outer
circle is better than using Cauchy data on the inner circle from the contour plots in
figures 9 and 10.
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Figure 8: Source point setup for example 2.
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Figure 9: The temperature distribution for the Cauchy problem using data on the
outer circle boundary.
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3.3 Example 3

In this example, a square region defined by {(x,y)|0≤ x≤ 1;0≤ y≤ 1} is con-
sidered. The temperature-dependent thermal conductivity is k(T ) = exp(T ). The
temperature-dependent thermal conductivity now is nonlinear with respect to the
temperature and it is very interesting to see what it will influence the numerical
algorithm. The exact solution is designed as: T (x,y) = log(xy+ 5). Totally 100
points (25 points for each side and points are not placed at the corners) are ar-
ranged on the boundary and 169 uniformly distributed interior points accompanied
with boundary points are used to be source points. After the weights are obtained,
841 uniformly distributed interior points accompanied with boundary points are
used to yield the temperature distribution. Cauchy data are given on the bound-
aries: y=0 and x=0. Two cases are examined: Cauchy data without any noise and
Cauchy data with maximum 5% random relative absolute errors. The value of ac

is 3.5, the value of ᾱ is 0.001, the converge criterion ε=0.0001 and the maximum
iteration steps for the inner loop Imax=50,000. The initial guesses for the unknown
weights of the radial basis functions are all 0.01.

The numerical solutions are illustrated in figure 11. Although it looks like that
the temperature contour for the solution using Cauchy data with 5% random error
seems not so close to the exact solution, the maximum absolute error percentage
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Figure 10: The temperature distribution for the Cauchy problem using data on the
inner circle boundary.
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for all points is only 1.4677 percent. The reason why it looks so comes from that
the difference between two adjacent contour lines is 0.01 which is very small. The
computational CPU time for data without error is 20.063 sec and for data with
maximum 5% absolute relative random error is 10.547 sec. The final RMSE for
data without error is 0.0051742671 and for data with maximum 5% absolute rel-
ative random error is 0.019615273. Once again, one can see that for both cases
they do not meet the convergence criterion for RMSE. However, after the process
terminates the results are still acceptable.

Figure 11: The temperature distribution for example 3.

3.4 Example 4

In this example, the physical problem in example 1 is redone again. The only
difference is that instead of using Neumann data as one of the Cauchy data we
replace the Neumann data by the nonlinear boundary condition in equation (6). All
setup and parameters are the same as that in example 1. In this example, we only
use Cauchy data with maximum 5% absolute relative random error. Since nonlinear
boundary condition is used, the parameters used in equation (6) are: h=10, σ =

5.667×10-8, Tf = 1, Ts = 1 and ε̄ = 1.
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The result is sketched in figure 12. Compare this with figure 5, one can find out
that using conventional Cauchy data seems better than using nonlinear Cauchy data
(eq.(4) and eq.(6)) under the same noise level. The reason should come from the
nonlinearity which may enlarge the errors in data during calculation.
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Figure 12: The temperature distribution for using Dirichlet and nonlinear Robin
conditions as Cauchy data.

3.5 Example 5

In this example, a peanut shape domain is considered. The boundary curve is

written as: r̄(θ̄) = 0.3
√

cos2θ̄ +
√

1.1− sin2 2θ̄ 0 ≤ θ̄ ≤ 2π where
(
r̄, θ̄
)

are the
cylindrical coordinate components. Total 100 equally distance points are placed
on the boundary and 50 of them the Cauchy data are prescribed while for others
no information is prescribed. The temperature dependent thermal conductivity is
k (T ) = 1

T and the exact solution is designed as T (x,y) = exp(xy+2). The Cauchy
data are given on the upper half boundary, i.e., 0 ≤ θ̄ ≤ π . For the remaining part
of boundary, no information is given. Both 0% random errors and maximum 3%
absolute relative random errors are added in Cauchy data. Totally 101 uniformly
distributed interior points accompanied with boundary points are used to be source
points. After the weights are obtained, 233 uniformly distributed interior points
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and 100 boundary points are used to yield the temperature distribution. The setup
for source points is illustrated in figure 13.

The value of ac is 3.5, the value of ᾱ is 0.001, the converge criterion ε=0.05 and
the maximum iteration steps for the inner loop Imax=80,000. The initial guesses for
the unknown weights of the radial basis functions are all 0.01.

Figure 13: Source point setup for example 5.
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Figure 14: The temperature distributions for example 5.

The numerical results are shown in figure 14. It can be seen that the numerical
results match the exact solution very well. The maximum absolute relative error
percentage is less than 7 percent.

In this example, the DIP terminates due to the convergence criterion ε=0.05 has
been achieved for both cases with 0% and 5% maximum absolute relative random
error in Cauchy data.
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3.6 Example 6
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Numerical solution obtained from the inverse problem
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Figure 15: Numerical results: (a) Numerical solution for the forward problem; (b)
numerical solution for the inverse Cauchy problem; (c) the absolute relative error
percentage contour.

In the above five numerical examples, the numerical solutions are compared with
analytical solutions. In real engineering problems, the so-called analytical solution
may not exist. Therefore, the performance of DIP for inverse Cauchy problems
without the analytical solution is quite interesting. In this example, the domain
is a circular domain with radius equal to 1. The center of this circular domain is
at (5,5). The parameters used are: ᾱ = 0.0001, ac = 2.0, Imax=30000, ε=0.0001.
The weights for the radial basis functions are set as 0.01 initially. The setup for
boundary points, interior points and representation points are the same as that in
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example 1.

The forward problem is first studied. The Dirichlet data is given as: T (θ̄) = 10+
cos θ̄ on the boundary where θ̄ is the angle for the cylindrical coordinate system
measuring from the center of the circular domain. The numerical solution for the
forward problem is given in figure 15(a).

Then the Cauchy data made from the previous forward problem are used for the
inverse Cauchy problem. The Cauchy data are prescribed for the upper half circle,
i.e., for 0 ≤ θ̄ ≤ π . A maximum 5% absolute relative random error is added in
Cauchy data. The remaining part of the boundary has no information. The results
for this inverse Cauchy problem is illustrated in figure 15 (b). Comparing this
with the numerical result obtained from the forward problem, one can find that
the proposed DIP can deal with a problem without the analytical solution. The

absolute relative error percentage is defined as: κ := ‖Tinverse−Tf orward‖
‖Tf orward‖ ×100%, and

the contour for the absolute relative error percentage is shown in figure 15(c). One
can find that the difference between the solution of the inverse Cauchy problem and
that of the forward problem is very small.

4 Conclusions

In this study, the double iteration process is used to deal with the Cauchy inverse
problem of a nonlinear heat conduction equation. The double iteration process
seeks for the appropriate evolution direction by using the MTRM for the inner
loop. In order to avoid consuming too much computation time, once the direction
satisfy the criterion a0 < ac or the steps for inner loop is greater than Imax the
inner loop terminates. Once the RMSE is less than the prescribed value or the
inner loop terminates because that the steps for inner loop is greater than Imax,

the whole process is stopped. This double iteration process can theoretically find
the most appropriate direction for each evolution step as well as avoid consuming
too much CPU time. Six numerical examples are given to show the validity for
this approach. Numerical results show that this approach is very efficient and can
obtain accurate enough results for a nonlinear ill-posed inverse problem like the
problem considered in this paper.
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