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Comparison of Four Multiscale Methods for Elliptic
Problems

Y. T. Wu1, Y. F. Nie2 and Z. H. Yang1

Abstract: Four representative multiscale methods, namely asymptotic homog-
enization method (AHM), heterogeneous multiscale method (HMM), variational
multiscale (VMS) method and multiscale finite element method (MsFEM), for el-
liptic problems with multiscale coefficients are surveyed. According to the features
they possess, these methods are divided into two categories. AHM and HMM
belong to the up–down framework. The feature of the framework is that the macro-
scopic solution is solved first with the help of effective information computed in
local domains, and then the multiscale solution is resolved in local domains using
the macroscopic solution when necessary. VMS method and MsFEM fall in the un-
coupling framework. The feature of the framework is that the multiscale solution
in the global domain is resolved directly making use of special functions defined in
the macroscopic mesh. The cost of these multiscale methods is compared and their
application to a functionally graded material is illustrated. Moreover, the manner
to resolve multiscale solutions in AHM and HMM is compared, and it is found that
AHM and HMM provide similar multiscale solutions.

Keywords: Multiscale method, homogenization, heterogeneous material, up–down
framework, uncoupling framework.

1 Introduction

In recent years many works have concentrated on simulation of complex system-
s composed of heterogeneous materials or media [Yang, Yu, Ryu, Cho, Kyoung,
Han, and Cho (2013); Hou and Efendiev (2009); Geers, Kouznetsova, and Brekel-
mans (2010); Hughes and Sangalli (2007)]. For example, the thermo–mechanical
behavior of composite materials and flows in porous media are frequently investi-
gated. These problems contain at least two spatial scales: one is the macroscale
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of structures and the other is the microscale of heterogeneities. Though classical
numerical methods such as finite element method (FEM) could be used directly to
simulate these multiscale problems, a main issue is that sufficiently large discrete
systems should be solved which demand a tremendous amount of computer mem-
ory and CPU time. On the other hand, it is not necessary to obtain full details of
the multiscale solution within the entire domain in some cases [E, Engquist, Li,
Ren, and Vanden-Eijnden (2007); Zohdi and Wriggers (2005)]. Therefore some
multiscale methods have been developed to serve different purposes and to solve
the multiscale problems efficiently in the last few decades. In this paper, four rep-
resentative multiscale methods are compared and their differences and similarities
are shown through analytical and numerical results, in order to help the reader have
a good choice of multiscale methods for solving multiscale problems for special
purpose.

The first multiscale method is the asymptotic homogenization method (AHM) which
was proposed in 1970s to solve two–scale problems for periodic structures [Ben-
soussan, Lions, and Papanicolaou (1978); Oleinik, Shamaev, and Yosifian (1992)].
AHM constructs a formal asymptotic expansion for solution of multiscale problem
and provides the manner to compute zeroth–order, first–order and higher–order ex-
panded terms. With the exception of the zeroth–order term, other terms are the
combinations of microscopic functions and macroscopic functions to connect dif-
ferent scales. The different scales are connected further by solving auxiliary prob-
lems at the microscale to get effective coefficients of the homogenized problem
defined at the macroscale [Cioranescu and Donato (1999)]. For structures made up
of random heterogeneous materials, Papanicolaou et al. [Papanicolaou and Varad-
han (1981)] extended AHM to random case with stationarity and ergodicity as-
sumptions on multiscale coefficients. Considering the first–order homogenization
provides microscopic fields with very low accuracy, Cui et al. [Han, Cui, and Yu
(2010); Yu, Cui, and Han (2009)] extended AHM to second–order and proposed
a statistical second–order two–scale method. AHM has been widely used to pre-
dict thermal, electrical and mechanical properties of heterogeneous materials [Ma
and Cui (2013); Arabnejad and Pasini (2013); Chatzigeorgiou, Efendiev, Charalam-
bakis, and Lagoudas (2012)].

Heterogeneous multiscale method (HMM) gives another kind of general framework
for designing multiscale methods, and a finite element formulation is proposed for
elliptic homogenization problem in [E and Engquist (2003)]. In general, HMM
consists of two components: selecting a macroscopic solver and estimating the
missing data in the solver from microscopic information. Scale separation such
as periodicity and stationary randomness of the multiscale coefficients is the main
special feature which HMM assumes. Diffusion problems, advection–diffusion
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problems, Richards’ equation, etc. have been considered by HMM [Ma and Z-
abaras (2011); Abdulle and Schwab (2005); Henning and Ohlberger (2010); Chen
and Ren (2008)]. E et al. [E, Engquist, Li, Ren, and Vanden-Eijnden (2007)] re-
viewed the fundamental principles, theoretical analysis and some applications of
HMM and also some obstacles that need to be solved.

Variational multiscale (VMS) method was proposed by Hughes et al. [Hughes
(1995); Hughes, Feijoo, Mazzei, and Quincy (1998)] to deal with multiscale prob-
lems in science and engineering. VMS method considers an overlapping sum de-
composition of multiscale solution. One component of the decomposition is a suffi-
ciently smooth function at the macroscale, and the other one is a rapidly oscillating
function. The microscopic oscillating solution is localized to macroscopic elements
and is semi–solved first, and then the macroscopic solution is solved when the mi-
croscopic solution is substituted into the macroscopic problem. VMS method has
been used to simulate turbulent channel flows, laminar and turbulent flows, etc.
[Hughes, Oberai, and Mazzei (2001); Hughes, Mazzei, Oberai, and Wray (2001);
Gravemeier (2006)]. Stochastic variational multiscale method has also been pro-
posed for multiscale problems with random heterogeneities [Asokan and Zabaras
(2006); Zabaras and Ganapathysubramanian (2009)].

Hou et al. [Hou and Wu (1997); Hou, Wu, and Cai (1999)] proposed the multiscale
finite element method (MsFEM) for solving multiscale problems. The main idea
of MsFEM is to construct special finite element base functions, which capture the
microscopic information, in the macroscopic mesh. Unlike classical smooth poly-
nomial base functions, these base functions are oscillatory functions which reflect
the effect of microscale on the macroscale. MsFEM has been applied for many
multiscale problems such as groundwater flow [Ye, Xue, and Xie (2004); He and
Ren (2006)], two–phase flow [Efendiev, Ginting, Hou, and Ewing (2006); Efendiev
and Hou (2007)] and (un)saturated water flows [He and Ren (2009); Zhang, Fu, and
Wu (2009)] in heterogeneous porous media. An extended multiscale finite element
method was developed by Zhang et al. [Zhang, Wu, and Fu (2010a,b)] for solving
mechanical problems of heterogeneous materials. Additional terms of base func-
tions for the interpolation of the vector fields were introduced in their works.

Apart from multiscale methods, some homogenization methods have been devel-
oped to predict effective properties of heterogeneous materials or media, see [Ma,
Temizer, and Wriggers (2011); Sab and Nedjar (2005); Wang and Pan (2008)] and
references therein. Recently, Dong et al. developed a novel method termed Compu-
tational Grains for predicting effective properties of heterogeneous materials with
arbitrary–shaped inclusions and voids [Dong and Atluri (2012a,b); Dong, Gamal,
and Atluri (2013)]. The method is efficient because no meshing is required in each
grain which contains a inclusion or a void and then the computational cost can
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be reduced. With the effective properties at hand, one can solve the macroscopic
solutions of the multiscale problems conveniently.

The remainder of this paper is organized as follows. An overview of the four mul-
tiscale methods is presented in section 2. In section 3 we analyze the differences
and similarities of these methods and compare their computational cost. AHM and
HMM in resolving multiscale solution in local domains is compared further in this
section. A numerical example to illustrate the application of these methods to ran-
dom heterogeneous materials is given in section 4. And conclusions are drawn in
the last section.

2 Multiscale methods

We consider the classical second–order elliptic problem with homogeneous Dirich-
let boundary condition{
−∇ · (aε(x)∇uε(x)) = f (x) in Ω⊂ Rd ,d = 2,3,
uε(x) = 0 on ∂Ω.

(1)

This problem is widely applied in practical problems such as thermal or electrical
conductivity, mechanical properties of composite materials and flows in porous
media. The coefficients in this problem possess multiscale characteristic, which is
described by a parameter ε . The source term f is a macroscopic function however.
We assume that aε = (aε

i j) is symmetric and satisfies

cξ ·ξ ≤ ξ ·aε
ξ ≤Cξ ·ξ , ∀ξ ∈ Rd , (2)

with 0 < c ≤C, such that the problem has a unique solution uε for any ε [Braess
(2001)]. To get an accurate numerical solution, a full fine scale solver such as fine
FEM with mesh Th cannot be avoided. The mesh size h cannot be larger than the
size of heterogeneities in order to offer some details of the multiscale solution. The
fact leads to a big challenge of solving an extremely large discrete system, which
is the reason why the following multiscale methods were proposed to obtain an
approximation of the multiscale solution uε .

2.1 Asymptotic homogenization method

The macroscopic behavior of heterogeneous material may be approximated by
that of a homogeneous fictitious one, when the characteristic length of the hetero-
geneities is sufficiently small compared to the characteristic length of the structure.
Asymptotic homogenization method (AHM) shows that under some assumptions
on the multiscale coefficients aε , there exists a homogenized problem defined at
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the macroscale such that solution of the original multiscale problem converges to
solution of the homogenized problem as the small parameter ε goes to zero. As a
consequence, AHM first estimates the macroscopic behavior of the heterogeneous
material by solving a macroscopic problem which could significantly reduce the
amount of computation.

It is assumed that the multiscale coefficients aε take the form aε(x) = a(x/ε) for
simplicity. In this case aε may be a periodic function or a stationary random func-
tion defined in the entire domain, which can be used to describe a lot of heteroge-
neous materials. AHM provides a formal asymptotic expansion of the multiscale
solution

uε(x) = u0(x)+ εu1(x,x/ε)+ ε
2u2(x,x/ε)+ · · · . (3)

Due to

∇vε(x) = ∇xv(x,y)+
1
ε

∇yv(x,y), (4)

where y = x/ε , when we insert Eq. 3 into the multiscale problem (Eq. 1) and e-
quate coefficients of the same powers of ε , it is found that u0 is the solution of a
homogenized problem{
−∇ · (ā∇u0(x)) = f (x) in Ω,
u0(x) = 0 on ∂Ω,

(5)

where ā=(āi j) is a constant tensor called effective coefficient tensor. In some cases
ā may be a function of x, but it is still independent of the microscopic variable y
[Han, Cui, and Yu (2010); Yu, Cui, and Han (2009)].

In fact, ā is a bridge connecting the microscale and the macroscale. It can be
computed by solving the following auxiliary problems{
−∇ · (a(y)∇ωλ (y)) = 0 in Y ⊂ Rd ,
ωλ (y) = λ · y on ∂Y.

(6)

Here Y is an arbitrary domain at the microscale, and λ in the Dirichlet bound-
ary condition is a constant vector. It should be noted that other boundary con-
ditions such as periodic boundary condition or Neumann boundary condition can
be employed instead of Dirichlet boundary condition, see [Kanit, Forest, Galliet,
Mounoury, and Jeulin (2003); Yue and E (2007)] for more details. A repeated unit
cell (RUC) is used to compute effective coefficients for periodic structures. In con-
trast, for random heterogeneous materials, a representative volume element (RVE)
is always used. A schematic diagram of RUC and RVE is presented in Fig. 1.
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Figure 1: Description of RVE (a) and RUC (b) [Pindera, Khatam, Drago, and
Bansal (2009)]

A non–rigorous definition of RVE is that it is a subdomain of random heteroge-
neous materials which is large enough so that the resulting effective coefficients
have little dependence on the boundary condition applied in the auxiliary prob-
lems. It is expected that the characteristic length of RVE is much larger than that
of heterogeneities but much smaller than that of macroscopic structures. In fac-
t, theoretically the effective coefficients are defined in abstract probability spaces
and cannot be explicitly obtained. According to the ergodic theory, the effective
coefficients could be computed by solving auxiliary limit problems in the infinite
physical space. This is the foundation of computing the effective coefficients in fi-
nite RVEs applied in many engineering problems. Note that the RVEs only provide
approximations of the effective coefficients for random heterogeneous materials,
and the accuracy of the approximations depends strongly on the size of RVEs and
the boundary condition employed, see [Wu, Nie, and Yang (2014)] for detailed
discussions.

The effective coefficients ā can be computed by the following formula

〈a(y)∇ωλ (y)〉= ā · 〈∇ωλ (y)〉, (7)

when the auxiliary problems (Eq. 6) are solved. Here 〈·〉means the volume average
of the variables in Y , i.e., 〈·〉=

∫
Y ·dY/|Y |.

In some cases the macroscopic behavior is enough and it is not necessary to resolve
all the details of the multiscale problem. AHM solves some microscopic auxiliary
problems and a macroscopic homogenized problem numerically. Compared with
the fine FEM, the amount of computation is extremely reduced. However, some-
times the multiscale solution should be resolved in some local domains or in the
global domain. To this end, AHM provides a strategy to resolve the multiscale
solution taking advantage of the formal asymptotic expansion, that is,

uε(x) = u0(x)+ ε

d

∑
i=1

χei(y)
∂u0(x)

∂xi
+ · · · , (8)
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where χei = ωei − ei · y, and ei(i = 1, . . . ,d) are the canonical bases in Rd . The
first–order AHM approximates the multiscale solution uε by the first–order solu-
tion uε

1 = u0 + εu1 which includes additional microscopic information introduced
by the microscopic functions χei . To improve the accuracy of the multiscale solu-
tion given by AHM, higher–order AHM has also been considered, see Cui et al.
[Yang, Cui, Nie, and Ma (2012); Yang and Cui (2013)], Xiao et al. [Xiao and
Karihaloo (2010)] and references therein. In fact, for periodic structures, the mul-
tiscale solution in the global domain is explicitly obtained when both the auxiliary
problems and the homogenized problem are solved. However for random hetero-
geneous materials, additional work should be done to solve the auxiliary problems
in some local domains which we are interested in or in the global domain to obtain
the multiscale solution.

2.2 Heterogeneous multiscale method

G–convergence [Zhikov, Kozlov, and Oleinik (1994)] in homogenization theory
shows that for a sequence of multiscale coefficients aε ,ε > 0 satisfying Eq. 2 for
any ε , the solution uε of the multiscale problem (Eq. 1) converges to the solution of
the homogenized problem (Eq. 5) as ε goes to zero. Based on this fact, the hetero-
geneous multiscale method (HMM) solves the homogenized problem by choosing
a macroscopic solver such as the coarse FEM. It is assumed that ŪH ⊂ H1

0 (Ω) is
the standard piecewise linear finite element space on a macroscopic mesh TH with
size H. Then the discrete variational formulation of the homogenized problem is:
Find uHMM ∈ ŪH such that

a(uHMM,vH) = ( f ,vH), ∀vH ∈ ŪH , (9)

where

a(uHMM,vH) =
∫

Ω

∇vH · ā∇uHMM dΩ, (10)

( f ,vH) =
∫

Ω

f vH dΩ. (11)

Since generally ā is unknown, the missing data above is the effective stiffness ma-
trix. Therefore the next step of HMM is estimating the missing effective stiffness
matrix. Let ϕ̄i, ϕ̄ j ∈ ŪH be two arbitrary macroscopic base functions. As illustrated
in Fig. 2, in any element K ∈ TH , the effective element stiffness matrix could be
estimated by numerical quadrature

aK(ϕ̄i, ϕ̄ j)≈ |K| ∑
xk∈K

ωk(∇ϕ̄i · ā∇ϕ̄ j)(xk), i, j = 1, . . . ,nK , (12)
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Figure 2: Illustration of HMM [E, Ming, and Zhang (2005)]

where xk and ωk are the macroscopic quadrature points and weights in element K,
and nK is the number of nodes in K. To couple the microscale and the macroscale,
the following microscopic problems{
−∇ · (aε(x)∇ϕ̃i(x)) = 0 in I(xk),
ϕ̃i(x) = ϕ̄i(x) on ∂ I(xk),

(13)

are solved around any quadrature point xk and for any base function ϕ̄i. Here I(xk)
is a small cube centered at xk. It may be an RUC for periodic structures or an RVE
for random heterogeneous materials in the x coordinates. Then the integrand at xk
in Eq. 12 is approximated by

(∇ϕ̄i · ā∇ϕ̄ j)(xk)≈
1

|I(xk)|

∫
I(xk)

∇ϕ̃i ·aε
∇ϕ̃ j dI(xk). (14)

When the effective stiffness matrix is computed, the variational problem (Eq. 9) is
solved finally to get the HMM solution uHMM which is an approximation of the ho-
mogenized solution u0. In fact, HMM estimates the effective integrands in Eq. 12,
but AHM directly estimates the effective coefficients ā in Eq. 12 by solving auxil-
iary problems (Eq. 6) locally around every quadrature point xk and then computing
Eq. 7.

HMM assumes that the multiscale problem (Eq. 1) satisfies separation of scales.
That is, characteristic length of the microscale O(l) is much smaller than charac-
teristic length of the macroscale O(1), and then there exist RUCs or RVEs of size δ

such that l� δ � 1. With scale separation assumption, HMM simply solves some
microscopic problems (Eq. 13) and a macroscopic problem (Eq. 9) to capture the
macroscopic behavior of the multiscale problem. Therefore its computational cost
is much less than that of fine FEM.

To recover the details of the multiscale solution in some local domains, HMM
adopts a strategy proposed by Oden et al. [Oden and Vemaganti (2000)]. After the
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homogenized problem is solved, the following problem{
−∇ · (aε(x)∇ûε

h(x)) = f (x) in ΩL ⊂Ω,
ûε

h(x) = uHMM(x) on ∂ΩL,
(15)

is solved with fine mesh Th to obtain the multiscale solution ûε
h in a local domain

ΩL. The HMM solution uHMM acts as a known Dirichlet boundary condition on
the boundary of ΩL. We should note that though a more accurate approximation
ûε

h of original multiscale solution uε in Eq. 1 can be obtained, the characteristic
length of ΩL should be much smaller than the characteristic length of Ω considering
the limit of capability of computing resources, but should be much larger than the
characteristic length of heterogeneities because the boundary condition has great
effect on the accuracy of ûε

h when ΩL is very small. In computation, the size of ΩL

may be very close to the RVE (RUC) size δ .

2.3 Variational multiscale method

The variational multiscale (VMS) method assumes that solution of the multiscale
problem (Eq. 1) can be decomposed into two parts, namely uε = ū+ u′, where
ū represents a smooth function and u′ a rapidly oscillating function, as shown in
Fig. 3. Therefore the variational formulation of Eq. 1 needs to be decomposed into
a macroscopic variational formulation and a microscopic variational formulation.
VMS method semi–solves the microscopic variational problem first to get an ex-
pression of microscopic solution u′, and then substitutes it into the macroscopic
variational problem to solve the macroscopic solution ū.

Figure 3: An overlapping sum decomposition of multiscale solution [Hughes, Fei-
joo, Mazzei, and Quincy (1998)]

Specifically, the variational formulation of Eq. 1 is:
Find uε ∈ X ⊂ H1

0 (Ω) such that

a(uε ,vε) = ( f ,vε), ∀vε ∈ X . (16)
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The left–hand side and the right–hand side of the equation are defined similar to
Eq. 10 and Eq. 11, respectively. This equation can be rewritten as

a(ū+u′, v̄+ v′) = ( f , v̄+ v′), ∀v̄+ v′ ∈ X , (17)

or separated artificially as

a(ū, v̄)+a(u′, v̄) = ( f , v̄), ∀v̄ ∈ X̄ , (18)

a(u′,v′) =−(a(ū,v′)− ( f ,v′)), ∀v′ ∈ X ′. (19)

Here the solution space X is decomposed as X = X̄
⊕

X ′ where X̄ is the solution
space for the macroscale and X ′ is the solution space for the microscale. Eq. 18
and Eq. 19 are the macroscopic variational formulation and microscopic variational
formulation respectively. Though u′ is a nonlocal function, we can only estimate it
locally at the microscale. Assuming that u′ equals to zero on the boundaries of the
macroscopic mesh TH for solving ū, VMS method suggests to introduce residual–
free bubbles which are defined in every macroscopic element K ∈ TH in order to
compute u′ locally. Since ū in the element K can be expressed as

ū|K =
nK

∑
i=1

ϕ̄i,K ūi,K , (20)

where ϕ̄i,K(i = 1, . . . ,nK) are the macroscopic base functions defined in the element
K and nK is the number of nodes in K, Eq. 19 is rewritten locally as

aK(u′,v′) =−

(
nK

∑
i=1

ūi,K ·aK(ϕ̄i,K ,v′)− ( f ,v′)

)
, ∀v′ ∈ X ′K . (21)

Let

u′|K =
nK

∑
i=1

ϕ
′
i,K ūi,K , (22)

then ϕ ′i,K satisfies

aK(ϕ
′
i,K ,v

′) =−(aK(ϕ̄i,K ,v′)− ( f ,v′)), ∀v′ ∈ X ′K , i = 1, . . . ,nK . (23)

Here ϕ ′i,K are the residual–free bubbles which are zero on element boundary ∂K. E-
q. 23 in every macroscopic element are solved first to obtain all of the residual–free
bubbles, and then the macroscopic solution can be resolved by solving the macro-
scopic variational problem (Eq. 18) with mesh TH taking advantage of Eq. 22. It
should be mentioned that since the microscopic solution is constructed by the linear
combination of residual–free bubbles with macroscopic solution at the nodes as the
coefficients, the multiscale solution has been obtained by VMS method.
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2.4 Multiscale finite element method

The main idea of the multiscale finite element method (MsFEM) is to construct
special finite element base functions at the macroscale which can capture the mi-
croscopic information. These base functions are obtained by solving some prob-
lems in every macroscopic element. And then a small discrete system is solved at
the macroscale to get the macroscopic solution.

To solve the multiscale problem (Eq. 1), the domain is partitioned first into macro-
scopic finite elements TH (see Fig. 4). Let ŪK = span{ϕ̄i,K , i = 1, . . . ,nK} where
ϕ̄i,K are the linear base functions defined in the element K ∈TH and nK is the num-
ber of nodes in K. It is a common knowledge that the standard piecewise linear
finite element space ŪH = {ū|K ∈ ŪK ,K ∈ TH} ⊂ H1

0 (Ω) cannot resolve all the
features of the multiscale solution. MsFEM solves the following problems{
−∇ · (aε(x)∇ϕ̃i,K(x)) = 0 in K ∈TH ,
ϕ̃i,K(x) = ϕ̄i,K(x) on ∂K,

(24)

to construct special multiscale base functions ϕ̃i,K for every K and 1 ≤ i ≤ nK .
Compared with linear functions ϕ̄i,K , these ϕ̃i,K are oscillatory functions in ev-
ery element but share the same trace with ϕ̄i,K . When Eq. 24 are numerical-
ly solved with mesh Th in every macroscopic element (see microscopic mesh in
Fig. 4), an approximate solution of the multiscale problem (Eq. 1) is found in
the special multiscale solution space ŨH = {ũ|K ∈ ŨK ,K ∈ TH} ⊂ H1

0 (Ω) where
ŨK = span{ϕ̃i,K , i = 1, . . . ,nK}. Though only the approximate values of the mul-
tiscale solution at every macroscopic node are obtained, ∑

nK
i=1 ϕ̃i,K ūi,K can give an

approximation of multiscale solution due to the fact that the base functions ϕ̃i,K

have captured the microscopic information.

Figure 4: Macroscopic mesh and microscopic meshes in MsFEM [Hou and E-
fendiev (2009)]

The function ũ ∈ ŨH constructed by multiscale base functions ϕ̃i,K is continuous
across the boundaries of the macroscopic elements. However, though the multi-
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scale base functions are oscillatory within every element, they are linear along the
inner boundaries of elements as same as ϕ̄i,K , and then the resulting function ũ is
linear along the inner boundaries of the elements. To obtain oscillatory multiscale
solution in the entire domain, another oscillatory boundary condition has also been
proposed, cf. [Hou and Wu (1997)]. In addition, an over–sampling technique was
proposed to reduce the effect of boundary conditions for the multiscale base func-
tions on the accuracy of the multiscale solution. More relative work refers to [Hou,
Wu, and Zhang (2004); Efendiev, Chu, Ginting, and Hou (2008)].

3 Comparison of the four multiscale methods

3.1 Two frameworks

Since the characteristic length of microscale is much smaller than the characteristic
length of macroscale, it is impossible to find high–precision numerical solutions
for multiscale problems by the fine FEM in practice. Therefore approximations
of the multiscale solutions should be considered by designing effective multiscale
methods. The four methods recalled in the above section can be divided broadly
into two categories. AHM and HMM belong to the up–down framework, while
VMS method and MsFEM belong to the uncoupling framework.

As can be seen in Fig. 5, based on the homogenization theory, the up–down frame-
work focuses first on the macroscopic behavior of the multiscale problem. The
homogenized problem is considered to be solved with macroscopic mesh. Since
the effective coefficients are unknown a priori, one needs to solve some auxiliary
problems in some local domains at the microscale (e.g., around quadrature points
in macroscopic elements), and then to compute effective information for solution
of homogenized problem. Since the microscopic auxiliary problems in different
local domains are independent problems, these problems can be solved effectively
by parallel computing. The number of auxiliary problems depends on the special
feature of the multiscale problem. If the feature of the multiscale coefficients is u-
niform in the global domain, the effective coefficients are uniform and the auxiliary
problems could be solved in any local domain. Otherwise, the effective coefficients
depend on the macroscopic positions and one needs to solve the auxiliary problems
in concerned local domains. The above procedure reflects microscopic information
up to the macroscale. In some cases the macroscopic information should be trans-
ferred to the microscale, because more accurate solution reflecting the microscopic
information is more useful in many applications. With the help of macroscopic
solution in the global domain, one solves some problems in some local domains
where the multiscale solution is required, and then the multiscale solution is com-
puted. These local domains are independent of those ones for obtaining effective
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information.

Getting
effective information

(Local Domain)

Obtaining
macroscopic solution

(Global Domain)

Obtaining
multiscale solution

(Local Domain)
- - - -? ?

Figure 5: Flowchart of the up–down framework

Getting functions which
reflect microscopic information

(Macroscopic Mesh)

Obtaining
multiscale solution
(Global Domain)

- - -?

Figure 6: Flowchart of the uncoupling framework

Compared to the up–down framework, the uncoupling framework obtains the mul-
tiscale solution directly in the global domain, see Fig. 6. Since the full fine scale
solution of the multiscale problem cannot be solved directly in the global domain,
the uncoupling framework first partitions the global domain into some small sub-
domains (macroscopic mesh), and tries to resolve some details of the multiscale
solution in every macroscopic element independently. Special substructural func-
tions reflecting some microscopic information are constructed in every macroscop-
ic element and computed by solving some problems in these elements. These sub-
structural problems can be solved in parallel because the substructural functions are
independent. With the help of the substructural functions, the multiscale solution
is then resolved with macroscopic mesh by solving a small discrete system. In the
uncoupling framework, two levels of meshes are used, and the scale of the sub-
structural problems depends on the macroscopic mesh size. Since the substructural
functions are connected with macroscopic nodes, the multiscale solution in every
fine element is derived by the macroscopic nodal solutions and the substructural
functions.

Generally speaking, the two frameworks solve the multiscale problem in different
ways, and provide different amount of multiscale solution. The up–down frame-
work solves the multiscale problem in two steps. The macroscopic solution is com-
puted first and the second step is obtaining the multiscale solution in some local
domains. The multiscale solution in the global domain can also be computed when
necessary. If only the macroscopic solution is required, the second step is omitted.
In contrast, the uncoupling framework computes the multiscale solution directly in
the global domain. In addition, the computational cost of these two frameworks
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is different. We compare the total degrees of freedom (DOFs) of discrete systems
in these two frameworks with that of fine FEM for convenience. This is reason-
able when the cost of numerical method for solving linear systems in the multi-
scale methods is proportional to the DOFs of the linear systems [Ming and Yue
(2006)]. The DOFs of the up–down framework depend on the user requirement for
the multiscale solution. The DOFs are fewer than that of fine FEM when only the
macroscopic solution and the multiscale solution in some small local domains are
required. The DOFs will be comparable to that of fine FEM when the multiscale
solution in the global domain is required. In contrast, the DOFs of the uncoupling
framework are comparable to that of fine FEM because the multiscale solution in
the global domain is obtained directly. Furthermore, in the up–down framework,
the separation of scales is assumed, because the size of local domains for obtain-
ing effective information should be much smaller than the macroscopic mesh size
for the purpose of computing effective information more efficiently. However, the
scale separation assumption is not necessary in the uncoupling framework.

Though the cost of multiscale methods in the two frameworks are comparable to
that of fine FEM when the detailed multiscale solution is required, multiscale meth-
ods are still more effective than fine FEM. This is because the multiscale methods
partition the multiscale problem into some independent small problems, so both
the amount of computer memory and CPU time will be dramatically reduced, and
it is very suitable to implement parallel computing. In contrast, fine FEM is al-
ways powerless for solving multiscale problems because of the limit of computer
memory and CPU time. However we should note that the price by using multiscale
methods is the accuracy of the multiscale solution.

3.2 Comparison of AHM and HMM in resolving multiscale solution

One main difference of AHM and HMM in the up–down framework is the manner
they resolve multiscale solution in the local domains, as displayed in Fig. 7 and
Fig. 8. AHM solves some auxiliary problems in a local RVE to produce auxiliary
functions (e.g. χ in Eq. 8) which reflect microscopic information. The multi-
scale solution is then computed by the combination of the macroscopic solution
and the microscopic auxiliary functions based on the asymptotic expansion of the
multiscale solution. The number of the auxiliary problems depends on the spatial
dimension. In contrast, to resolve multiscale solution, HMM solves only one prob-
lem in a local domain which takes the macroscopic solution on the boundary of the
local domain as Dirichlet boundary condition. The source term f of the multiscale
problem is considered in this local problem because the macroscopic solution acts
as a boundary condition, while in AHM the effect of source term is represented
in the macroscopic solution in the local RVE and the auxiliary problems do not
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consider it. For resolving multiscale solution in a local domain, HMM is more eco-
nomic than AHM because only one problem should be solved. However, according
to the asymptotic expansion form, AHM can provide higher–order multiscale solu-
tion when more work has been done.

Getting
auxiliary functions

(e.g. χ in Eq. 8)
(Local Domain)

Obtaining
multiscale solution by

asymptotic expansion (Eq. 8)
(Local Domain)

χ = 0
on ∂Y

u0 in ΩL
χ in Y

- - -?

Figure 7: Flowchart of AHM in resolving multiscale solution

Obtaining
multiscale solution by

solving one problem (Eq. 15)
(Local Domain)

ûε
h = u0

on ∂ΩL

f in ΩL
- -

Figure 8: Flowchart of HMM in resolving multiscale solution

Though the manner to resolve multiscale solution in AHM and HMM is different,
these two methods provide similar multiscale solutions in numerical computation.
For simplicity, we illustrate the similarity for one–dimensional problem first.

As mentioned in section 2, to get an approximate solution of homogenized problem,
HMM computes effective stiffness matrix while AHM computes effective coeffi-
cients. In fact the same strategy to obtain effective coefficients as in AHM was also
adopted in HMM, see [E, Engquist, Li, Ren, and Vanden-Eijnden (2007); Yue and
E (2007)]. For the convenience of displaying the similarity of multiscale solution-
s in AHM and HMM, it is assumed that the same macroscopic solution has been
obtained by these two methods.

Let u0 be the numerical solution of the homogenized problem. To resolve multi-
scale solution, HMM needs to solve{
− d

dx

(
aε(x)dûε (x)

dx

)
= f (x) in ΩL = (x1,x2),

ûε(x) = u0(x) on ∂ΩL,
(25)

where ΩL is a local domain in Ω (see Fig. 9).

In AHM, we consider the first–order multiscale solution

uε
1(x) = u0(x)+ εχ(y)

du0(x)
dx

, (26)
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where χ is the first–order auxiliary function and is the solution of the following
problem{
− d

dy

(
a(y)dχ(y)

dy

)
= da(y)

dy in Y,

χ(y) = 0 on ∂Y,
(27)

where Y = (0,1) is the unit cell.

-r r��
�
��

�
��

HH
H

HH
H

HH

ΩLx1 x2 x

ϕ̄1 ϕ̄2

r r
Yy1 y2

Figure 9: A diagram of ΩL and Y in R

To correlate the multiscale solutions of AHM and HMM, it is assumed that ΩL is the
ε–cell with size ε and Y is the corresponding normalized cell of ΩL, cf. [Han, Cui,
and Yu (2010)]. We rewritten χ(y) in the x coordinates as χε(x) where x = εy+x1.
Obviously χε is the solution of the following problem{
− d

dx

(
aε(x)dχε (x)

dx

)
= 1

ε

daε (x)
dx in ΩL,

χε(x) = 0 on ∂ΩL.
(28)

Let{
− d

dx

(
aε(x)dϕ̃i(x)

dx

)
= 0 in ΩL, i = 1,2,

ϕ̃i(x) = ϕ̄i(x) on ∂ΩL,
(29)

{
− d

dx

(
aε(x)dǔ(x)

dx

)
= f (x) in ΩL,

ǔ(x) = 0 on ∂ΩL.
(30)

Based on the superposition principle, the multiscale solution ûε in HMM satisfies

ûε(x) = ϕ̃1(x)u0
1 + ϕ̃2(x)u0

2 + ǔ(x), (31)

where u0
1 and u0

2 are the values of u0(x) on the left and right points of ΩL. Note that
ϕ̃1 and ϕ̃2 are the multiscale base functions as same as in MsFEM, while ϕ̄1 and ϕ̄2
are the macroscopic linear base functions (Fig. 9).
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Let χε
i = ϕ̃i − ϕ̄i, i = 1,2. According to Eq. 29, χε

1 and χε
2 solve the following

problems respectively{
− d

dx

(
aε(x)dχε

1 (x)
dx

)
=− 1

ε

daε (x)
dx in ΩL,

χε
1 (x) = 0 on ∂ΩL,

(32)

and{
− d

dx

(
aε(x)dχε

2 (x)
dx

)
= 1

ε

daε (x)
dx in ΩL,

χε
2 (x) = 0 on ∂ΩL.

(33)

Obviously χε = χε
2 =−χε

1 .

Then we have

ûε = ϕ̃1u0
1 + ϕ̃2u0

2 + ǔ

= (ϕ̄1 +χ
ε
1 )u

0
1 +(ϕ̄2 +χ

ε
2 )u

0
2 + ǔ

= (ϕ̄1u0
1 + ϕ̄2u0

2)+(χε
1 u0

1 +χ
ε
2 u0

2)+ ǔ (34)

= u0 +χ
ε
2 (u

0
2−u0

1)+ ǔ

= u0 + εχ
du0

dx
+ ǔ.

In general, the macroscopic mesh size is larger than the size of local domain ΩL.
Therefore it is assumed that in AHM the macroscopic solution u0 in ΩL is ap-
proximated by linear interpolation, and its derivative is approximated by the linear
combination of the derivative of linear interpolation functions with coefficients u0

i .

As in Eq. 34, the multiscale solutions in HMM and AHM are equivalent in com-
putation when ignoring the additional part ǔ. Obviously it holds when there is no
source term in Eq. 25. It has been shown that for multiscale problems which do not
contain microscopic components in the source term, it is not necessary to consider
the source term in the microscopic problems [Hou and Efendiev (2009); Arbogast
and Boyd (2006)]. We assume that the source term is a macroscopic function. In
this case HMM and AHM provide equivalent multiscale solutions.

Similar result can be extended to higher–dimensional space and we illustrate it in
R2.

Let ϕ̄i, i = 1, . . . ,4 be standard bilinear base functions in a square domain ΩL (see
Fig. 10). We assume that ε is the length of ΩL. Obviously we have

ϕ̄1 + ϕ̄4 =−(x1− x2
1)/ε, (35)

ϕ̄2 + ϕ̄3 = (x1− x1
1)/ε, (36)
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Figure 10: A diagram of ΩL in R2

ϕ̄1 + ϕ̄2 =−(x2− x3
2)/ε, (37)

ϕ̄3 + ϕ̄4 = (x2− x2
2)/ε. (38)

Similar to Eq. 31, we assume ûε = ∑
4
i=1 ϕ̃iu0

i + ǔ in HMM where ϕ̃i are multiscale
base functions satisfying{
−∇ · (aε(x)∇ϕ̃i(x)) = 0 in ΩL, i = 1, . . . ,4,
ϕ̃i(x) = ϕ̄i(x) on ∂ΩL.

(39)

And u0
i are the values of macroscopic solution at four vertices in ΩL. ǔ solves the

problem{
−∇ · (aε(x)∇ǔ(x)) = f (x) in ΩL,
ǔ(x) = 0 on ∂ΩL.

(40)

Let

χ
ε
x1,1 = (ϕ̃1 + ϕ̃4)− (ϕ̄1 + ϕ̄4), (41)

χ
ε
x1,2 = (ϕ̃2 + ϕ̃3)− (ϕ̄2 + ϕ̄3), (42)

χ
ε
x2,1 = (ϕ̃1 + ϕ̃2)− (ϕ̄1 + ϕ̄2), (43)

χ
ε
x2,2 = (ϕ̃3 + ϕ̃4)− (ϕ̄3 + ϕ̄4). (44)

It is easy to see that{
−∇ · (aε(x)∇χε

xi,1(x)) =−
1
ε
∇ · (aε(x)ei) in ΩL, i = 1,2,

χε
xi,1(x) = 0 on ∂ΩL,

(45)
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{
−∇ · (aε(x)∇χε

xi,2(x)) =
1
ε
∇ · (aε(x)ei) in ΩL, i = 1,2,

χε
xi,2(x) = 0 on ∂ΩL,

(46)

where ei are the canonical bases in the xi direction. In fact these problems are
the auxiliary problems in AHM. And obviously we have χε

xi,1 = −χε
xi,2, i = 1,2.

Furthermore, let (y1,y2) be the local coordinates in the corresponding unit cell Y
of ΩL, and χyi(y

1,y2) = χε
xi,2(x

1,x2). The relationship similar to Eq. 34 could be
deduced

ûε =
4

∑
i=1

ϕ̃iu0
i + ǔ

=
4

∑
i=1

ϕ̄iu0
i +

4

∑
i=1

(ϕ̃i− ϕ̄i)u0
i + ǔ

= u0 +[(ϕ̃2 + ϕ̃3)− (ϕ̄2 + ϕ̄3)]
u0

2 +u0
3

2
+[(ϕ̃1 + ϕ̃4)− (ϕ̄1 + ϕ̄4)]

u0
1 +u0

4
2

+[(ϕ̃3 + ϕ̃4)− (ϕ̄3 + ϕ̄4)]
u0

3 +u0
4

2
+[(ϕ̃1 + ϕ̃2)− (ϕ̄1 + ϕ̄2)]

u0
1 +u0

2
2

+ ǔ

= u0 +χ
ε
x1,2

(
u0

2 +u0
3

2
−

u0
1 +u0

4
2

)
+χ

ε
x2,2

(
u0

3 +u0
4

2
−

u0
1 +u0

2
2

)
+ ǔ

= u0 + εχy1

∂u0

∂x1
+ εχy2

∂u0

∂x2
+ ǔ. (47)

The last term ǔ can be eliminated when the source term f is a macroscopic function.
In the numerical computation, when the macroscopic solution in ΩL is represent-
ed by bilinear interpolation and its derivatives are represented by constants, the
multiscale solutions provided by HMM and AHM are equivalent.

3.3 Computational cost of different methods

Compared with fine FEM, the multiscale methods in the uncoupling framework do
comparable work and resolve all the details of the multiscale solution. In contrast,
we have the choice whether the multiscale solution is resolved or not by the mul-
tiscale methods in the up–down framework. The computational cost is comparable
to that of fine FEM when it is necessary to obtain the multiscale solution in the
global domain. However the cost will be much less when we merely concern the
macroscopic solution. We compare the cost of the four multiscale methods in these
two frameworks in this subsection.

As in subsection 3.1, the DOFs of the multiscale methods are compared for conve-
nience. Tab. 1 lists DOFs of the four multiscale methods for a multiscale problem
with scale separation assumption. Let H and h be the mesh sizes at the macroscale
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Table 1: The cost of different methods

Method Macroscopic solution Full multiscale solution

Fine FEM – h−d

MsFEM – H−d +(n−1)h−d

VMS method – H−d +nh−d

HMM H−d +mdH−d (δ/h)d H−d +mdH−d (δ/h)d +h−d

AHM H−d +mdH−d (δ/h)d H−d +dh−d

Note: d is the spatial dimension, n is the number of nodes in every macroscopic
element, and m is the number of quadrature points in every macroscopic element.

and microscale respectively. It is assumed that h� δ � H � 1 where δ is the
RVE size in AHM and HMM. In addition, the same number of nodes and the same
number of quadrature points in every macroscopic element are assumed.

Since the multiscale base functions in each element K ∈TH in MsFEM satisfy the
formula ∑

n
i=1 ϕ̃i,K = 1, we can solve n−1 substructural problems (Eq. 24) and com-

pute the last multiscale base function by the formula. However this is not the case
for VMS method. For the convenience of comparing AHM and HMM, the same
RVE size δ is assumed in AHM and HMM, and the strategy to obtain effective co-
efficients by solving auxiliary problems in local domains around each quadrature
point is adopted in AHM. As presented in Tab. 1, the cost of AHM is comparable
to that of HMM for solving macroscopic solution. However, different manner to
resolve multiscale solutions in HMM and AHM leads to different computational
cost, and HMM is more economic than AHM. Considering the auxiliary functions
could be stored and reused to construct multiscale solution, the cost to solve ef-
fective coefficients is included in the cost to resolve multiscale solution in AHM.
However this is not the case for HMM.

4 Numerical experiment

To compare the up–down framework and the uncoupling framework further, we
consider a numerical example, viz., the thermal conductivity of a two–phase func-
tionally graded material (FGM), which is generated by random morphology de-
scription functions with computer introduced in [Vel and Goupee (2010)]. The
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structure of the FGM is shown in Fig. 11. The FGM has spatially varying volume
fractions in x1 direction and is random heterogeneous at the microscale. In addi-
tion, though the FGM is not uniform at the macroscale, it is stationary random at
the microscale and the scale separation assumption is satisfied.

We solve the following multiscale problem without source term
−∇ · (aε(x)∇uε(x)) = 0 in Ω = (0,10)× (0,1),
uε(x) = 0 on ∂Ω1 = {x| x1 = 0},
uε(x) = 10 on ∂Ω2 = {x| x1 = 10},
∇uε(x) ·n = 0 on ∂Ω\(∂Ω1

⋃
∂Ω2),

(48)

where n is the outward unit normal vector and

aε(x) =
{

1, x ∈Ωblue,
10, x ∈Ωred.

(49)

To compare the two different frameworks, the multiscale problem (Eq. 48) is solved
by AHM and MsFEM. We set the mesh sizes H = 1 and h = 1/128 in these two
methods, and the RVE size in AHM equals to the macroscopic mesh size. Fig. 12
presents the macroscopic mesh for solving macroscopic solution of the multiscale
problem.

Fig. 13 shows the multiscale solutions (temperature distribution) computed by fine
FEM and two multiscale methods. We could see the difference between the fine
FEM solution and other solutions computed by the two multiscale methods. In fact
all these methods provide approximations of the true multiscale solution, and fine
FEM provides better approximation than AHM and MsFEM. Furthermore, it shows
similarities between the multiscale solution of AHM and that of MsFEM, as well
as the macroscopic solutions presented in Fig. 14.

Figure 11: Geometry of a two-phase FGM

The accuracy of these two multiscale methods are further compared by computing
the relative errors of temperature solutions and their gradients in the x1 direction,
i.e.,

‖uM−uF‖L∞

‖uF‖L∞

,
‖uM−uF‖L2

‖uF‖L2
,
‖uM−uF‖H1

‖uF‖H1
, (50)



318 Copyright © 2014 Tech Science Press CMES, vol.99, no.4, pp.297-325, 2014

Figure 12: The macroscopic mesh

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

(a) Multiscale solution of fine FEM

(b) Multiscale solution of AHM

(c) Multiscale solution of MsFEM

Figure 13: Multiscale solutions umulti computed by different methods

(a) Macroscopic solution of AHM

(b) Macroscopic solution of MsFEM

Figure 14: Macroscopic solutions umacro computed by different methods

Table 2: Comparison of relative errors for different multiscale methods

AHM MsFEM
umacro umulti umacro umulti

L∞ error (%) 1.151 1.134 1.176 1.005
L2 error (%) 0.872 0.864 0.975 0.891
H1 error (%) 8.938 3.271 8.954 3.271
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(a) Multiscale solution of fine FEM

(b) Multiscale solution of AHM

(c) Multiscale solution of MsFEM

Figure 15: Multiscale solutions umulti,x1 computed by different methods

(a) Macroscopic solution of AHM

(b) Macroscopic solution of MsFEM

Figure 16: Macroscopic solutions umacro,x1 computed by different methods

‖uM
x1
−uF

x1
‖L∞

‖uF
x1
‖L∞

,
‖uM

x1
−uF

x1
‖L2

‖uF
x1
‖L2

,
‖uM

x1
−uF

x1
‖H1

‖uF
x1
‖H1

. (51)

Here uM denotes temperature solution computed by one of the multiscale method-
s, and uF denotes temperature solution of fine FEM. The gradients of temperature
solutions in the x2 direction are not discussed here because of their unobvious d-
ifferences. The relative errors of solutions computed by AHM and MsFEM are
shown in Tab. 2. As can be seen, the two methods provide both macroscopic so-
lutions and multiscale solutions with comparable accuracy. Moreover, multiscale
solutions are better approximations of fine FEM solution than macroscopic solu-
tions for both methods. For this special problem, the differences of macroscopic
solutions and multiscale solutions in L2 norm and L∞ norm are not large for each
multiscale method. But large disparities are shown with H1 norm. This is caused
by the gradients of temperature solutions. Multiscale gradient solutions in the x1
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direction of fine FEM and two multiscale methods are presented in Fig. 15, and
macroscopic gradient solutions of these multiscale methods are shown in Fig. 16.
Obviously the multiscale gradient solutions given by the multiscale methods are
very similar to that of fine FEM, while the macroscopic gradient solutions of the
multiscale methods are not. Therefore multiscale solutions are more important in
computing accurate gradient solutions. Since the computing resources are limited,
only a simple numerical example is considered. However for general multiscale
problems, multiscale solutions approximate solutions of the multiscale problems
much better than macroscopic solutions because the latter do not contain micro-
scopic information.

5 Conclusions

Differences and similarities of four multiscale methods for elliptic multiscale prob-
lems are shown. These methods are divided into two categories. The up–down
framework includes AHM and HMM. Methods in this framework consider the
macroscopic behavior of the multiscale problem with much less cost than that of
fine FEM. Their cost will be comparable to that of fine FEM when all the details of
the multiscale solution should be resolved. In contrast, methods in the uncoupling
framework resolve the multiscale solution directly and are full fine scale solvers
as fine FEM actually. VMS method and MsFEM belong to this framework. In
addition, it is found that though the cost to resolve multiscale solution in AHM
and HMM is different, these two methods provide similar multiscale solutions in
numerical computation. Considering the feature of different multiscale method-
s, an effective multiscale method should be used to solve the multiscale problem
according to the user requirement on the multiscale solution.
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