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A New Approach to a Fuzzy Time-Optimal Control
Problem
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Abstract: In this paper, we present a new approach to a time-optimal control
problem with uncertainties. The dynamics of the controlled object, expressed by
a linear system of differential equations, is assumed to be crisp, while the initial
and final phase states are fuzzy sets. We interpret the problem as a set of crisp
problems. We introduce a new notion of fuzzy optimal time and transform its
calculation to two classical time-optimal control problems with initial and final
sets. We examine the proposed approach on an example which is a problem of
fuzzy control of mathematical pendulum.
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1 Introduction

Many researchers have investigated optimal control problems with uncertainties.
Gabasov, Kirillova, and Poyasok (2010a) have considered optimal preposterous
observation and optimal control problems for dynamic systems under uncertainty
with use of a priori and current information about the controlled object behavior and
uncertainty. For an optimal control problem under uncertainty, Gabasov, Kirillova,
and Poyasok (2009) have investigated the positional solutions, which are based on
the results of inexact measurements of input and output signals of controlled object.
In another study, Gabasov, Kirillova, and Poyasok (2010b) have studied a problem
of optimal control of a linear dynamical system under set-membership uncertainty.

Optimal control problem with uncertainty has firstly been formulated as a fuzzy
optimal control problem by Filev and Angelov (1992). They have solved the prob-
lem on the basis of fuzzy mathematical programming and transformed the fuzzy
problem to the multicriteria optimal control problem.
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Sakawa et al. (1996) have proposed a fuzzy satisficing method for multiobjective
linear optimal control problems. To solve these problems, they have discretized
the time and replaced the system of differential equations by system of difference
equations. Moon, VanLandingham, and Beliveau (1996) have developed a linear
time varying state equation for hoisting and lowering operations of a crane system
model. Wang (1998) have developed an optimal fuzzy controller for linear systems
with quadratic cost function via Pontryagin’s Maximum Principle (PMP) [Pontrya-
gin et al. (1986)]. A fuzzy approach has been used by Kulczycki (2000) in the
design of sub-time-optimal feedback controllers.

Fuzzy time-optimal control problems have been investigated in different forms by
Plotnikov (2000); and Molchanyuk and Plotnikov (2009). Plotnikov (2000) has
proved necessary maximin and maximax conditions for a control problem, when
the behavior of the object is described by a controllable differential inclusion with
multivalued performance criterion. Molchanyuk and Plotnikov (2009) have study
the problem of high-speed operation for linear control systems with fuzzy right-
hand sides. For this problem, they have introduced the notion of optimal solution
and established necessary and sufficient conditions of optimality in the form of the
PMP.

A new fuzzy control system has been developed by Liu (2008) as an alternative
approach to Mamdani (1974) and Takagi and Sugeno (1985) systems. Unlike the
Mamdani and Takagi-Sugeno systems, the Liu fuzzy control system is not deter-
ministic. Based on the concept of fuzzy Liu process, Zhao and Zhu (2010) have
investigated a fuzzy optimal control model with a quadratic objective functional
for a linear fuzzy control system. Likewise, based on Liu process a linear quadrat-
ic model have been proposed and the corresponding fuzzy optimal control problem
have been solved by Qin, Bai, and Ralescu (2011). They have applied the approach
to model production planning problems.

Nagi et al. (2011) have investigated fuzzy time-optimal control problem for sec-
ond order nonlinear systems. A synthesis problem for fuzzy systems have been
considered by Aliev, Niftiyev, and Zeynalov (2011).

In most of the application problems, the behavior of the object is determined by
physics laws and is crisp. If the initial and final values are obtained from measure-
ment, these values can be uncertain and often it is more adequate to model them by
fuzzy numbers. Thus, optimal control problems arise with crisp dynamics but with
fuzzy boundary values. In this paper, we consider such a problem. Namely, we
consider a time-optimal control problem with crisp dynamics and with fuzzy start
and target states. We interpret the optimal time as a fuzzy variable and propose
a numerical method to calculate it. We demonstrate our method on a problem of
fuzzy control of mathematical pendulum [Blagodatskikh (2001)]. This problem is
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still an actual problem even in crisp case [Paoletti and Genesio (2011)], though it
is investigated for a sufficiently long time.

The present paper consists of 6 sections including the Introduction. In Section 2,
we give preliminaries on fuzzy sets and describe the classical time-optimal control
problem. In Section 3, we define the fuzzy time-optimal control problem. In Sec-
tion 4, we propose a method for calculation of fuzzy optimal time. In Section 5, we
show the proposed approach by an example. Finally, we give concluding remarks
in Section 6.

2 Preliminaries

2.1 Fuzzy sets

The notion of fuzzy set is an extension of the classical notion of set. In classical set
theory, an element either belongs or does not belong to the given set. By contrast,
in fuzzy set theory, an element has a degree of membership, which is a real number
from [0, 1], in the given fuzzy set. In fuzzy set theory, classical sets are usually
called crisp sets.

A fuzzy set Ã can be defined as a pair (U, µ), where U is the universal set and
µ : U −→ [0, 1] is the membership function. If the universal set U is fixed, a
membership function fully determines a fuzzy set. We denote the membership
function as µÃ to emphasize that the fuzzy set Ã is under consideration.

For each x ∈U , µÃ(x) is called the membership degree of x in Ã.

The support of Ã is a crisp set and is defined as supp(Ã) = {x ∈U | µÃ(x)> 0}.
Let U = R (where R is the set of real numbers). Let also a, c and b be real numbers
such that a < c < b. A set ũ with membership function

µ(x) =


x−a
c−a , a≤ x≤ c
x−b
c−b , c≤ x≤ b
0, otherwise

is called a triangular fuzzy number and is denoted as ũ = (a, c, b).

Fuzzy sets can be represented also via their α-cuts.

For each α ∈ (0, 1], the crisp set Aα =
{

x ∈U | µÃ(x)≥ α
}

is called the α-cut of
Ã. For α = 0 we put A0 = closure(supp(Ã)).

It is easy to see that if α increases, Aα can only be narrower. Therefore, in the
coordinate space, the α-cuts of a fuzzy set are bodies nested within one another.

Let u and u be functions from [0, 1] to R that satisfy the following conditions:
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1) u is a bounded nondecreasing left-continuous function on (0,1] and right-continuous
at α = 0

2) u is a bounded nonincreasing left-continuous function on (0,1] and right-continuous
at α = 0

3) u(α)≤ u(α) for all 0≤ α ≤1.

A set ũ on R the α-cuts of which are intervals [u(α), u(α)] is called a fuzzy num-
ber in parametric form and is denoted as ũ = (u(α), u(α)).

Triangular fuzzy numbers are a particular case of fuzzy numbers in parametric
form. For a triangular fuzzy number ũ = (a, c, b) we have u(α) = a+α(c− a)
and u(α) = b+α(c−b).

Let ũ and ṽ be fuzzy numbers. A fuzzy set K̃ on R2 with membership function
µK̃(x,y) = min{µũ(x),µṽ(y)} is called a fuzzy number vector and denoted as K̃ =

(ũ, ṽ). In the xy-coordinate plane, the vector K̃ = (ũ, ṽ) forms a fuzzy region in
the form of rectangle. Furthermore, the α-cuts of the region are rectangles nested
within one another.

2.2 Classical linear time-optimal control problem

Let the behavior of a controlled object be definite and described by the following
linear system of differential equations:

ẋ = Ax+u (1)

Here x is n-dimensional vector-function that describes the phase state of the object,
A is an n×n matrix, u is n-dimensional control vector-function.

Let U ⊆ Rn be a nonempty compact set. If measurable function u, defined on the
interval I = [t0, t1], satisfies the condition u(t) ∈U for each t ∈ I, then u is called
an admissible control. It is known that for any admissible function u and for any
initial state p the initial value problem

ẋ = Ax+u

x(t0) = p

has a unique solution [Blagodatskikh (2001)]. This solution x describes how the
phase state changes with time under the influence of admissible control u.

Assume that the start time t0 and the start state p are given. If we want to transfer the
object to a given state q in the shortest time by choosing an appropriate admissible
control u, we have the following Classical time-optimal control problem of 1-st
type:

t1− t0→min
u

(2)
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Subject to

ẋ = Ax+u (3)

x(t0) = p (4)

x(t1) = q (5)

Note, that the finish time t1 is not known beforehand and is determined as a result
of solving the problem. Summarizing, 1-st type classical time-optimal problem
(2)-(5) is a problem of finding an admissible control u, which transfers the object
from the initial phase state p to the final phase state q in the shortest time.

Now, let nonempty compact sets M0 and M1 from Rn, an interval I = [t0, t1] , and
an admissible function u on this interval be given. If the system (1) has a solution
x(t) such that x(t0) ∈M0 and x(t1) ∈M1, then it is said that the control function u
transfers the object from the initial phase set M0 to the final phase set M1 on the
interval [t0, t1]. If we want to transfer the object from the set M0 to the set M1 in
the shortest time, we have the following Classical time-optimal control problem of
2-nd type:

t1− t0→min
u

(6)

Subject to

ẋ = Ax+u (7)

x(t0) ∈ M0 (8)

x(t1) ∈ M1 (9)

where M0 and M1 are given start and target sets. The solution u of the problem (6)-
(9) is called optimal control. The solution x of the system (7)-(9), corresponding
to the optimal control u, is called optimal trajectory. If u(t) is an optimal control
and x(t) is a corresponding optimal trajectory, then (u(t),x(t)) is called to be an
optimal pair.

We note that the classical problem of 2-nd type can also be reformulated as follows:

t1− t0→ min
u; p∈M0; q∈M1

(10)

ẋ = Ax+u (11)

x(t0) = p (12)

x(t1) = q (13)
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2-nd type classical time-optimal problem (6)-(9) (or (10)-(13)) is well studied [Pon-
tryagin et al. (1986); Blagodatskikh (2001)]. Below we give necessary conditions
of optimality for this problem [Pontryagin et al. (1986); Blagodatskikh (2001)].

Definition 1. (Maximum principle). Let u be an admissible control defined on
an interval [t0, t1] and let x be a solution of the system (7)-(9). We say that the
pair (u(t),x(t)) satisfies maximum principle on the interval [t0, t1] if the conjugate
system

ψ̇ =−A∗ψ

has such a nontrivial solution ψ = (ψ1,ψ2, ...,ψn) that the following conditions
hold:

1) maximum condition: 〈u(t),ψ(t)〉= c(U,ψ(t)) for almost any t ∈ [t0, t1];

2) transversality condition on M0: 〈x(t0),ψ(t0)〉= c(M0,ψ(t0));

3) transversality condition on M1: 〈x(t1),−ψ(t1)〉= c(M1,−ψ(t1)).

Here A∗ is the conjugate transpose matrix of A (Note that A∗ = AT if A is a real
matrix); 〈u,ψ〉 = u1ψ1 + u2ψ2 + ...+ unψn denotes the inner product of vectors
u and ψ from Rn and c(S,ψ) = max

s∈S
〈s,ψ〉 denotes the support function of the

compact set S from Rn.

Theorem 1. [Blagodatskikh (2001)] (Necessary conditions of optimality for the
time-optimal control problem). Let M0 and M1 be nonempty convex compact sets.
Also let the function u defined on [t0, t1] be an optimal control for the problem (6)-
(9) and x be a corresponding optimal trajectory. Then the pair (u(t),x(t)) satisfies
maximum principle on the interval [t0, t1].

Remark 1: Since M0 and M1 are nonempty compact sets and support function
c(·,ψ) is a linear function, the initial and final values of the optimal solution x(t) of
the problem (6)-(9) are achieved on boundaries of the sets M0 and M1 by Theorem
1.

3 Fuzzy linear time-optimal control problem

In most application problems, the behavior of the object is determined by laws of
physics. Because of this the equations modeling the object’s behavior are crisp in
nature. However, the initial and final states of the object may contain uncertainty.
Depending on the nature of uncertainty, control problem can be modeled by differ-
ent methods such as stochastic analysis, interval analysis, and fuzzy logic methods.
For example, let the initial state be measured as a point p = (a,b). Obviously, the
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certainty of this value depends on accuracy of the measuring device. If the mea-
surement error is ε , then the initial state is a point from a square centered at (a,b)
and with side length 2ε . If all points in this square are equivalent to each other as
a candidate to the true value, then the problem can be modeled by interval analysis
method. But often it is natural to expect that these points are not equivalent. For
instance, degree of belief to the point (a,b) is more compared to any other point
(x,y) from the square. And the degree of belief to (x,y) decreases as its distance
from (a,b) increases. In this case, where the initial state is "close" to the measured
value (a,b), it will be more appropriate to model the problem by means of fuzzy
logic. In this paper, we consider such kind of model. For simplicity, we represent
the "close" point’s coordinates (x and y) by fuzzy triangular numbers.

If the start and target values in classical problem of 1-st type are fuzzy, we obtain
the following Fuzzy time-optimal control problem:

t1− t0→min
u

(14)

Subject to

ẋ = Ax+u (15)

x(t0) = ξ̃ (16)

x(t1) = ζ̃ (17)

where ξ̃ and ζ̃ are given fuzzy initial and final vectors (or sets).

In Fig. 1 we give a schematic representation to problem (14)-(17) for the case of
2-dimensional phase space (i.e. x ∈ R2)

The problem shown in Fig. 1 can be interpreted as follows: We want to transfer the
object from start point to final point in the shortest time, where start point is "close"
to (−5,3) and final point is "close" to (0,0).

Depending on definition of derivative of fuzzy function or definition of solution of
system of differential equations, the problem (14)-(17) can be interpreted by dif-
ferent ways. For the present time, there are many difficulties with solving differen-
tial equations when fuzzy derivatives (such as Hukuhara, or generalized Hukuhara
derivatives [Kaleva (1987); Bede and Gal (2005)]) are used. Therefore, today
it seems to be unproductive to apply fuzzy derivative for solving fuzzy optimal
control problem.

We will interpret the problem (14)-(17) as a set of 1-st type classical problems (2)-
(5). Each problem is obtained by taking the initial value p from ξ̃ and the final
value q from ζ̃ .
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Figure 1: Schematic representation for the problem (14)-(17) in phase space. The
initial and final states (ξ̃ and ζ̃ ) are represented with fuzzy rectangles ABCD and
EFGH, respectively. Dashed and dotted rectangles indicate α = 0.3 and α = 0.7-
cuts. Dots represent the crisp values, the line connecting them depicts a crisp opti-
mal trajectory.

Definition 2. Let t1,pq, upq and xpq denote the solutions of the problem (2)-(5).

Let also α = min
{

µ
ξ̃
(p),µ

ζ̃
(q)
}

(where µ
ξ̃
(p) denotes the membership degree

of p in ξ̃ ). We call (t1,pq,upq,xpq) to be a solution of the problem (14)-(17) with
membership degree α .

Set of all t1,pq, defined above, determines a fuzzy set t̃1. We will investigate how to
calculate t̃1. Functions t1(α) and t1(α), which indicate the left and right boundaries
of α-cuts, determine the set t̃1 fully. Thus, the problem of calculation of fuzzy
optimal time is reduced to calculation of the functions t1(α) and t1(α).

Lemma 2. t1(α) (where α ∈ [0, 1]) is a solution of the following classical time-
optimal control problem of 2-nd type:

t1− t0→min
u

(18)
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ẋ = Ax+u (19)

x(t0) ∈ ξα (20)

x(t1) ∈ ζα (21)

Proof. If t1,pq is an optimal time with membership degree µ ≥ α then, by the
Definition 2, µ

ξ̃
(p) ≥ α and µ

ζ̃
(q) ≥ α , consequently, p ∈ ξα and q ∈ ζα (here

ξα and ζα denote α-cuts of ξ̃ and ζ̃ , respectively). On the contrary, if p ∈ ξα and
q ∈ ζα then the corresponding solution has a membership degree µ ≥ α . t1(α) is
the shortest time among all solutions with membership degree µ ≥ α . Therefore,
t1(α) can be obtained by solving the problem (6)-(9) with taking M0 = ξα and
M1 = ζα , namely the problem (18)-(21).�

By Lemma 2, to calculate t1(α) we have to solve the classical problem of 2-nd type
(18)-(21). For this problem, Theorem 1 about necessary conditions of optimality
takes place and, therefore, can be used to construct the solution.

Taking into account (10), it can be seen that

t1(α) = min
p∈ξα ; q∈ζα

t1,pq (22)

This formula can be used as alternative to (18)-(21) in numerical calculations. Note
that, the value t1(α) means the shortest time between two points, one of them is
from the set ξα and another is from ζα , in the best case. Similarly, t1(α) means the
shortest time in the worst case:

t1(α) = max
p∈ξα ; q∈ζα

t1,pq (23)

4 Numerical method to calculate the fuzzy shortest time

To approximate the function t1(α) we can calculate its values at nα equidistant
points: α1,α2, . . . ,αnα

. Then it will be enough to solve nα classical problems of
2-nd type (18)-(21), if we have an effective method to do this. If we don’t have
such a method we apply the following algorithm.

As it mentioned in Remark 1, the initial and final states of the optimal trajectory x(t)
are achieved on boundaries of the sets ξα and ζα . Taking this fact into account we
place equally spaced nodes on the boundaries of the regions ξα and ζα . The shortest
time among all possible start-destination node pairs (p,q) gives the approximate
value of t1(α), according to the formula (22). Thus, to calculate the function t1(α)
we have to solve nα · n1 · n2 crisp problems of 1-st type (2)-(5). Here n1 and n2
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denote the numbers of nodes approximating the boundaries of the regions ξα and
ζα , respectively.

Similarly, to calculate the function t1(α) we discretize the problem (23) and solve
it numerically.

Remark 2: Considering of a fuzzy problem as a set of crisp problems becomes
an effective tool in many cases, especially when other approaches fail. The main
difficulty of this approach is that a set of crisp problems arises and new method-
s must be developed to combine their solutions in order to get a fuzzy solution.
Gasilov, Amrahov, and Fatullayev (2011) applied the approach to the fuzzy initial
value problem for linear system of differential equations; Gasilov, Amrahov, and
Fatullayev (2013) and Gasilov et al. (2012) to the fuzzy boundary and initial value
problems for high-order linear differential equation, respectively.

Note that the straightforward calculation of the function t1(α) by formula (22) re-
quires to solve nα · n2 · n2 ∼ n5 problems (2)-(5) (if n× n grids are used for initial
and final sets). Lemma 2 and Remark 1 made it possible to reduce the number of
calculations to nα ·n ·n∼ n3.

5 Case study

In this section, we apply the proposed approach to a fuzzy time-optimal control
problem. The problem is a fuzzified version of the crisp problem of damping of
mathematical pendulum, presented in [Blagodatskikh (2001)].

Example 1. Solve the fuzzy time-optimal control problem (Note that below t0 = 0):

t1→min
u

ẋ1 = x2

ẋ2 =−x1 +u2

U = {u = (u1,u2)|u1 = 0, |u2| ≤ 1} ⊆ R2

x1(0) = ξ̃1 = (−6,−5,−4); x2(0) = ξ̃2 = (2,3,4)

x1(t1) = ζ̃1 = (−0.5,0,0.5); x2(t1) = ζ̃2 = (−0.5,0,0.5)

Here ξ̃1, ξ̃2, ζ̃1 and ζ̃2 are triangular fuzzy numbers.

Below the solution is given in 3 stages.

a) General notes and preliminary investigation. Initial and final state vectors,
ξ̃ =

(
ξ̃1, ξ̃2

)
and ζ̃ =

(
ζ̃1, ζ̃2

)
, form in the phase plane R2 the fuzzy squares with

sides of 1 and 0.5, and with centers at (−5,3) and (0,0), respectively (see, Fig. 1).
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It can be seen that ξα = {(x1,x2) | α−6≤ x1 ≤−4−α, α +2≤ x2 ≤ 4−α} and
ζα = {(x1,x2) | 0.5(α−1)≤ x1 ≤ 0.5(1−α), 0.5(α−1)≤ x2 ≤ 0.5(1−α)}. The
sets ξα and ζα also are squares with the same centers as ξ̃ and ζ̃ , while with sides
of 1−α and 0.5(1−α), respectively.

To solve the given fuzzy problem we need a solution method for the according
crisp problem of 1-st type (2)-(5), which can be applied for arbitrary start state p
and final state q. Below, we develop such a method.

Support function of U is c(U,ψ)= |ψ2|. Then, the maximum condition 〈u(t),ψ(t)〉=
c(U,ψ(t)) implies u2(t)ψ2(t) = |ψ2(t)|. Consequently, for optimal control we
have:

u2(t) = 1, if ψ2(t)> 0;

u2(t) =−1, if ψ2(t)< 0;

−1≤ u2(t)≤ 1, if ψ2(t) = 0.

The system’s matrix is A =

[
0 1
−1 0

]
. Since A∗ =

[
0 −1
1 0

]
the conjugate

system is

ψ̇1 = ψ2

ψ̇2 =−ψ1

Let us find the solution of the conjugate system corresponding to an initial condition
ψ(0)∈C, where C is the unit circle. Initial points can be represented in the form of
ψ(0) = (cosα,sinα) with α ∈ [0,2π). Then the solution of the conjugate system
is ψ1(t) = cos(α− t),ψ2(t) = sin(α− t). The function ψ2(t) = sin(α− t) changes
its sign for first time at τ ≤ π (τ = π if α = 0; τ = α if 0 < α ≤ π; and τ = α−π

if π < α < 2π) and then after each π time period. Depending on α , the sign of the
function ψ2(t) = sin(α− t) in the interval [0,τ] is either positive or negative. Thus,
according to the maximum condition, the initial value of the optimal control u2(t)
is either 1 or −1. After τ ≤ π time units, it switches from 1 to −1 or vice versa.
Then, it repeatedly changes its sign after each π time period.

Below we interpret the behavior of the object as a motion of the object in the phase
plane x1x2.

Solutions of dynamic system corresponding to u2(t) = 1 are in the form x(t) =
(1 + ccos(ϕ − t),csin(ϕ − t)). In the phase plane R2 these solutions constitute
concentric circles with center at L(1,0) (Fig. 2). The motion on these circles is
clockwise with constant speed and whole turn takes 2π time units.

Similarly, solutions of dynamic system corresponding to u2(t) =−1 are in the form
x(t) = (−1+ccos(ϕ− t),csin(ϕ− t)). In R2 these solutions constitute circles with
center at K(−1,0) (Fig. 2). The motion on these circles is clockwise with constant
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Figure 2: An optimal trajectory can be realized by combining of clockwise motions
on circles with centers K and L.

speed and whole turn takes 2π time units.

Note that angular speed is ω = 1 for both motions mentioned above. So, the angle
formed by the object during its motion and the passed time are equal in value.

Let us emphasize two facts which will be used in arguments below. 1) In circular
motion with ω = 1 after π time period the object will be in the position which is
opposite (central symmetric point) of the current position. 2) The symmetric point
of (a,b) is (−a− 2,−b) with respect to center point K. If center is L, then the
symmetry of point (c,d) is (−c+2,−d).

b) Semi-analytical solution of 1-st type crisp problem. Now we investigate
how is a motion of the object corresponding to an optimal control in the phase plane
for a start point S and a target point T . Let us consider the case when the object
starts with control u = −1 (The case with start control u = 1 can be investigated
similarly). Let k denote the number of control switches. We consider the cases
k = 0 (motion without switch) and k ≥ 1 separately.

In the case k = 0, running from the start position S and moving along a circle
with center K the object reaches the target position T . This case occurs, only if
|KS|= |KT | (Here |AB| denotes the length of the segment AB). The motion time is
t1 = θ = ∠SKT (Here ∠SKT denotes the value of the angle SKT ).

Now let k ≥ 1. We differ the cases when k is odd and when k is even.
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Figure 3: A sample of optimal trajectory with 3 switches.

Let us consider the case that k is odd number and take k = 3 for clarity. The object
runs from the point S along a circle with center K and after τ time period arrives a
point X1(x,y) (Fig. 3). The points S and X1 are on the same circle. Consequently:

|KX1|= |KS| (24)

At the point X1 the control switches for the first time and becomes u = 1. Under
this control, the object moves along a circle with center L. After π time units it
arrives a point X2(−x+ 2,−y). Here the control switches for the second time and
under new control u =−1 (moving on circle with center K) after π time the object
reaches a point Xk = X3(x−4,y). At the point Xk the control switches for last time
and becomes u = 1. The object continues its motion on a circle with center L up to
the target point T . For the aforementioned motion, the points Xk and T must be on
the same circle with center L, i.e.,

|LXk|= |LT | (25)

It can be seen from Table 1 that for an odd k (including k = 1) the last point of
control switch is

Xk = (xk,yk) = (x−2(k−1),y) (26)



364 Copyright © 2014 Tech Science Press CMES, vol.99, no.5, pp.351-369, 2014

Table 1: Point of k-th control switch for optimal motion

k (odd) Xk k (even) Xk

1 (x,y) 2 (−x+2,−y)
3 (x−4,y) 4 (−x+6,−y)
5 (x−8,y) 6 (−x+10,−y)
7 (x−12,y) 8 (−x+14,−y)

Let S = (px, py) and T = (qx,qy). To calculate unknown coordinates x and y we use
equations (24) and (25). Using (26), these equations can be rewritten in coordinates
as follows:

(x+1)2 + y2 = r2
1 = (px +1)2 + p2

y (27)

(x+1−2k)2 + y2 = r2
2 = (qx +1)2 +q2

y (28)

Subtracting (28) from (27) we have: 4k(x+1)−4k2 = r2
1− r2

2. Then we can deter-
mine x and y as follows:

x =
r2

1− r2
2

4k
+ k−1 (29)

y = ±
√

r2
1− (x+1)2 (30)

If x and y have been determined we can calculate the passed time:

t1 = ∠SKX1 +(k−1)π +∠XkLT (31)

Let us find an evaluation for k. From (29) and (30) we have

y2 = r2
1−
(

r2
1− r2

2
4k

+ k
)2

≥ 0⇐⇒ k4− r2
1 + r2

2
2

k2 +

(
r2

1− r2
2

4

)2

≤ 0⇐⇒

(r1− r2)
2

4
≤ k2 ≤ (r1 + r2)

2

4
Hence, we obtain the following evaluation

kmin = d|r1− r2|/2e ≤ k ≤ b(r1 + r2)/2c= k̂ (32)

where dxe and bxc denote ceiling and floor of x, respectively. By taking k = kmin,
we have a feasible motion. Hence, using formula (31), we get:

t1,opt ≤ t1 = ∠SKX1 +(kmin−1)π +∠XkLT < 2π +(kmin−1)π +2π
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Then, we have kopt < kmin + 4⇐⇒ kopt ≤ kmin + 3. Consequently, we obtain the
following upper evaluation for k, by using (32):

kmax = min
{

kmin +3, k̂
}

The case when k ≥ 1 and k is even can be investigated by similar way. In this case
the last point of the control switch is (see, Table 1):

Xk = (xk,yk) = (−x+2(k−1),−y) (33)

The last control is u = −1 and, consequently, the object finishes its motion on a
circle with center K. Hence, r2

2 = (qx− 1)2 + q2
y . Except this value, the formulas

for x and y become the same as (29) and (30). The motion time is:

t1 = ∠SKX1 +(k−1)π +∠XkKT (34)

Above we have investigated the case when the start control u equals to −1. In the
case where u is 1 we have the following final formulas:

r2
1 = (px−1)2 + p2

y (35)

r2
2 =

{
(qx +1)2 +q2

y , if k is odd
(qx−1)2 +q2

y , if k is even
(36)

Xk = (xk,yk) =

{
(x+2(k−1),y), if k is odd

(−x−2(k−1),−y), if k is even
(37)

x = −
(

r2
1− r2

2
4k

+ k−1
)

(38)

y = ±
√

r2
1− (x−1)2 (39)

t1 = ∠SLX1 +(k−1)π +

{
∠XkKT, if k is odd
∠XkLT, if k is even

(40)

The above formulas, given for different situations, were obtained on the base of the
necessary conditions for optimality. Therefore, every solution constructed on these
formulas may not be optimal. However, the optimal solution is among all solutions,
constructed for different start controls and for different values of k.

Based on the above arguments and formulas a computer program is implemented
to calculate the optimal control for a given pair of start point S and target point
T . Firstly, by taking start control u = −1, after taking u = 1 and in both cases by
changing the value of k from kmin to kmax a solution is constructed (if there is any).
The solution with the shortest time is the optimal solution, transferring the object
from S to T .
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Figure 4: The membership function of fuzzy optimal time t̃1.

c) Results of the numerical calculations. The membership function of fuzzy
optimal time t̃1, obtained from calculations, is depicted in Fig. 4. Although the
initial and final states are expressed by fuzzy triangular numbers, we can see that
t̃1 is not triangular. The value t1 ≈ 8.78 with membership degree 1 corresponds to
the solution of the crisp problem (p = (−5,3) and q = (0,0). The corresponding
optimal trajectory is shown in Fig. 1. The least value t1 ≈ 5.97 with membership
degree 0 occurs when p= (−4,2) and q= (−0.5,0.5). The largest value t1≈ 11.76
with membership degree 0 corresponds to the pair p = (−6,4) and q = (0.5,0.5).

We can note the following in regard to the obtained solution. The solution of ac-
cording crisp problem is t∗1 ≈ 8.78. When the initial and final states are fuzzy it
could be expected that the optimal time would be a fuzzy number with vertex at t∗1 .
The obtained solution determines the parameters of this fuzzy number: the size of
the uncertainty (i.e. how wide is it), its shape (is it triangular or not, etc.).

6 Conclusion

In this paper, we investigated the time-optimal control problem with fuzzy initial
and final states. We interpreted the problem as a set of crisp problems. This ap-
proach allows to transform a fuzzy problem to a set of crisp problems, that can be
solved with known methods. The approach can be applied to the problems when the
behavior of the object is described by the system of differential equations or by the
higher-order differential equation. As it is known, the application of the Hukuhara
or generalized derivatives to these problems is difficult because the number of cases
have to be analyzed increases exponentially with order.



A New Approach to a Fuzzy Time-Optimal Control Problem 367

Based on the approach we proposed a numerical method to solve the fuzzy time-
optimal control problem. The complexity of the method is O(n3) for the 2-dimensional
phase space, if n×n grids are used for the initial and final sets.

We demonstrated the proposed method on a numerical example. To solve the aris-
ing crisp time-optimal control problem of 1-st type we developed a numerical al-
gorithm. Also, we showed how to obtain the fuzzy solution from the solutions of
the corresponding crisp problems.
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Gasilov, N. A.; Amrahov, Ş. E.; Fatullayev, A. G. (2011): A geometric approach
to solve fuzzy linear systems of differential equations, Appl. Math. Inf. Sci., vol. 5,
pp. 484–495.
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