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An LGDAE Method to Solve Nonlinear Cauchy Problem
Without Initial Temperature

Chein-Shan Liu1

Abstract: We recover an unknown initial temperature for a nonlinear heat con-
duction equation ut(x, t)= uxx(x, t)+H(x, t,u,ux), under the Cauchy boundary con-
ditions specified on the left-boundary. The method in the present paper trans-
forms the Cauchy problem into an inverse heat source problem to find F(x) in
Tt(x, t) = Txx(x, t)+H +F(x). By using the GL(N,R) Lie-group differential al-
gebraic equations (LGDAE) algorithm to integrate the numerical method of lines
discretized equations from sideways heat equation, we can fast recover the initial
temperature and two boundary conditions on the right-boundary. The accuracy and
efficiency are confirmed by comparing the exact solutions with the recovered re-
sults, where a large noisy disturbance is imposed on the Cauchy data.

Keywords: Cauchy problem, Missing initial condition, Lie-group differential al-
gebraic equations (LGDAE) method, Sideways heat equation.

1 Introduction

In this paper we consider an inverse heat conduction problem (IHCP) by recovering
an unknown initial condition for a nonlinear heat conduction equation under the
Cauchy type boundary conditions:

ut(x, t) = uxx(x, t)+H(x, t,u,ux), 0 < x < `, t > 0, (1)

u(0, t) = u0(t), (2)

ux(0, t) = q0(t), (3)

where H may be a nonlinear function of u and ux, and the initial condition is missing
to be an unknown function of x:

u(x,0) = f (x) =? (4)
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For the compatibility of data we require that f (0) = u0(0) and fx(0) = q0(0).

The sideways heat equation means the Cauchy problem for the heat conduction
equation, in which the temperature and heat flux are specified as functions of time
at one end of the two boundaries [Dorroh and Ru (1999); Chang, Liu and Chang
(2005)]. Besides the above two Cauchy boundary conditions in Eqs. (2) and (3) for
a typical sideways heat equation, the present method does not need other data to
recover f (x), u(`, t) and ux(`, t).

In the theory of partial differential equations (PDEs) there are two kinds Cauchy
problems. One is for the elliptic type PDE, and another is for the parabolic type
PDE; they are subjected to incomplete boundary conditions with some portion un-
specifying but some portion over-specifying. Both are of the non-characteristic
type initial value problems. It is well known that the Cauchy problems are highly
ill-posed with a little error of input data producing a large error of numerical solu-
tion [Eldén (1987); Eldén, Berntsson and Reginska (2000); Qian and Fu (2007);
Hao, Reinhardt and Schneider (2001); Liu (2008a, 2008b); Chi, Yeih and Liu
(2009); Marin (2009); Liu and Kuo (2011); Liu, Kuo and Liu (2011); Liu and
Zhang (2013); Yeih, Chan, Fan, Chang and Liu (2014)].

In many industrial applications we may want to determine the temperature and heat
flux on the surface of a body, but the surface itself is inaccessible for a measurement
of temperature or heat flux. It may also be the case that locating a measurement
device on the surface would disturb the measurements so that an incorrect temper-
ature or heat flux is recorded. In such a situation one is restricted to internal mea-
surements which being carried out on an accessible boundary. Berntsson (2003)
has presented an example of industrial application where the sideways heat equa-
tion can be used. Sometimes we may encounter the problem that when we tackle
the sideways heat equation the measurement of initial temperature is impossible,
because the heat conducting device is already in service.

Wang, Cheng, Nakagawa and Yamamoto (2010) have treated the IHCP without
needing of initial condition, and proved the uniqueness in determining both a bound-
ary value and an initial value for linear sideways heat equation. Liu (2011) has
studied the problem by recovering the initial condition under boundary conditions
given at two boundaries. Without needing of initial condition, Liu (2014a) has pro-
posed an iterative method to recover the heat conductivity of a nonlinear heat con-
duction equation, and Liu (2014b) has proposed an iterative algorithm to recover
heat source under the Cauchy type boundary conditions and a final time condition.
Recently, Liu and Wang (2014) have proposed a quasi-reversibility regularization
method to obtain a regularized solution and convergence estimates without needing
of initial temperature for the linear Cauchy problem.



An LGDAE Method to Solve Nonlinear Cauchy Problem 373

As we know, there are very few methods to deal with the nonlinear sideways heat
equation without initial conduction, which is very difficult to be solved numerically.
In this paper we will provide a simple and yet stable numerical method to solve
this highly ill-posed nonlinear Cauchy problem with multiple unknowns of initial
condition and right-boundary conditions.

The outline of this paper is given as follows. In Section 2 we propose a variable
transformation, such that the nonlinear Cauchy problem without initial value be-
comes a nonlinear inverse heat source problem with zero initial value. Sections 3-5
devote to the development of a Lie-group differential algebraic equations (LGDAE)
method and a numerical algorithm based on the Lie-group GL(N,R) for the general
DAEs system. In Section 6, we view the nonlinear inverse heat source problem in
Section 2 as a special type nonlinear DAEs, and derive a numerical algorithm to
solve the resultant DAEs. Numerical examples are given in Section 7 to validate
the efficiency and accuracy of LGDAE. Some conclusions are drawn in the final
Section 8.

2 A variable transformation and the numerical method of lines

Let

T (x, t) = u(x, t)− f (x), (5)

where f (x) is an unknown function of initial temperature to be determined. From
Eqs. (1)-(4) it follows that

Tt(x, t) = Txx(x, t)+H(x, t,T + f ,Tx + f ′)+F(x), (6)

T (0, t) = u0(t)−u0(0), (7)

Tx(0, t) = q0(t)−q0(0), (8)

T (x,0) = 0, (9)

where F(x) = f ′′(x) is viewed as an unknown spatially-dependent function of heat
source.

Here, a novel method of Lie-group differential algebraic equations (LGDAE) method
will be developed to estimate the unknown heat source F(x) and unknown initial
condition f (x), which merely requires the boundary conditions and initial condi-
tion given by Eqs. (7)-(9) for estimating F(x), and the boundary conditions given
by Eqs. (2) and (3) for estimating f (x).

The numerical method of lines is simple that for a given system of PDEs we dis-
cretize all but one of the independent variables. The semi-discrete procedure yields
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a coupled system of ordinary differential equations (ODEs), which are then be-
ing numerically integrated to obtain solution. For Eq. (6) we adopt the numerical
method of lines to discretize the time coordinate t by ti, by letting Si(x) = Tx(x, ti)
and T i(x) = T (x, ti), and keep x a continuous variable, where ti = (i− 1)∆t =
(i−1)t f /(m−1) and ∆t is a uniform time-stepsize. Such that we can derive

∂T i(x)
∂x

= Si(x), i = 1, . . . ,m+1, (10)

∂S1(x)
∂x

=−3T 1−4T 2 +T 3

2∆t
−H1−F(x), i = 1, (11)

∂Si(x)
∂x

=
T i+1−T i−1

2∆t
−Hi−F(x), i = 2, . . . ,m−1, (12)

∂Sm(x)
∂x

=
3T m−4T m−1 +T m−2

2∆t
−Hm−F(x), i = m, (13)

∂Sm+1(x)
∂x

= F(x), (14)

where Hi =H(x, ti,T i+ f ,Si+ f ′)=H(x, ti,T i+T m+1,Si+Sm+1) by defining T m+1

(x) = f (x) and Sm+1(x) = f ′(x). If we can know F(x), we can integrate Eqs. (10)-
(14) by using the group preserving scheme (GPS) developed by Liu (2001), where
we denote the spatial stepsize by ∆x = `/(n−1). Besides the above ODEs we have
a constraint equation:

T 1(x) = 0, (15)

which is obtained from Eq. (9). Here, we must emphasize that T 1(x) plays two
roles: satisfying Eqs. (10) and (15). Recently, Liu (2014c) has argued that the
Cauchy problem of heat equation is solvable, because the field equation is extend-
able to the initial time by using the concept of analytic continuation. The above
technique to treat the temperature T 1(x) on the line at initial time is indeed an
application of the analytic continuation method.

3 Lie-group differential algebraic equations method

Eqs. (10)-(15) constitute a set of differential algebraic equations (DAEs) with F(x)
to be an unknown function. Here we generalize the above DAEs to

ẋ = f(x,y, t), x(0) = x0, t ∈ R, x ∈ RN , y ∈ Rq, (16)

F(x,y, t) = 0, F ∈ Rq, (17)
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and propose a novel method to solve the above DAEs, which govern the evolution
of N +q variables xi, i = 1, . . . ,N and y j, j = 1, . . . ,q with N ordinary differential
equations (ODEs) and q nonlinear algebraic equations (NAEs). The vector y in
Eq. (16) is viewed as unknown parameter. We have replaced x in Eqs. (10)-(15) by
t for a purpose of the demonstration for the general DAEs written in a time domain.

There are many numerical methods used to solve ODEs. But only a few is used to
solve DAEs. The present technique used to solve the inverse heat source problem is
a DAE method, whose pre-requirement is however a powerful and stable method to
solve the DAEs as to be described below. The DAEs are more difficult to be solved
numerically than ODEs and NAEs.

Liu (2013a) was the first to find the essential form for n-dimensional nonlinear ordi-
nary differential equations (ODEs) in terms of the Lie-algebra gl(n,R) of GL(n,R),
and developed a very effective Lie-group GL(n,R) preserving scheme to solve
ODEs. Then, Liu (2013b) developed a Lie-group GL(n,R) preserving scheme to
solve ODEs by assuming that the coefficient matrix is constant in a small time in-
cremental step. Moreover, Liu (2013c) has developed a powerful numerical method
to solve the nonlinear DAEs based on the above Lie-group GL(n,R) preserving
scheme, which is named the Lie-group DAE (LGDAE) method. It is also inter-
esting that the LGDAE can be used to solve the sliding control problem by Liu
(2014d). Liu and Atluri (2013) have employed the LGDAE to solve the problem of
numerical differential of a noisy signal.

4 The GL(N,R) structure of differential equations system

The Lie-group is a differentiable manifold, which is endowed with a group structure
that is compatible with the underlying topology of the manifold. The Lie-group
solver can provide a better algorithm that retains the orbit generated from numerical
solution on the manifold which is associated with the Lie-group.

The general linear group is a Lie group, whose manifold is an open subset GL(N,R) :=
{G ∈ RN×N |detG 6= 0} of the linear space of all N ×N non-singular matrices.
Thus, GL(N,R) is also an N×N-dimensional manifold.

The general linear group GL(N,R) gives uniquely a real Lie-algebra gl(N,R).
Consider a one-parameter subgroup G(t), t ∈R, of the general linear group GL(N,R),
which is a curve passing through the group identity at t = 0,

G(0) = IN , (18)

and which operates from the left on the N-dimensional Euclidean space RN , result-
ing in a Lie-group equation:

Ġ(t) = A(t)G(t), (19)
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where A ∈ gl(N,R) is the corresponding Lie-algebra.

Here we give a new form of the dynamics in Eq. (16) from the GL(N,R) Lie-group
structure. In order to fit the form in Eq. (19), the vector field f on the right-hand
side of Eq. (16) can be written as

ẋ = Ax, (20)

where

A =
f
‖x‖
⊗ x
‖x‖

(21)

is the coefficient matrix. Here u⊗ y denotes the dyadic operation of u and y, i.e.,
(u⊗y)z = y · zu.

Because the coefficient matrix A is well-defined for ‖x‖ > 0, the Lie-group ele-
ment G generated from the above dynamical system (20) with Ġ = AG satisfies
det G(t) 6= 0, such that G ∈ GL(N,R).

5 An implicit GL(N,R) Lie-group scheme

Eq. (20) is a new starting point for the development of the Lie-group GL(N,R)
scheme. In order to develop a numerical scheme from Eqs. (20) and (21), we
suppose that the coefficient matrix A is constant with

a =
f̄
‖x̄‖

, b =
x̄
‖x̄‖

(22)

being two constant vectors, which can be obtained by taking the values of f and x at
a suitable mid-point of t̄ ∈ [t0 = 0, t], where t ≤ t0+h and h is a small time stepsize.
Thus from Eqs. (20) and (21) it follows that

ẋ = b ·xa. (23)

Let

w = b ·x, (24)

and Eq. (23) becomes

ẋ = wa. (25)

At the same time, from the above two equations we can derive the following ODE
for w:

ẇ = cw, (26)
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where

c = a ·b (27)

is supposed to be a constant value in a small time interval of t ∈ [t0, t0 + h]. Thus,
we have

w(t) = w0 exp(ct), t ∈ [t0, t0 +h], (28)

where w0 = b ·x0.

Inserting Eq. (28) for w(t) into Eq. (25) and integrating the resultant equation we
can obtain

x(t) = [IN +η(t)abT]x0, (29)

where x0 is the initial value of x at an initial time t = t0 = 0, and

η(t) =
ect −1

c
. (30)

Let G be the coefficient matrix before x0 in Eq. (29), i.e.,

G = IN +ηabT. (31)

Then we can prove

detG = ect > 0, (32)

which means that G is a Lie-group element of GL(N,R).
Accordingly, we can develop the following scheme based on the Lie-group GL(N,R)
for solving the ODEs in Eq. (16):
(i) Give 0≤ θ ≤ 1.
(ii) Give an initial value of x0 at an initial time t = t0 and a time stepsize h.
(iii) For k = 0,1, . . ., we repeat the following computations to a specified terminal
time t = t f :

xk+1 = xk +hfk. (33)

With the above xk+1 generated from an Euler step as an initial guess we iteratively
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solve the new xk+1 by

x̄k = (1−θ)xk +θxk+1,

ak =
f̄k

‖x̄k‖
=

f(x̄k,yk, tk +θh)
‖x̄k‖

,

bk =
x̄k

‖x̄k‖
,

ck = ak ·bk,

ηk =
exp(ckh)−1

ck
,

zk+1 = xk +ηkbk ·xkak.

(34)

If zk+1 converges according to a given stopping criterion:

‖zk+1−xk+1‖< ε2, (35)

then go to (iii) to the next time step; otherwise, let xk+1 = zk+1 and go to Eq. (34).
In the above yk is viewed as a constant vector within a small time step. In order to
determine yk the present Lie-group scheme is coupled with the following Newton
iterative scheme.

Within a small time step we can suppose that the variables y j, j = 1, . . . ,q are
constant in the interval of tk < t < tk+1. We give an initial guess of y j, j = 1, . . . ,q,
and insert them into Eq. (16). Then we apply the above implicit GL(N,R) Lie-
group scheme to find the next xk+1, by supposing that xk and yk are already obtained
in the previous time step. When xk+1 are available we insert them into Eq. (17),
and then apply the Newton iterative scheme to solve yk+1 by

y`+1
k+1 = y`k+1−B−1F(xk+1,y`k+1, tk+1), (36)

until the following convergence criterion is satisfied:

‖y`+1
k+1−y`k+1‖< ε1; (37)

otherwise, go to Eq. (34) and insert the new y`+1
k+1. In above, the component Bi j of

the Jacobian matrix B is given by ∂Fi/∂y j.

The numerical scheme is a combination of the Lie-group method based on GL(N,R)
and the Newton iterative method to solve the DAEs in Eqs. (16) and (17), which is
called the Lie-group differential algebraic equations (LGDAE) method.
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6 Numerical algorithm

Now we apply the above LGDAE with N = 2m+ 2 and q = 1 to solve T = (T 1,
. . . ,T m,T m+1)T, S = (S1, . . . ,Sm,Sm+1)T and hence f (x) = T m+1(x) through Eqs.
(10)-(14), and simultaneously solve the unknown function F(x) through Eq. (15)
by the Newton iterative method. The numerical processes are given below:
(i) Give an initial guess of F0, for example, F0 = 0.
(ii) Give initial conditions of T0 and S0 at an initial point x= 0 and a spatial stepsize
∆x.
(iii) For k = 0,1, . . ., we repeat the following computations to a terminal point x= `:

Tk+1 = Tk +∆xSk,

Sk+1 = Sk +∆xfk,

where fk denotes the k-th step value of the right-hand side in Eqs. (11)-(14). With
the above Tk+1 and Sk+1 generated from an Euler step as an initial guess we then
iteratively solve the new Tk+1 and Sk+1 by

T̄k = (1−θ)Tk +θTk+1,

S̄k = (1−θ)Sk +θSk+1,

at
k =

S̄k√
‖T̄k‖2 +‖S̄k‖2

,

as
k =

f̄k√
‖T̄k‖2 +‖S̄k‖2

,

bt
k =

T̄k√
‖T̄k‖2 +‖S̄k‖2

,

bs
k =

S̄k√
‖T̄k‖2 +‖S̄k‖2

,

ck = at
k ·bt

k +as
k ·bs

k,

dk = Tk ·bt
k +Sk ·bs

k,

ηk =
exp(ck∆x)−1

ck
,

zt
k+1 = Tk +ηkdkat

k,

zs
k+1 = Sk +ηkdkas

k.

(38)

If zt
k+1 and zs

k+1 converge according to a given stopping criterion:√
‖zt

k+1−Tk+1‖2 +‖zs
k+1−Sk+1‖2 < ε2, (39)
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then go to (iv); otherwise, let Tk+1 = zt
k+1 and Sk+1 = zs

k+1 and go to Eq. (38).
(iv) For j = 0,1, . . ., we repeat the following computations:

F j+1
k+1 = F j

k+1−
E j

E ′j
, (40)

where the prime denotes the differential with respect to F , and

(as
k)
′ =

f̄′k√
‖T̄k‖2 +‖S̄k‖2

,

c′k = bs
k · (as

k)
′,

η
′
k =

c′k[(hck−1)exp(ckh)+1]
c2

k
,

T′k+1 = η
′
kdkat

k,

E j = T 1
k+1,

E ′j = (T 1
k+1)

′.

(41)

Obviously, from Eqs. (11)-(14) one has f̄′k = (−1m,1)T = (−1, . . . ,−1,1)T, where
1m = (1, . . . ,1)T. If F j

k+1 converges according to

|F j+1
k+1 −F j

k+1|< ε1, (42)

then go to (iii) for the next step; otherwise, let F j
k+1 = F j+1

k+1 and go to Eq. (38). The
above iteration with ε1 as a convergence criterion is called the outer iteration or
outer loop, while that with ε2 as a convergence criterion is called the inner iteration
or inner loop. In the computations given below the maximum numbers of iterations
for inner and outer iterations are fixed to be 100 and 200, respectively. In all the
computations given below we will fix the weighting factor θ to be θ = 1/2.

7 Numerical tests

In this section we test the proposed LGDAE in the solution of the Cauchy prob-
lem without initial condition. All the required left boundary conditions can be
derived from exact solutions. Here we consider the noise being imposed on the
left-boundary conditions by

û0(ti) = u0(ti)[1+σR(i)], q̂0(ti) = q0(ti)[1+σR(i)], (43)

where R(i) are random numbers in [−1,1], and σ is the intensity of noise.
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We define the root-mean-square-error (RMSE) in the recoveries of initial condition
and right boundary conditions by

RMSE1 :=

√
1
n

n

∑
j=1

[u∗(x j,0)−u(x j,0)]2, (44)

RMSE2 :=

√
1
m

m

∑
k=1

[u∗(`, tk)−u(`, tk)]2, (45)

RMSE3 :=

√
1
m

m

∑
k=1

[u∗x(`, tk)−ux(`, tk)]2, (46)

where m is the number of the discretized times and n is the number of steps used
in the integration of the governing equations along the x-direction. When u∗(x j,0),
u∗(`, tk) and u∗x(`, tk) denote the numerical solutions, u(x j,0), u(`, tk) and ux(`, tk)
denote the exact solutions.

7.1 Example 1

In this example the exact solution of u is

u(x, t)=1−1
2

[
ex/
√

2 cos(x/
√

2+ t)+e−x/
√

2 cos(x/
√

2− t)
]
, 0 < x < 1, 0 < t < 2π.

(47)

Under the convergence criteria ε2 = 10−12 for inner iterations and ε1 = 10−4 for
outer iterations, we apply the LGDAE to solve the above problem, where the fol-
lowing parameters: m = 21, n = 251 and a noise with σ = 0.01 are considered. As
shown in Fig. 1(a), the numbers of iterations are few with one, four or six for inner
iterations and one for outer iterations. It shows that the LGDAE is a highly efficient
method, which is convergent very fast. In Fig. 1(b) we compare the recovered tem-
perature with the exact one, and in Fig. 1(c) we compare the recovered heat flux
with the exact one, which are almost coincident. Thus we plot the numerical error
in Fig. 2, of which the maximum error and RMSE1 of initial temperatures are, re-
spectively, 1.7×10−2 and 4×10−3, the maximum error and RMSE2 of right-end
temperatures are, respectively, 2.1×10−2 and 9.9×10−3, and the maximum error
and RMSE3 of right-end heat fluxes are 3.4×10−2 and 1.6×10−2, respectively.
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Figure 2: For example 1 showing the numerical errors of (a) initial temperature, 
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Figure 2: For example 1 showing the numerical errors of (a) initial temperature, (b)
right-end temperature, and (c) right-end heat flux.
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7.2 Example 2

Next, we assume that the exact solution of u is

u(x, t) = sin(πx)e−π2t , H(x) = 0, 0 < x < 0.5, 0 < t < 1. (48)

Under the following parameters: m = 31, n = 251 and under a noise with σ = 0.01,
we use the LGDAE to solve the above inverse problem to recover the initial tem-
perature and two right-end boundary conditions as shown in Fig. 3, of which the
maximum error and RMSE1 of initial temperatures are, respectively, 1.3× 10−2

and 7.9× 10−3, the maximum error and RMSE2 of right-end temperatures are,
respectively, 5.6× 10−3 and 1.3× 10−3, and the maximum error and RMSE3 of
right-end heat fluxes are 3.4×10−2 and 9.1×10−3, respectively.

7.3 Example 3

Then we consider a nonlinear heat conduction equation:

ut(x, t) = uxx(x, t)−u2(x, t)+(e−t cosx)2, 0 < x < 0.5, 0 < t < 1, (49)

where the exact solution is supposed to be

u(x, t) = e−t cosx. (50)

Inserting Eq. (5) into Eq. (49) we can obtain

Tt(x, t) = Txx(x, t)−T 2(x, t)−2 f (x)T (x, t)− f 2(x)+ e−2t cos2 x+F(x). (51)

Now we can apply the LGDAE to solve the above equation to find f (x) and F(x)
under the following parameters: m= 21, n= 251 and under a noise with σ = 0.005.
The numerical errors are shown in Fig. 4, of which the maximum error and RMSE1
of initial temperatures are, respectively, 5.2× 10−2 and 2.4× 10−2, the maxi-
mum error and RMSE2 of right-end temperatures are, respectively, 6.5×10−3 and
3×10−3, and the maximum error and RMSE3 of right-end heat fluxes are 6×10−2

and 1.7×10−2, respectively.
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Figure 3: For example 2 showing the numerical errors of (a) initial temperature, 

(b) right-end temperature, and (c) right-end heat flux. 
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Figure 4: For nonlinear example 3 showing the numerical errors of (a) initial 

temperature, (b) right-end temperature, and (c) right-end heat flux. 
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Figure 5: For example 4 of Burgers equation showing the numerical errors of (a) 

initial temperature, (b) right-end temperature, and (c) right-end heat flux. 
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7.4 Example 4

Finally, we consider a nonlinear Burgers equation:

ut(x, t) = uxx(x, t)−u(x, t)ux(x, t)+2x3 +4xt, 0 < x < 0.5, 0 < t < 1, (52)

where the exact solution is supposed to be

u(x, t) = x2 +2t. (53)

Inserting Eq. (5) into Eq. (52) we can obtain

Tt(x, t)=Txx(x, t)− [T (x, t)+ f (x)]Tx(x, t)− f ′(x)[T (x, t)+ f (x)]+2x3+4xt+F(x).

(54)

When we apply the LGDAE to solve the above inverse problem under the following
parameters: m = 21, n = 101 and under a noise with σ = 0.002, the numerical
errors are shown in Fig. 5, of which the maximum error and RMSE1 of initial
temperatures are, respectively, 2.5×10−4 and 1.6×10−4, the maximum error and
RMSE2 of right-end temperatures are, respectively, 1.1×10−2 and 3.5×10−3, and
the maximum error and RMSE3 of right-end heat fluxes are, respectively, 9.8×
10−2 and 2.3×10−2.

8 Conclusions

There are very few methods that can solve the nonlinear sideways heat conduction
problem without initial condition, which is a highly ill-posed inverse heat con-
duction problem. The existing methods in the literature are most restricted to solve
linear Cauchy problems. We have transformed the nonlinear Cauchy problem with-
out initial condition into a nonlinear heat source identification problem with a zero
initial condition. Then, we have explained that the discretized version after using
the numerical method of lines is a set of nonlinear differential algebraic equations,
for which we have used the newly developed LGDAE to solve the unknown ini-
tial temperature and recover boundary temperature and heat flux on the right-end.
Although under a large noisy disturbance on the Cauchy data, the accuracy and ef-
ficiency of numerical solutions were confirmed by comparing the recovered results
with exact solutions.
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