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A Precise Integration Method for Modeling GPR Wave
Propagation in Layered Pavement Structure

H. Y. Fang1,2,3, J. Liu4 and F. M. Wang1,2

Abstract: Construction of electromagnetic wave propagation model in layered
pavement structure is a key step in back analysis of ground penetrating radar (GPR)
echo signal. The precise integration method (PIM) is a highly accurate, efficient,
and unconditionally stable algorithm for solving 1-order ordinary differential equa-
tions. It is quite suitable for dealing with problems of wave propagation in layered
media. In this paper, forward simulation of GPR electromagnetic wave propagat-
ing in homogeneous layered pavement structure is developed by employing PIM.
To verify the performance of the proposed algorithm, simulated GPR signal is com-
pared with the measured one. Excellent agreement is achieved.

Keywords: ground penetrating radar, pavement structure, precise integration
method, numerical simulation.

1 Introduction

In recent years, ground penetrating radar (GPR) has been widely applied to road
quality detection [Hugenschmidt, Partl and de Witte (1998); Grote, Hubbard, Har-
vey and Rubin (2005); Lahouar and Al-Qadi (2008); Solla, Lorenzo, Rial and
Novo(2011)] as is known for speed, high efficiency, and collecting data non-
destructively. The layer thickness, water content and other information of the road
can be predicted by inverse analysis of GPR echo signal without destroying pave-
ment. However, construction of GPR propagation model for inverse analysis in
layered structure pavement is still a challenging task.

Various approaches have been developed to deal with electromagnetic wave propa-
gation in layered media. Yang (1997) developed a spectral recursive transformation
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method for plane wave propagation in generalized anisotropic layered media. An
inhomogeneous plane wave algorithm in multi-layered media was investigated by
Hu and Chew (2000). Zheng and Ge (2000) proposed a transfer matrix method
for calculating the reflection and transmission coefficients of anisotropic stratified
media. Mosig and Melcon (2003) presented an efficient technique for evaluating
Green’s functions associated with layered media. A simplified model based on Fast
Fourier Transform (FFT) was developed to calculate the reflection coefficients in
homogeneous layered media [Zhong, Zhang and Wang (2006)]. Demarest, Plumb
and Huang (1995) calculated the reflection and transmission coefficients in a con-
tinuous space by finite difference time domain (FDTD) method. Subsequently, the
FDTD method was developed to simulate TE and TM plane waves propagating in
arbitrary layered media [Winton, Kosmas and Rappaport (2005)]. The GPR propa-
gation model in layered pavement structure was established by Diamanti, Redman
and Giannopoulos (2010) using FDTD.

However, there are still some difficulties when applying these models and methods
to simulate the GPR wave propagation in pavement structure. For example, the
simplified model proposed by Zhong, Zhang and Wang (2006) neglects multiple
reflections of electromagnetic wave in layered media. The transfer matrix method is
possible to cause numerical instability if materials of layered media are dissipative.
The FDTD method is restricted by CFL stability condition, i.e. the maximum time
step available is limited by the minimum element size in space domain. In order
to acquire high precision, large memory size and significant calculation time are
needed.

The precise integration method (PIM) [Zhong (2001)] is a highly accurate and un-
conditionally stable numerical method for solving first-order liner ordinary differ-
ential equations. It can produce numerical results up to the precision of the comput-
er used. The PIM has been successfully applied to solve problems of elastic wave
propagation in stratified materials [Gao, Zhong and Howson (2004); Zhong, Lin
and Gao (2004); Gao, Lin, Zhong, Howson and Williams (2006); Gao, Lin, Zhong,
Howson and Williams (2006)].

In this paper, the Maxwell equations are formulated in the frequency-wavenumber
domain as a set of first-order ordinary differential equations containing variables
being only the horizontal components of the electric and magnetic fields. Then
these equations are solved by PIM with specified two-point boundary value con-
ditions. The performance of the proposed algorithm is verified by comparing the
calculated results and measured signals.
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Figure 1: Profile of the layered pavement structure.

2 Formulation of the governing equations

As shown in Fig. 1, the x-axis and y-axis point to the two orthogonal horizontal
directions of propagation, and the z-axis points vertically upward. The air layer and
the (n+1)th layer are considered as upper and lower infinite space. The incident
source is placed at the surface of ground (z = z0).

Without loss of generality, the lossy media are assumed to be anisotropic in this
paper. Hence, the Maxwell equations in frequency domain take the following form

∇×h = iωεεε
′ · e (1)

∇× e =−iωµµµ ·h (2)

where e and h are the electric and magnetic field vectors; ε ′ = ε − iσ
/

ω repre-
sents the complex permittivity tensor; ε , µ and σ are permittivity, permeability and
conductivity tensors, respectively.

In order to facilitate the matching of boundary conditions at the interface between
two adjacent layers of a layered system, curl operator and field components are
decomposed as follows [Chew (1995)]

∇ = ∇s + ẑ
∂

∂ z
, e = es + ez , h = hs +hz (3)

Then the tensors εεε ′ and µµµ are partitioned as

εεε
′ =

[
εεε
′
s εεε

′
sz

εεε
′
zs εεε

′
zz

]
µµµ =

[
µµµs µµµsz
µµµzs µµµzz

]
(4)
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where the subscript s and z denote the horizontal component and vertical compo-
nent, respectively. Moreover, εεε

′
s is a 2×2 matrix, εεε

′
sz is a 2×1 matrix, εεε

′
zs is a 1×2

matrix, and εεε
′
zz is a 1×1 matrix. Similar decomposition holds for µµµ .

Substituting Eq. (3) and Eq. (4) into Eq. (1) and Eq. (2) and removing hz and ez by
expressing them in terms of hs and es, we have

∂

∂ z
es =[(−ẑ×

µµµsz

µµµzz
∇s×)− (ẑ×∇s×

εεε
′
zs

εεε
′
zz
·)]es

+[(iω ẑ×µs·)− (iω ẑ×
µµµsz ·µµµzs

µµµzz
·)+(ẑ×∇s×

1
iωε

′
zz

∇s×)]hs

(5)

∂

∂ z
hs =[(−iω ẑ× εεε

′
s·)+(iω ẑ×

εεε
′
sz · εεε

′
zs

εεε
′
zz
·)− (ẑ×∇s×

1
iωµµµzz

∇s×)]es

+[(−ẑ×
εεε
′
sz

εεε
′
zz

∇s×)− (ẑ×∇s×
µµµzs

µµµzz
)]hs

(6)

Moreover, by assuming that the horizontal components of the electric and magnetic
field vectors have exp(iks ·r) dependence in the horizontal direction for all z, es and
hs can be expressed as

es(r,ω) = es(z,ω) · exp(iks · rs) = es(z,ω) · exp[i(kx · x+ ky · y)] (7)

hs(r,ω) = hs(z,ω) · exp(iks · rs) = hs(z,ω) · exp[i(kx · x+ ky · y)] (8)

Substituting Eq. (7) and Eq. (8) into Eq. (5) and Eq. (6), the governing equa-
tions can be written in a matrix form as a state equation in frequency-wavenumber
domain.[

e′s
h′s

]
=

[
H11 H12
H21 H22

]
·
[

es

hs

]
(9)

where e′s = des

/
dz; h′s = dhs

/
dz; es=(ex,ey); hs=(hx,hy). H11,H12,H21 and H22

are all 2×2 matrices derivable from Eq. (5) and Eq. (6), and the matrices elements
are shown in Appendix. To simplify the nomenclature, the subscript s is omitted
hereafter.

Equation (9) can be rewritten as

v′ = H ·v (10)

where v = (ex,ey,hx,hy)
T is a four-component column vector, and H is a 4×4

matrix.
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The sources are taken as input of electric and magnetic field components at the sur-
face of the layered system (see Fig. 1), and then the following boundary conditions
are applied.

e(kx,ky,ω,z+0 )+ em(kx,ky,ω) = e(kx,ky,ω,z−0 )
h(kx,ky,ω,z+0 )+hm(kx,ky,ω) = h(kx,ky,ω,z−0 )

(11)

where em and hm are the input of electric and magnetic field components, i.e. the
incident source in frequency-wavenumber domain. z+0 and z−0 represent the upper
and lower faces of the interface z0, respectively.

The governing equations should also satisfy the radiation condition in the semi-
infinite space.

The state equation in air layer is expressed as

v̇0 = H ·v0 (12)

Hence if T0 and ΛΛΛ0 are the eigenvector and eigenvalue matrices of matrix H, then

v̇0 = T0ΛΛΛ0T−1
0 v0 (13)

where T0 and ΛΛΛ0 are all 4×4 matrices, i.e.

ΛΛΛ0 = diag(λ1,λ2,λ3,λ4) (14)

T0 = (α1,α2,α3,α4) (15)

in which λi(i = 1,2,3,4)is the i-th eigenvalue and αi is the eigenvector correspond-
ing to λi. These eigenvalues and eigenvectors are arranged such that the first two
elements of (14) correspond to the upward waves while the last two elements cor-
respond to downward waves.

By letting b0(z) = T−1
0 v0(z), Eq. (13) can be rewritten as follow

ḃ0 = ΛΛΛ0b0 (16)

The solution of Eq. (16) is

b0(z) = exp [ΛΛΛ0(z− z0)] ·b0(z0) z > z0 (17)

where b0(z0) is a 4×1 vector, the first two components of which represent upwards
traveling waves and the other two elements represent waves going downward in the
semi-infinite space. The radiation condition requires that no downward traveling
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waves exist in the upper semi-infinite space, i.e. the last two elements of b0(z0)
must be zero. Therefore,

v+0 =

[
Tuu Tud
Tdu Tdd

]{
bu

0

}
(18)

e+0 = Tuu ·bu , h+
0 = Tdu ·bu

h+
0 = Tdu ·T−1

uu · e+0 = Rue+0 , Ru = Tdu ·T−1
uu (19)

where the subscript 0 represents the field value at z0, Tuu, Tud , Tdu and Tdd are all
2×2 matrices and can be obtained by partitioning matrix T. Therefore, Eq. (19) is
the radiation condition for the upper semi-infinite space.

Analogously, the solution of the state equation in the lower semi-infinite space, i.e.
the (n+1)th layer, may also be expressed as

bn+1(z) = exp [ΛΛΛn(zn− z)] ·bn(zn) z < zn (20)

The radiation condition requires that no upper traveling waves exist in the lower
semi-infinite space, i.e. the first two elements of bn(zn) must be zero. Therefore,

v−n =

[
Tuu Tud
Tdu Tdd

]{
0

bd

}
(21)

e−n = Tud ·bd , h−n = Tdd ·bd

h−n = Tdd ·T−1
ud · e

−
n = Rde−n , Rd = Tdd ·T−1

ud (22)

Thus, Eq. (22) is the radiation condition for the lower semi-infinite space.

The continuous conditions at the interfaces between two adjacent layers are

e(z = z+i ) = e(z = z−i ),h(z = z+i ) = h(z = z−i ) (i = 1,2, · · · ,n) (23)

3 The precise integration method for solving two-point boundary value prob-
lem

The transfer matrix method is usually employed in solving the Eq. (10) for layered
case. Select an interval [Za,Zb] within an arbitrary layer. The relationship of the
field values at two ends of the interval can be expressed as

vb = exp(Hba · (zb− za)) ·va = Pb(zb,za) ·va (24)

where va and vb represent the field values at za and zb, respectively. The matrix P is
also known as the transfer matrix, relating the state vectors that describe the fields
at two different locations za and zb.
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Then the transfer matrix of the global interval [z0,zn] can be obtained by

vn = Pn(zn,zn−1) ·vn−1

= Pn(zn,zn−1) ·Pn-1(zn−1,zn−2) ·vn−2 = · · ·=
n

∏
i=1

Pi(zi,zi−1) ·v0
(25)

However if media are lossy, Eq. (25) implies that the matrix P may have expo-
nentially large terms as well as exponentially small terms. The existence of these
exponentially large terms could make the method unstable. Alternatively, the pre-
cise integration approach is proposed.

In fact, for linear systems, the following relations of the field values at the two ends
of arbitrary interval [za,zb] stand

eb = Fea−Ghb (26)

ha = Qea +Ehb (27)

where E, F, G and Q are all 2×2 complex matrices to be determined, which are
only depending on za and zb.

In order to obtain exact expressions of matrices E, F, G and Q, in the PIM, the
thickness of a typical layer hr = zr− zr−1 (r = 1,2, · · ·n+1) is firstly divided in-
to 2N1(N1 = 6in this paper) sub-layers of equal thickness; then, each sub-layer is
further divided into 2N2(N2 = 20 in this paper) mini-layers with equal thickness τ .
Since τ of the such interval (mini-layer) is extremely small, the associated matrices
E, F, G and Q can be found in terms of Taylor’s series expansion. With increas-
ing terms of Taylor’s expansion or powers of τ , any desired accuracy of the results
can be reached. In this paper, four terms expansion of Taylor’s series is considered
sufficiently. As all intervals have equal thickness and identical material constants,
combination of intervals can be performed easily. For each round, two adjacen-
t intervals are combined together, and each pass of combinations can reduce the
number of total intervals by a half. In the following paragraphs, formula for combi-
nation of the adjacent intervals and calculation of matrices E, F, G and Q for initial
interval are derived.

3.1 The differential equations of matrices E, F, G and Q

Differentiating Eq. (26) and Eq. (27) with respect to Zb yields

e
′
b = F

′
ea−G

′
hb−Gh

′
b (28)

0 = Q
′
ea +E

′
hb +Eh

′
b (29)
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At zb, Eq. (9) can be written as

e
′
b = H11eb +H12hb (30)

h
′
b = H21eb +H22hb (31)

Combining Eq. (26)-Eq. (31), one obtains

(F
′−H11F−GH21F)ea +(−G

′−H12−GH22 +H11G+GH21G)hb = 0 (32)

(Q
′
+EH21F)ea +(−EH21G+E

′
+EH22)hb = 0 (33)

Note that the vectors ea and hb are mutually independent, which leads to

F′ = H11F+GH21F
E′ = EH21G−EH22

G′
=−H12−GH22 +H11G+GH21G

Q′
=−EH21F

(34)

The boundary conditions for these equations are derived by letting za approach zb.

G(za,zb) = Q(za,zb) = 0
F(za,zb) = E(za,zb) = I (35)

Equation (34) defines the differential equations for matrices E, F, G and Q of the
interval [za,zb].

3.2 The combination of adjacent intervals

Applying Eq. (26) and Eq. (27) to two adjacent intervals[za,zb]and[zb,zc]gives

eb = F1ea−G1hb (36)

ha = Q1ea +E1hb (37)

ec = F2eb−G2hc (38)

hb = Q2eb +E2hc (39)

Using Eq. (26) and Eq. (27) to the combined interval [za,zc] yields

ec = Fcea−Gchc (40)

ha = Qcea +Echc (41)

Substituting Eq. (39) into Eq. (36) leads to

eb = (I+G1Q2)
−1F1ea− (G−1

1 +Q2)
−1E2hc (42)
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Using Eq. (36) and Eq. (39), hb is solved as

hb = (Q−1
2 +G1)

−1F1ea− (I+Q2G1)
−1E2hc (43)

Substituting Eq. (39) and Eq. (42) into Eq. (37) and Eq. (40) leads to

ec = F2(I+G1Q2)
−1F1ea− [G2 +F2(G−1

1 +Q2)
−1E2]hc

ha = [Q1 +E1(Q−1
2 +G1)

−1F]ea +E1(I+Q2G1)
−1E2hc

(44)

Comparing Eq. (40) and Eq. (41) with Eq. (44) gives the combined matrices with
subscriptc.

Fc = F2(I+G1Q2)
−1F1

Gc = G2 +F2(G−1
1 +Q2)

−1E2

Qc = Q1 +E1(Q−1
2 +G1)

−1F
Ec = E1(I+Q2G1)

−1E2

(45)

3.3 Calculation of initial interval matrices

Four terms expansion of Taylor’s series is assumed for the matrices of initial mini-
layer.

Q(τ) = θ1τ +θ2τ2 +θ3τ3 +θ4τ4

G(τ) = γ1τ + γ2τ2 + γ3τ3 + γ4τ4

F′(τ) = φ1τ +φ2τ2 +φ3τ3 +φ4τ4 , F(τ) = I+F′(τ)
E′(τ) = ψ1τ +ψ2τ2 +ψ3τ3 +ψ4τ4 , E(τ) = I+E′(τ)

(46)

where θθθ i, γγγ i, φφφ i, ψψψ i(i = 1,2,3,4) are all 2×2 complex matrices, and I is a 2×2 unit
matrix.

Substituting Eq. (46) into Eq. (34) and comparing coefficients of each power term
of τ , we have

θ1 =−H21,γ1 =−H12,φ1 = H11,ψ1 =−H22

θ2 =−(ψ1H21 +H21φ1)/2, γ2 = (H11γ1− γ1H22)/2

φ2 = (H11φ1 + γ1H21)/2, ψ2 = (H21γ1−ψ1H22)/2

θ3 =−(ψ2H21 +H21φ2 +ψ1H21φ1)/3, γ3 = (H11γ2− γ2H22 + γ1H21γ1)/3

φ3 = (H11φ2 + γ2H21 + γ1H21φ1)/3, ψ3 = (H21γ2 +ψ1H21γ1−ψ2H22)/3

(47)
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θ4 =−(ψ3H21 +H21φ3 +ψ2H21φ1 +ψ1H21φ2)/4

γ4 = (H11γ3− γ3H22 + γ2H21γ1 + γ1H21γ2)/4

φ4 = (H11φ3 + γ3H21 + γ2H21φ1 + γ1H21φ2)/4

ψ4 = (H21γ3 +ψ1H21γ2 +ψ2H21γ1−ψ3H22)/4

Note that E(τ) = I+E′(τ) and F(τ) = I+F′(τ), in which E′(τ) and F′(τ) are
very small in the mini-layer because τ is extremely small. E′(τ) and F′(τ) must be
computed and stored independently to avoid loss of the effective digits. Therefore,
Eq. (45) is necessary to be replaced by

F
′
c = (F

′−GQ/2)(I+GQ)−1 +(I+GQ)−1(F
′−GQ/2)+F

′
(I+GQ)−1F

′

E
′
c = (E

′−GQ/2)(I+GQ)−1 +(I+GQ)−1(F
′−GQ/2)+E

′
(I+GQ)−1E

′
(48)

Gc = G+(I+F
′
)(G−1 +Q)−1(I+E

′
)

Qc = Q+(I+E
′
)(Q−1 +G1)

−1(I+F
′
)

So far, matrices Ei, Fi, Gi and Qi(i = 1,2, · · · ,n+ 1) have been obtained for all
layers. Ec, Fc, Gc and Qc of the whole domain

[
z−0 ,z

+
n
]

are combined using Eq.
(45) analogously.

Substituting the matrices Ec, Fc, Gc and Qc into Eq. (26) and Eq. (27), the dual
equations of the domain

[
z−0 ,z

+
n
]

are obtained.

e+n = Fc · e−0 −Gc ·h+
n (49)

h−0 = Qc · e−0 +Ec ·h+
n (50)

Considering the input source (11) and the corresponding boundary conditions (19)
and (22), the above equations can be written as

e+n = Fc · e+0 −Gc ·Rd · e+n +Fc · em (51)

Ru · e+0 = Qc · e+0 +Ec ·Rd · e+n +Qc · em−hm (52)

Equations (51) and (52) are the algebraic equations for the evaluation of reflected
signals e+0 and transmission signals e+n subjected to the incident signal em in the
frequency domain.

Time domain analysis of e+0 (t) and e+n (t) can be carried out with the aid of Fast
Fourier Transform and Inverse Fast Fourier Transform.
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4 Numerical examples

Performance of the proposed approach is checked by numerical examples. In the
first example the analytical solutions are available. Calculated results of the reflec-
tion and transmission coefficients are compared with the results obtained by the
analytical means. In the second example, a real time history of input and reflected
signal collected at the field are used as the reference to asses the suitability of the
model to simulate the multi-layered pavement structure.

Example 1. Reflection and transmission coefficients from a two-layer model

 

Figure 2: Plane wave reflected and transmitted from a two-layer model.

As shown in Fig. 2, a uniform plane wave is incident upon an isotropic two-layer
model in the x− z plane alone. Material electric constants are also specified in the
figure, where ε , σ and µ denote permittivity, conductivity and permeability of the
media, respectively. It is well known that any plane wave can be decomposed into
TE and TM waves in the isotropic media. Therefore, the Eq. (9) can be divided
into two groups as shown below:

TE waves:
[

e′x
h′y

]
=

[
H11(1,1) H12(1,2)
H21(2,1) H22(2,2)

]
·
[

ex

hy

]
(53)

TM waves:
[

e′y
h′x

]
=

[
H11(2,2) H12(2,1)
H21(1,2) H22(1,1)

]
·
[

ey

hx

]
(54)
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For the TM waves, the incident wave can be represented by

em(x,z) = einc exp(ik0zcosθ − ik0xsinθ)

hm(z) = hinc exp(ik0z)
(55)

where einc and hinc are amplitudes of the incident waves and θ is the angle of the
incidence depicted in Fig. 2. Obviously, to ensure the continuity at the interfaces
perpendicular to the z-axis, the total field must have a common factor eince−ik0xsinθ .
As a result, the matrix H of Eq. (54) can be simplified as

H12(2,1) = iωµ, H21(1,2) =−k2
0 sin2

θ/iωµ + iωε
′
,

H11(2,2) = 0, H22(1,1) = 0

Consequently, the reflection and transmission coefficients are defined as

R = e+0
/

em, T = e+n
/

em (56)

The calculated reflection and transmission coefficients for incident wave with fre-
quencies ω = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5GHz at normal incidence (θ = 0◦) are
summarized in Table 1 and Table 2, respectively.

Table 1: Reflection coefficients from a two-layer model.

Frequency Real part Imaginary part
(GHz) Analytical PIM Analytical PIM

0.1 -0.742372 -0.742372 0.206031 0.206031
0.5 -0.441921 -0.441921 -0.032539 -0.032539
1 -0.637720 -0.637720 0.082940 0.082940

1.5 -0.499626 -0.499626 -0.095464 -0.095464
2 -0.586934 -0.586934 0.113660 0.113660

2.5 -0.571497 -0.571497 -0.103555 -0.103555

As shown in Table 1 and Table 2, the numerical results obtained by proposed PIM
are identical with those obtained by analytical solutions up to six effective digits.

Example 2. An actual field test

An input signal was collected on a highway site in Henan Province of China gen-
erated by an air-coupled surface-radar operated at 1GHz center frequency. The
designed geometry of the profile of highway is shown in Table 3. The GPR in-
cident signal was recovered by placing a sufficiently large metal plate under the
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Table 2: Transmission coefficients from a two-layer model.

Frequency Real part Imaginary part
(GHz) Analytical PIM Analytical PIM

0.1 0.213792 0.213792 0.036695 0.036695
0.5 -0.031594 -0.031594 -0.312797 -0.312797
1.0 -0.269328 -0.269328 0.055547 0.055547
1.5 0.154807 0.154807 0.264752 0.264752
2.0 0.248257 0.248257 -0.146309 -0.146310
2.5 -0.223299 -0.223299 -0.186107 -0.186107

antenna. Fig. 3 depicts the GPR incident pulse, which the coupling pulse has been
removed and then multiplied by -1 (the reflection coefficient of metal). Subsequent-
ly, frequency domain versions of the incident signalemare obtained via Fast Fourier
Transform (FFT).

Table 3: The designed geometry of the profile of a fourlayer pavement structure.

Layer Material Thickness(m)
1 Surface asphalt concrete 0.2

2 Base cement stabilized macadam 0.2
3 Subbase lime soil 0.35
4 Subgrade soil semi-infinite

 

Figure 3: Time history of GPR incident wave.
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It is well known that material electric constants of such multi-layered pavement
structure can be predicted by inverse analysis based on forward model. For this
case, the pavement materials are modeled as homogeneous and nonmagnetic, and
system identification back-calculation [Zhong, Wang, Zhang and Cai (2004)] com-
bined with PIM forward simulation scheme is suggested for the evaluation of the
electric constants of the pavement materials (shown in Fig. 4).

 

  

 

Pavement 

Objective function 

Model 

System identification 

Incident wave Measured signal 

N
o
 

Yes 
Output 

Parametric update 
Numerical signal 

Figure 4: The basic principle of system identification inverse analysis.

Predicted results of electric constants of the pavement materials are collected in
Table 4. Fig. 5 shows comparison between the simulated waveform by PIM and
signal measured by GPR in the field.

Table 4: Predicted electric constants of fourlayer pavement structure.

Layer Permittivity(F/m) Conductivity(S/m)
1 6.5 ε0 0.01
2 10.5 ε0 0.02
3 13.0 ε0 0.05
4 30.0 ε0 0.05

As can be observed in Fig. 5, simulated waveform fits well with the measured
signal in many aspects, such as the peak amplitude and time delay, etc.

In order to verify the efficiency of the PIM, the computer time consumed by PIM
and that by one-dimensional FDTD scheme with the 1-order Mur absorbing bound-
ary condition are compared [Sullivan (2000)]. In FDTD scheme, the time step and
spatial cell size are chosen as 5×10−12s and 5×10−3m. For one round computa-
tion of wave propagation from the instant of input to that of reflection at the surface
of the pavement, the computer time needed for PIM herein and that consumed by
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FDTD method are 0.09375s and 0.14063s to reach the same level of accuracy, re-
spectively. The PIM approach can save computer time considerably.

 

Figure 5: Comparison between the reflected waveform simulated by PIM and that
measured by GPR in the field.

5 Conclusion

This paper presents theory and numerical solution procedure for modeling GPR
wave propagation in layered pavement structure. The precise integration scheme
with two-point boundary value conditions is proposed to solve the governing equa-
tions formulated as the 1-order ordinary differential equations. The PIM has the
advantage that any desired accuracy can be achieved, because its precision is only
limited by the precision of the computer used. Numerical examples are provided
to verify the efficiency and accuracy of the proposed approach. If the input and re-
flected radar wave signals are collected in the field, the material electric constants
of the multi-layered pavement structure can be predicted by inverse analysis.
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Appendix

Matrices elements of H11, H12, H21 and H22

H11(1,1) =−ikxε
′
zx

/
ε
′
zz− ikyµyz

/
µzz

H11(1,2) =−ikxε
′
zy

/
ε
′
zz + ikxµyz

/
µzz

H11(2,1) =−ikyε
′
zx

/
ε
′
zz + ikyµxz

/
µzz

H11(2,2) =−ikyε
′
zy

/
ε
′
zz− ikxµxz

/
µzz

H12(1,1) = kxky

/
iωε

′
zz− iωµyx + iωµyzµzx

/
µzz

H12(1,2) =−kxkx

/
iωε

′
zz− iωµyy + iωµyzµzy

/
µzz

H12(2,1) = kyky

/
iωε

′
zz + iωµxx− iωµxzµzx

/
µzz

H12(2,2) =−kykx

/
iωε

′
zz + iωµxy− iωµxzµzy

/
µzz
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H21(1,1) =−kxky
/

iωµzz + iωε
′
yx− iωε

′
yzε

′
zx

/
ε
′
zz

H21(1,2) = kxkx
/

iωµzz + iωε
′
yy− iωε

′
yzε

′
zy

/
ε
′
zz

H21(2,1) =−kyky
/

iωµzz− iωε
′
xx + iωε

′
xzε

′
zx

/
ε
′
zz

H21(2,2) = kykx
/

iωµzz− iωε
′
xy + iωε

′
xzε

′
zy

/
ε
′
zz

H22(1,1) =−ikyε
′
yz

/
ε
′
zz− ikxµzx

/
µzz

H22(1,2) = ikxε
′
yz

/
ε
′
zz− ikxµzy

/
µzz

H22(2,1) = ikyε
′
xz

/
ε
′
zz− ikyµzx

/
µzz

H22(2,2) =−ikxε
′
xz

/
ε
′
zz− ikyµzy

/
µzz


