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Double Optimal Regularization Algorithms for Solving
Ill-Posed Linear Problems under Large Noise

Chein-Shan Liu1, Satya N. Atluri2

Abstract: A double optimal solution of an n-dimensional system of linear equa-
tions Ax = b has been derived in an affine m-dimensional Krylov subspace with
m� n. We further develop a double optimal iterative algorithm (DOIA), with the
descent direction z being solved from the residual equation Az = r0 by using its
double optimal solution, to solve ill-posed linear problem under large noise. The
DOIA is proven to be absolutely convergent step-by-step with the square resid-
ual error ‖r‖2 = ‖b−Ax‖2 being reduced by a positive quantity ‖Azk‖2 at each
iteration step, which is found to be better than those algorithms based on the min-
imization of the square residual error in an m-dimensional Krylov subspace. In
order to tackle the ill-posed linear problem under a large noise, we also propose
a novel double optimal regularization algorithm (DORA) to solve it, which is an
improvement of the Tikhonov regularization method. Some numerical tests reveal
the high performance of DOIA and DORA against large noise. These methods are
of use in the ill-posed problems of structural health-monitoring.

Keywords: Ill-posed linear equations system, Double optimal solution, Affine
Krylov subspace, Double optimal iterative algorithm, Double optimal regulariza-
tion algorithm.

1 Introduction

A double optimal solution of a linear equations system has been derived in an affine
Krylov subspace by Liu (2014a). The Krylov subspace methods are among the
most widely used iterative algorithms for solving systems of linear equations [Don-
garra and Sullivan (2000); Freund and Nachtigal (1991); Liu (2013a); Saad (1981);
van Den Eshof and Sleijpen (2004)]. The iterative algorithms that are applied to
solve large scale linear systems are likely to be the preconditioned Krylov subspace

1 Department of Civil Engineering, National Taiwan University, Taipei, Taiwan. E-mail: li-
ucs@ntu.edu.tw

2 Center for Aerospace Research & Education, University of California, Irvine.



2 Copyright © 2015 Tech Science Press CMES, vol.104, no.1, pp.1-39, 2015

methods [Simoncini and Szyld (2007)]. Since the pioneering works of Hestenes
(1952) and Lanczos (1952), the Krylov subspace methods have been further stud-
ied, like the minimum residual algorithm [Paige and Saunders (1975)], the general-
ized minimal residual method (GMRES) [Saad (1981); Saad and Schultz (1986)],
the quasi-minimal residual method [Freund and Nachtigal (1991)], the biconju-
gate gradient method [Fletcher (1976)], the conjugate gradient squared method
[Sonneveld (1989)], and the biconjugate gradient stabilized method [van der Vorst
(1992)]. There are a lot of discussions on the Krylov subspace methods in Si-
moncini and Szyld (2007), Saad and van der Vorst (2000), Saad (2003), and van der
Vorst (2003). The iterative method GMRES and several implementations for the
GMRES were assessed for solving ill-posed linear systems by Matinfar, Zareamoghad-
dam, Eslami and Saeidy (2012). On the other hand, the Arnoldi’s full orthogonal-
ization method (FOM) is also an effective and useful algorithm to solve a system
of linear equations [Saad (2003)].

Based on two minimization techniques being realized in an affine Krylov subspace,
Liu (2014a) has recently developed a new theory to find a double optimal solution
of the following linear equations system:

Ax = b, (1)

where x ∈ Rn is an unknown vector, to be determined from a given non-singular
coefficient matrix A ∈ Rn×n, and the input vector b ∈ Rn. For the existence of
solution x we suppose that rank(A) = n.

Sometimes the above equation is obtained via an n-dimensional discretization of a
bounded linear operator equation under a noisy input. We only look for a gener-
alized solution x = A†b, where A† is a pseudo-inverse of A in the Penrose sense.
When A is severely ill-posed and the data are disturbanced by random noise, the
numerical solution of Eq. (1) might deviate from the exact one. If we only know
the perturbed input data bδ ∈Rn with ‖b−bδ‖≤ δ , and if the problem is ill-posed,
i.e., the range(A) is not closed or equivalently A† is unbounded, we have to solve
Eq. (1) by a regularization method [Daubechies and Defrise (2004)].

Given an initial guess x0, from Eq. (1) we have an initial residual:

r0 = b−Ax0. (2)

Upon letting

z = x−x0, (3)

Eq. (1) is equivalent to

Az = r0, (4)
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which can be used to search the Newton descent direction z after giving an initial
residual r0 [Liu (2012a)]. Therefore, Eq. (4) may be called the residual equation.

Liu (2012b, 2013b, 2013c) has proposed the following merit function:

min
z

{
a0 =

‖r0‖2‖Az‖2

[r0 · (Az)]2

}
, (5)

and minimized it to obtain a fast descent direction z in the iterative solution of
Eq. (1) in a two- or three-dimensional subspace.

Suppose that we have an m-dimensional Krylov subspace generated by the coeffi-
cient matrix A from the right-hand side vector r0 in Eq. (4):

Km := span{r0,Ar0, . . . ,Am−1r0}. (6)

Let Lm = AKm. The idea of GMRES is using the Galerkin method to search the
solution z ∈Km, such that the residual r0−Az is perpendicular to Lm [Saad and
Schultz (1986)]. It can be shown that the solution z ∈Km minimizes the residual
[Saad (2003)]:

min
z
{‖r0−Az‖2 = ‖b−Ax‖2}. (7)

The Arnoldi process is used to normalize and orthogonalize the Krylov vectors
A jr0, j = 0, . . . ,m− 1, such that the resultant vectors ui, i = 1, . . . ,m satisfy ui ·
u j = δi j, i, j = 1, . . . ,m, where δi j is the Kronecker delta symbol.

The FOM used to solve Eq. (1) can be summarized as follows [Saad (2003)].
(i) Select m and give an initial x0.
(ii) For k = 0,1, . . ., we repeat the following computations:

rk = b−Axk,

Arnoldi procedure to set up uk
j, j = 1, . . . ,m, (from uk

1 = rk/‖rk‖),
Uk = [uk

1, . . . ,u
k
m],

Vk = AUk,

Solve (UT
k Vk)αk = UT

k rk, obtaining αk,

zk = Ukαk,

xk+1 = xk + zk.

(8)

If xk+1 converges according to a given stopping criterion ‖rk+1‖< ε , then stop; oth-
erwise, go to step (ii). Uk and Vk are both n×m matrices. In above, the superscript
T signifies the transpose.
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The GMRES used to solve Eq. (1) can be summarized as follows [Saad (2003)].
(i) Select m and give an initial x0.
(ii) For k = 0,1, . . ., we repeat the following computations:

rk = b−Axk,

Arnoldi procedure to set up uk
j, j = 1, . . . ,m, (from uk

1 = rk/‖rk‖),
Uk = [uk

1, . . . ,u
k
m],

Solve (H̄T
k H̄k)αk = ‖rk‖H̄T

k e1, obtaining αk,

zk = Ukαk,

xk+1 = xk + zk.

(9)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii). Uk is an n×m Krylov matrix, while H̄k is an augmented
Heissenberg upper triangular matrix with (m+1)×m, and e1 is the first column of
Im+1.

So far, there are only a few works in Liu (2013d, 2014b, 2014c, 2015) that the nu-
merical methods to solve Eq. (1) are based on the two minimizations in Eqs. (5) and
(7). As a continuation of these works, we will employ an affine Krylov subspace
method to derive a closed-form double optimal solution z of the residual Eq. (4),
which is used in the iterative algorithm for solving the ill-posed linear system (1)
by x = x0 + z.

The remaining parts of this paper are arranged as follows. In Section 2 we start
from an affine m-dimensional Krylov subspace to expand the solution of the resid-
ual Eq. (4) with m+ 1 coefficients to be obtained in Section 3, where two merit
functions are proposed for the determination of the m+ 1 expansion coefficients.
We can derive a closed-form double optimal solution of the residual Eq. (4). The
resulting algorithm, namely the double optimal iterative algorithm (DOIA), based
on the idea of double optimal solution is developed in Section 4, which is proven to
be absolutely convergent with the square residual norm being reduced by a positive
quantity ‖Axk−Ax0‖2 at each iteration step. In order to solve the ill-posed linear
problem under a large noise, we derive a double optimal regularization algorithm
(DORA) in Section 5. The examples of linear inverse problems solved by the FOM,
GMRES, DOIA and DORA are compared in Section 6, of which some advantages
of the DOIA and DORA to solve Eq. (1) under a large noise are displayed. Finally,
we conclude this study in Section 7.
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2 An affine Krylov subspace method

For Eq. (4), by using the Cayley-Hamilton theorem we can expand A−1 by

A−1 =
c1

c0
In +

c2

c0
A+

c3

c0
A2 + . . .+

cn−1

c0
An−2 +

1
c0

An−1, (10)

and hence, the solution z is given by

z = A−1r0 =

[
c1

c0
In +

c2

c0
A+

c3

c0
A2 + . . .+

cn−1

c0
An−2 +

1
c0

An−1
]

r0, (11)

where the coefficients c0,c1, . . . ,cn−1 are those that appear in the characteristic
equation for A: λ n+cn−1λ n−1+ . . .+c2λ 2+c1λ−c0 = 0. Here, c0 =−det(A) 6= 0
due to the fact that rank(A) = n. In practice, the above process to find the exact
solution of z is quite difficult, since the coefficients c j, j = 0,1, . . . ,n−1 are hard
to find when the problem dimension n is very large.

Instead of the m-dimensional Krylov subspace in Eq. (6), we consider an affine
Krylov subspace generated by the following processes. First we introduce an m-
dimensional Krylov subspace generated by the coefficient matrix A from Km:

Lm := span{Ar0, . . . ,Amr0}= AKm. (12)

Then, the Arnoldi process is used to normalize and orthogonalize the Krylov vec-
tors A jr0, j = 1, . . . ,m, such that the resultant vectors ui, i = 1, . . . ,m satisfy
ui ·u j = δi j, i, j = 1, . . . ,m.

While in the FOM, z is searched such that the square residual error of r0−Az in
Eq. (7) is minimized, in the GMRES, z is searched such that the residual vector r0−
Az is orthogonal to Lm [Saad and Schultz (1986)]. In this paper we seek a different
and better z, than those in Eqs. (8) and (9), with a more fundamental method by
expanding the solution z of Eq. (4) in the following affine Krylov subspace:

K ′
m = span{r0,Lm}= span{r0,AKm}, (13)

that is,

z = α0r0 +
m

∑
k=1

αkuk ∈K ′
m. (14)

It is motivated by Eq. (11), and is to be determined as a double optimal combination
of r0 and the m-vector uk, k = 1, . . . ,m in an affine Krylov subspace, of which the
coefficients α0 and αk are determined in Section 3.2. For finding the solution z in a
smaller subspace we suppose that m� n.
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Let

U := [u1, . . . ,um] (15)

be an n×m matrix with its jth column being the vector u j, which is specified below
Eq. (12). The dimension m is selected such that u1, . . . ,um are linearly independent
vectors, which renders rank(U) = m, and UTU = Im. Now, Eq. (14) can be written
as

z = z0 +Uα, (16)

where

z0 = α0r0, (17)

α := (α1, . . . ,αm)
T. (18)

Below we will introduce two merit functions, whose minimizations determine the
coefficients (α0,α) uniquely.

3 A double optimal descent direction

3.1 Two merit functions

Let

y := Az, (19)

and we attempt to establish a merit function, such that its minimization leads to the
best fit of y to r0, because Az = r0 is the residual equation we want to solve.

The orthogonal projection of r0 to y is regarded as an approximation of r0 by y
with the following error vector:

e := r0−
(

r0,
y
‖y‖

)
y
‖y‖

, (20)

where the parenthesis denotes the inner product. The best approximation can be
found by y minimizing the square norm of e:

min
y

{
‖e‖2 = ‖r0‖2− (r0 ·y)2

‖y‖2

}
, (21)

or maximizing the square orthogonal projection of r0 to y:

max
(

r0,
y
‖y‖

)2

= maxy

{
(r0 ·y)2

‖y‖2

}
. (22)
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Let us define the following merit function:

f :=
‖y‖2

(r0 ·y)2 , (23)

which is similar to a0 in Eq. (5) by noting that y = Az. Let J be an n×m matrix:

J := AU, (24)

where U is defined by Eq. (15). Due to the fact that rank(A) = n and rank(U) = m
one has rank(J) = m. Then, Eq. (19) can be written as

y = y0 +Jα, (25)

with the aid of Eq. (16), where

y0 := Az0 = α0Ar0. (26)

Inserting Eq. (25) for y into Eq. (23), we encounter the following minimization
problem:

min
α=(α1,...,αm)T

{
f =

‖y‖2

(r0 ·y)2 =
‖y0 +Jα‖2

(r0 ·y0 + r0 ·Jα)2

}
. (27)

The optimization probelms in Eqs. (21), (22) and (27) are mathematically equiva-
lent.

The minimization problem in Eq. (27) is used to find α; however, for y there still is
an unknown scalar α0 in y0 = α0Ar0. So we can further consider the minimization
problem of the square residual:

min
α0
{‖r‖2 = ‖b−Ax‖2}. (28)

By using Eqs. (2) and (3) we have

b−Ax = b−Ax0−Az = r0−Az, (29)

such that we have the second merit function to be minimized:

min
α0
‖r0−Az‖2. (30)



8 Copyright © 2015 Tech Science Press CMES, vol.104, no.1, pp.1-39, 2015

3.2 Main result

In the above we have introduced two merit functions to determine the expansion
coefficients α j, j = 0,1, . . . ,m. We must emphasize that the two merit functions in
Eqs. (27) and (30) are different, from which, Liu (2014a) has proposed the method
to solve these two optimization problems for Eq. (1). For making this paper rea-
sonably self-content, we repeat some results in Liu (2014a) for the residual Eq. (4),
instead of the original Eq. (1). As a consequence, we can prove the following main
theorem.

Theorem 1: For z∈K ′
m, the double optimal solution of the residual Eq. (4) derived

from the minimizations in Eqs. (27) and (30) is given by

z = Xr0 +α0(r0−XAr0), (31)

where

C = JTJ, D = (JTJ)−1, X = UDJT, E = AX,

α0 =
rT

0 (In−E)Ar0

rT
0 AT(In−E)Ar0

.
(32)

The proof of Theorem 1 is quite complicated and delicate. Before embarking on
the proof of Theorem 1, we need to prove the following two lemmas.

Lemma 1: For z ∈K ′
m, the double optimal solution of Eq. (4) derived from the

minimizations in Eqs. (27) and (30) is given by

z = α0(r0 +λ0Xr0−XAr0), (33)

where C, D, X, and E were defined in Theorem 1, and others are given by

λ0 =
rT

0 AT(In−E)Ar0

rT
0 (In−E)Ar0

,

w = λ0Er0 +Ar0−EAr0,

α0 =
w · r0

‖w‖2 .

(34)

Proof: First with the help of Eq. (25), the terms r0 ·y and ‖y‖2 in Eq. (27) can be
written as

r0 ·y = r0 ·y0 + rT
0 Jα, (35)
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‖y‖2 = ‖y0‖2 +2yT
0 Jα +α

TJTJα. (36)

For the minimization of f we have a necessary condition:

∇α
‖y‖2

(r0 ·y)2 = 0⇒ (r0 ·y)2
∇α‖y‖2−2r0 ·y‖y‖2

∇α (r0 ·y) = 0, (37)

in which ∇α denotes the gradient with respect to α . Thus, we can derive the
following equation to solve α:

r0 ·yy2−2‖y‖2y1 = 0, (38)

where

y1 := ∇α (r0 ·y) = JTr0, (39)

y2 := ∇α‖y‖2 = 2JTy0 +2JTJα. (40)

By letting

C := JTJ, (41)

which is an m×m positive definite matrix because of rank(J) = m, Eqs. (36) and
(40) can be written as

‖y‖2 = ‖y0‖2 +2yT
0 Jα +α

TCα, (42)

y2 = 2JTy0 +2Cα. (43)

From Eq. (38) we can observe that y2 is proportional to y1, written as

y2 =
2‖y‖2

r0 ·y
y1 = 2λy1, (44)

where 2λ is a multiplier to be determined. By cancelling 2y1 on both sides from
the second equality, we have

‖y‖2 = λr0 ·y. (45)

Then, from Eqs. (39), (43) and (44) it follows that

α = λDJTr0−DJTy0, (46)

where

D := C−1 = (JTJ)−1 (47)
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is an m×m positive definite matrix. Inserting Eq. (46) into Eqs. (35) and (42) we
have

r0 ·y = r0 ·y0 +λrT
0 Er0− rT

0 Ey0, (48)

‖y‖2 = λ
2rT

0 Er0 +‖y0‖2−yT
0 Ey0, (49)

where

E := JDJT (50)

is an n×n positive semi-definite matrix. By Eq. (47) it is easy to check

E2 = JDJTJDJT = JDD−1DJT = JDJT = E,

such that E is a projection operator, satisfying

E2 = E. (51)

Now, from Eqs. (45), (48) and (49) we can derive a linear equation:

‖y0‖2−yT
0 Ey0 = λ (r0 ·y0− rT

0 Ey0), (52)

such that λ is given by

λ =
‖y0‖2−yT

0 Ey0

r0 ·y0− rT
0 Ey0

. (53)

Inserting it into Eq. (46), the solution of α is obtained:

α =
‖y0‖2−yT

0 Ey0

r0 ·y0− rT
0 Ey0

DJTr0−DJTy0. (54)

Since y0 = α0Ar0 still includes an unknown scalar α0, we need another equation
to determine α0, and hence, α .

By inserting the above α into Eq. (16) we can obtain

z = z0 +λXr0−Xy0 = α0(r0 +λ0Xr0−XAr0), (55)

where

X := UDJT, (56)

λ0 :=
rT

0 AT(In−E)Ar0

rT
0 (In−E)Ar0

. (57)
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Multiplying Eq. (56) by A and using Eq. (24), then comparing the resultant with
Eq. (50), it immediately follows that

E = AX. (58)

Upon letting

v := r0 +λ0Xr0−XAr0, (59)

z in Eq. (55) can be expressed as

z = α0v, (60)

where α0 can be determined by minimizing the square residual error in Eq. (30).
Inserting Eq. (60) into Eq. (30) we have

‖r0−Az‖2 = ‖r0−α0Av‖2 = α
2
0‖w‖2−2α0w · r0 +‖r0‖2, (61)

where with the aid of Eq. (58) we have

w := Av = Ar0 +λ0Er0−EAr0. (62)

Taking the derivative of Eq. (61) with respect to α0 and equating it to zero we can
obtain

α0 =
w · r0

‖w‖2 . (63)

Hence, z is given by

z = α0v =
w · r0

‖w‖2 v, (64)

of which upon inserting Eq. (59) for v we can obtain Eq. (33). 2

Lemma 2: In Lemma 1, the two parameters α0 and λ0 satisfy the following recip-
rocal relation:

α0λ0 = 1. (65)

Proof: From Eq. (62) it follows that

‖w‖2 = λ
2
0 rT

0 Er0 + rT
0 ATAr0− rT

0 ATEAr0, (66)

r0 ·w = λ0rT
0 Er0 + rT

0 Ar0− rT
0 EAr0, (67)
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where Eq. (51) was used in the first equation. With the aid of Eq. (57), Eq. (67) is
further reduced to

r0 ·w = λ0rT
0 Er0 +

1
λ0

[rT
0 ATAr0− rT

0 ATEAr0]. (68)

Now, after inserting Eq. (68) into Eq. (63) we can obtain

α0λ0‖w‖2 = λ
2
0 rT

0 Er0 + rT
0 ATAr0− rT

0 ATEAr0. (69)

In view of Eq. (66) the right-hand side is just equal to ‖w‖2; hence, Eq. (65) is
obtained readily. 2

Proof of Theorem 1: According to Eq. (65) in Lemma 2, we can rearrange z in
Eq. (55) to that in Eq. (31). Again, due to Eq. (65) in Lemma 2, α0 can be derived
as that in Eq. (32) by taking the reciprocal of λ0 in Eq. (57). This ends the proof of
Theorem 1. 2

Remark 1: At the very beginning we have expanded z in an affine Krylov subspace
as shown in Eq. (14). Why did we not expand z in a Krylov subspace? If we get rid
of the term α0r0 from z in Eq. (14), and expand z in a Krylov subspace, the term y0
in Eq. (26) is zero. As a result, λ in Eq. (53) and α in Eq. (54) cannot be defined.
In summary, we cannot optimize the first merit function (27) in a Krylov subspace,
and as that done in the above we should optimize the first merit function (27) in an
affine Krylov subspace.

Remark 2: Indeed, the optimization of z in the Krylov subspace Km has been done
in the FOM and GMRES, which is the "best descent vector" in that space as shown
in Eq. (7). So it is impossible to find "more best descent vector" in the Krylov
subspace Km. The presented z in Theorem 1 is the "best descent vector" in the
affine Krylov subspace K ′

m. Due to two reasons of the double optimal property of
z and K ′

m being larger than Km, we will prove in Section 4 that the algorithm based
on Theorem 1 is better than the FOM and GMRES. Since the poineering work in
Saad and Schultz (1986), there are many improvements of the GMRES; however,
a qualitatively different improvement is not yet seen in the past literature.

Corollary 1: In the double optimal solution of Eq. (4), if m = n then z is the exact
solution, given by

z = A−1r0. (70)
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Proof: If m = n, then J defined by Eq. (24) is an n× n non-singular matrix, due
to rank(J) = n. Simultaneously, E defined by Eq. (50) is an identity matrix, and
meanwhile Eq. (54) reduces to

α = J−1r0−J−1y0. (71)

Now, by Eqs. (25) and (71) we have

y = y0 +Jα = y0 +J[J−1r0−J−1y0] = r0. (72)

Under this condition we have obtained the closed-form optimal solution of z, by
inserting Eq. (71) into Eq. (16) and using Eqs. (24) and (26):

z = z0 +UJ−1r0−UJ−1y0 = A−1r0 + z0−A−1y0 = A−1r0. (73)

This ends the proof. 2

Inserting y0 = α0Ar0 into Eq. (54) and using Eq. (65) in Lemma 2, we can fully
determine α by

α = α0

[
rT

0 AT(In−E)Ar0

rT
0 (In−E)Ar0

DJTr0−DJTAr0

]
= α0(λ0DJTr0−DJTAr0)

= DJTr0−α0DJTAr0,

(74)

where α0 is defined by Eq. (32) in Theorem 1. It is interesting that if r0 is an
eigenvector of A, λ0 defined by Eq. (57) is the corresponding eigenvalue of A. By
inserting Ar0 = λr0 into Eq. (57), λ0 = λ follows immediately.

Remark 3: Upon comparing the above α with those used in the FOM and GMRES
as shown in Eq. (8) and Eq. (9), respectively, we have an extra term −α0DJTAr0.
Moreover, for z, in addition to the common term Uα as those used in the FOM and
GMRES, we have an extra term α0r0 as shown by Eq. (31) in Theorem 1. Thus,
for the descent vector z we have totally two extra terms α0(r0−XAr0) than those
used in the FOM and GMRES. If we take α0 = 0 the two new extra terms disappear.

3.3 The estimation of residual error

About the residual errors of Eqs. (1) and (4) we can prove the following relations.
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Theorem 2: Under the double optimal solution of z ∈K ′
m given in Theorem 1, the

residual errors of Eqs. (1) and (4) have the following relations:

‖r0−Az‖2 = ‖r0‖2− rT
0 Er0−

[rT
0 (In−E)Ar0]

2

rT
0 AT(In−E)Ar0

, (75)

‖r0−Az‖2 < ‖r0‖2. (76)

Proof: Let us investigate the error of the residual equation (4):

‖r0−Az‖2 = ‖r0−y‖2 = ‖r0‖2−2r0 ·y+‖y‖2, (77)

where

y = Az = α0Ar0−α0EAr0 +Er0. (78)

is obtained from Eq. (31) by using Eqs. (19) and (58).

From Eq. (78) it follows that

‖y‖2 = α
2
0 (r

T
0 ATAr0− rT

0 ATEAr0)+ rT
0 Er0, (79)

r0 ·y = α0rT
0 Ar0−α0rT

0 EAr0 + rT
0 Er0, (80)

where Eq. (51) was used in the first equation. Then, inserting the above two equa-
tions into Eq. (77) we have

‖r0−Az‖2=α
2
0 (r

T
0 ATAr0−rT

0 ATEAr0)+2α0(rT
0 EAr0−rT

0 Ar0)+‖r0‖2−rT
0 Er0.

(81)

Consequently, inserting Eq. (32) for α0 into the above equation, yields Eq. (75).
Since both E and In−E are projection operators, we have

rT
0 Er0 > 0,

rT
0 AT(In−E)Ar0 > 0.

(82)

Then, according to Eqs. (75) and (82) we can derive Eq. (76). 2

3.4 Two merit functions are the same

In Section 3.1, the first merit function is used to adjust the orientation of y by best
approaching to the orientation of r0, which is however disregarding the length of y.
Then, in the second merit function, we also ask the length of y best approaching to
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the length of r0. Now, we can prove the following theorem.

Theorem 3: Under the double optimal solution of z ∈K ′
m given in Theorem 1, the

minimal values of the two merit functions are the same, i.e.,

‖e‖2 = ‖r0−Az‖2, (83)

Moreover, we have

‖r‖2 < ‖r0‖2. (84)

Proof: Inserting Eq. (32) for α0 into Eqs. (79) and (80) we can obtain

‖y‖2 =
[rT

0 (In−E)Ar0]
2

rT
0 AT(In−E)Ar0

+ rT
0 Er0, (85)

r0 ·y =
[rT

0 (In−E)Ar0]
2

rT
0 AT(In−E)Ar0

+ rT
0 Er0; (86)

consequently, we have

‖y‖2 = r0 ·y. (87)

From Eqs. (75) and (85) we can derive

‖r0−Az‖2 = ‖r0‖2−‖y‖2. (88)

Then, inserting Eq. (87) for r0 ·y into Eq. (21) we have

‖e‖2 = ‖r0‖2−‖y‖2. (89)

Comparing the above two equations we can derive Eq. (83). By using Eq. (29) and
the definition of residual vector r = b−Ax for Eq. (1), and from Eqs. (83) and (89)
we have

‖r‖2 = ‖e‖2 = ‖r0‖2−‖y‖2. (90)

Because of ‖y‖2 > 0, Eq. (84) follows readily. This ends the proof of Eq. (84). 2

Remark 4: In Section 3.2 we have solved two different optimization problems to
find α0 and αi, i = 1, . . . ,m, and then the key equation (65) puts them the same
value. That is, the two merit functions ‖e‖2 and ‖r‖2 are the same as shown in
Eq. (90). More importantly, Eq. (84) guarantees that the residual error is absolutely
decreased, while Eq. (75) gives the residual error estimation.
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4 A numerical algorithm

Through the above derivations, the present double optimal iterative algorithm (DOIA)
based on Theorem 1 can be summarized as follows.
(i) Select m and give an initial value of x0.
(ii) For k = 0,1, . . ., we repeat the following computations:

rk = b−Axk,

Arnoldi procedure to set up uk
j, j = 1, . . . ,m, (from uk

1 = Ark/‖Ark‖),
Uk = [uk

1, . . . ,u
k
m],

Jk = AUk,

Ck = JT
k Jk,

Dk = C−1
k ,

Xk = UkDkJT
k ,

Ek = AXk,

α
k
0 =

rT
k (In−Ek)Ark

rT
k AT(In−Ek)Ark

,

zk = Xkrk +α
k
0(rk−XkArk),

xk+1 = xk + zk.

(91)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii).

Corollary 2: In the algorithm DOIA, Theorem 3 guarantees that the residual is de-
creasing step-by-step, of which the residual vectors rk+1 and rk have the following
monotonically decreasing relations:

‖rk+1‖2 = ‖rk‖2− rT
k Ekrk−

[rT
k (In−Ek)Ark]

2

rT
k AT(In−Ek)Ark

, (92)

‖rk+1‖< ‖rk‖. (93)

Proof: For the DOIA, from Eqs. (90) and (85) by taking r = rk+1, r0 = rk and
y = yk we have

‖rk+1‖2 = ‖rk‖2−‖yk‖2, (94)

‖yk‖2 = rT
k Ekrk +

[rT
k (In−Ek)Ark]

2

rT
k AT(In−Ek)Ark

. (95)
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Inserting Eq. (95) into Eq. (94) we can derive Eq. (92), whereas Eq. (93) follows
from Eq. (92) by noting that both Ek and In−Ek are projection operators as shown
in Eq. (82). 2

Corollary 2 is very important, which guarantees that the algorithm DOIA is abso-
lutely convergent step-by-step with a positive quantity ‖yk‖2 > 0 being decreased
at each iteration step. By using Eqs. (3) and (19), ‖yk‖2 = ‖Axk−Ax0‖2.

Corollary 3: In the algorithm DOIA, the residual vector rk+1 is A-orthogonal to
the descent direction zk, i.e.,

rk+1 · (Azk) = 0. (96)

Proof: From r = b−Ax and Eqs. (29) and (19) we have

r = r0−y. (97)

Taking the inner product with y and using Eq. (87), it follows that

r ·y = r · (Az) = 0. (98)

Letting r = rk+1 and z = zk, Eq. (96) is proven. 2

The DOIA provides a good approximation of the residual Eq. (4) with a better de-
scent direction zk in the affine Krylov subspace. Under this situation we can prove
the following corollary.

Corollary 4: In the algorithm DOIA, the residual vectors rk and rk+1 are nearly
orthogonal, i.e.,

rk · rk+1 ≈ 0. (99)

Moreover, the convergence rate is given by

‖rk‖
‖rk+1‖

=
1

sinθ
> 1, 0 < θ < π, (100)

where θ is the intersection angle between rk and y.

Proof: First, in the DOIA, the residual Eq. (4) is approximately satisfied:

Azk− rk ≈ 0. (101)

Taking the inner product with rk+1 and using Eq. (96), Eq. (99) is proven.
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Next, from Eqs. (90) and (87) we have

‖rk+1‖2 = ‖rk‖2−‖rk‖‖y‖cosθ , (102)

where 0 < θ < π is the intersection angle between rk and y. Again, with the help
of Eq. (87) we also have

‖y‖= ‖rk‖cosθ . (103)

Then, Eq. (102) can be further reduced to

‖rk+1‖2 = ‖rk‖2(1− cos2
θ) = ‖rk‖2 sin2

θ . (104)

Taking the square roots of both sides we can obtain Eq. (100). 2

Remark 5: For Eq. (95) in terms of the intersection angle φ between (In−E)rk
and (In−E)Ark we have

‖yk‖2 = rT
k Erk +‖(In−E)rk‖2 cos2

φ . (105)

If φ = 0, for example rk is an eigenvector of A, ‖yk‖2 = ‖rk‖2 can be deduced from
Eq. (105) by

‖yk‖2 = rT
k Erk + rT

k (In−E)2rk = rT
k Erk + rT

k (In−E)rk = ‖rk‖2.

Then, by Eq. (94) the DOIA converges with one step more. On the other hand, if
we take m = n, then the DOIA also converges with one step. We can see that if a
suitable value of m is taken then the DOIA can converge within n steps. Therefore,
we can use the following convergence criterion of the DOIA: If

ρN =
N

∑
j=0
‖y j‖2 ≥ ‖r0‖2− ε1, (106)

then the iterations in Eq. (91) terminate, where N ≤ n. ε1 is a given error tolerance.

Theorem 4: The square residual norm obtained by the algorithm which minimizes
the merit function (7) in an m-dimensional Krylov subspace is denoted by ‖rk+1‖2

LS.
Then, we have

‖rk+1‖2
DOIA < ‖rk+1‖2

LS. (107)

Proof: The algorithm which minimizes the merit function (7) in an m-dimensional
Krylov subspace is a special case of the present theory with α0 = 0 [Liu (2013d)].
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Refer Eqs. (8) and (9) as well as Remark 3 for definite. For this case, by Eq. (81)
we have

‖rk+1‖2
LS = ‖rk‖2− rT

k Erk. (108)

On the other hand, by Eqs. (94) and (95) we have

‖rk+1‖2
DOIA = ‖rk‖2− rT

k Erk−
[rT

k (In−E)Ark]
2

rT
k AT(In−E)Ark

. (109)

Subtracting the above two equations we can derive

‖rk+1‖2
DOIA = ‖rk+1‖2

LS−
[rT

k (In−E)Ark]
2

rT
k AT(In−E)Ark

, (110)

which by Eq. (82) leads to Eq. (107). 2

The algorithm DOIA is better than those algorithms which are based on the mini-
mization in Eq. (7) in an m-dimensional Krylov subspace, including the FOM and
GMRES.

5 A double optimal regularization method and algorithm

If A in Eq. (1) is a severely ill-conditioned matrix and the right-hand side data b
are disturbanced by a large noise, we may encounter the problem that the numerical
solution of Eq. (1) might deviate from the exact one to a great extent. Under this
situation we have to solve system (1) by a regularization method. Hansen (1992)
and Hansen and O’Leary (1993) have given an illuminating explanation that the
Tikhonov regularization method to cope ill-posed linear problem is taking a trade-
off between the size of the regularized solution and the quality to fit the given data
by solving the following minimization problem:

min
x∈Rn

[
‖b−Ax‖2 +β‖x‖2] . (111)

In this regularization theory a parameter β needs to be determined [Tikhonov and
Arsenin (1977)].

In order to solve Eqs. (1) and (4) we propose a novel regularization method, instead
of the Tikhonov regularization method, by minimizing

min
z∈Rn

{
f =

‖y‖2

(r0 ·y)2 +β‖z‖2
}

(112)
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to find the double optimal regularization solution of z, where y = Az. In Theorem
4 we have proved that the above minimization of the first term is better than that of
the minimization of ‖r0−Az‖2.

We can derive the following result as an approximate solution of Eq. (112).

Theorem 5: Under the double optimal solution of z ∈K ′
m given in Theorem 1, an

approximate solution of Eq. (112), denoted by Z, is given by

γ =
1

(β‖z‖2‖Az‖2)1/4 , (113)

Z = γz. (114)

Proof: The first term in f in Eq. (112) is scaling invariant, which means that if y is
a solution, then γy, γ 6= 0, is also a solution. Let z be a solution given in Theorem
1, which is a double optimal solution of Eq. (112) with β = 0. We suppose that an
approximate solution of Eq. (112) with β > 0 is given by Z = γz, where γ is to be
determined.

By using Eq. (87), f can be written as

f =
1
‖y‖2 +β‖Z‖2, (115)

which upon using Z = γz and y = AZ = γAz becomes

f =
1

γ2‖Az‖2 +βγ
2‖z‖2. (116)

Taking the differential of f with respect to γ and setting the resultant equal to zero
we can derive Eq. (113). 2

The numerical algorithm based on Theorem 5 is labeled a double optimal regular-
ization algorithm (DORA), which can be summarized as follows.
(i) Select β , m and give an initial value of x0.



Double Optimal Regularization Algorithms 21

(ii) For k = 0,1, . . ., we repeat the following computations:

rk = b−Axk,

Arnoldi procedure to set up uk
j, j = 1, . . . ,m, (from uk

1 = Ark/‖Ark‖),
Uk = [uk

1, . . . ,u
k
m],

Jk = AUk,

Ck = JT
k Jk,

Dk = C−1
k ,

Xk = UkDkJT
k ,

Ek = AXk,

α
k
0 =

rT
k (In−Ek)Ark

rT
k AT(In−Ek)Ark

,

zk = Xkrk +α
k
0(rk−XkArk),

γk =
1

(β‖zk‖2‖Azk‖2)1/4 ,

xk+1 = xk + γkzk.

(117)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii). It is better to select the value of regularization parameter
β in a range such that the value of γk is O(1). We can view γk as a dynamical relax-
ation factor.

6 Numerical examples

In order to evaluate the performance of the newly developed algorithms DOIA and
DORA, we test some linear problems and compare the numerical results with that
obtained by the FOM and GMRES.

6.1 Example 1

First we consider Eq. (1) with the following cyclic coefficient matrix:

A =



1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

 , (118)
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where the right-hand side of Eq. (1) is supposed to be bi = i2, i = 1, . . . ,6. We use
the QR method to find the exact solutions of xi, i = 1, . . . ,6, which are plotted in
Fig. 1 by solid black line.
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Figure 1: For example 1 solved by optimal solutions of DOIA and FOM, (a) 

comparing with exact solution and numerical error, and (b) residual and ρk. 

 

 

 

 

 

 

Figure 1: For example 1 solved by optimal solutions of DOIA and FOM, (a) com-
paring with exact solution and numerical error, and (b) residual and ρk.

In order to evaluate the performance of the DOIA, we use this example to demon-
strate the idea of double optimal solution. When we take x0 = 0 without iterating
the solution of z is just the solution x of Eq. (1). We take resrectively m = 4 and
m = 5 in the DOIA double optimal solutions, which as shown in Fig. 1 are close
to the exact one. Basically, when m = 5 the double optimal solution is equal to the
exact one. We can also see that the double optimal solution with m = 4 is already
close to the exact one. We apply the same idea to the FOM solution with m = 4,
which is less accurate than that obtained by the DOIA with m = 4.

Now we apply the DOIA under the convergence criterion in Eq. (106) to solve this
problem, where we take m = 4 and ε1 = 10−8. With four steps N = 4 we can obtain
numerical solution whose error is plotted in Fig. 1(a) by solid black line, which is
quite accurate with the maximum error being smaller than 3.3×10−4. The residual
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is plotted in Fig. 1(b) by solid black line. The value of square initial residual is
‖r0‖2 = 2275 and the term ρk fast tends to 2275 at the first two steps, and then at
N = 4 the value of ρN is over ‖r0‖2− ε1.

6.2 Example 2

When we apply a central difference scheme to the following two-point boundary
value problem:

−u′′(x) = f (x), 0 < x < 1,

u(0) = 1, u(1) = 2,
(119)

we can derive a linear equations system:

Au =



2 −1
−1 2 −1

· · ·
· · ·
· · ·
−1 2




u1
u2
...

un

=


(∆x)2 f (∆x)+a
(∆x)2 f (2∆x)

...
(∆x)2 f ((n−1)∆x)
(∆x)2 f (n∆x)+b

 , (120)

where ∆x = 1/(n+ 1) is the spatial length, and ui = u(i∆x), i = 1, . . . ,n, are un-
known values of u(x) at the grid points xi = i∆x. u0 = a and un+1 = b are the given
boundary conditions. The above matrix A is known as a central difference matrix,
which is a typical sparse matrix. In the applications of FOM, GMRES and DOIA
we take n = 99 and m = 10, of which the condition number of A is about 4052.

The numerical solutions obtained by the FOM, GMRES and DOIA are compared
with the exact solution:

u(x) = 1+ x+
1

π2 sinπx. (121)

The residuals and numerical errors are compared in Figs. 2(a) and 2(b), whose
maximum errors are the same value 8.32×10−6. Under the convergence criterion
with ε = 10−10, the FOM converges with 414 steps, the GMRES converges with
379 steps, and the DOIA is convergent with 322 steps. As shown in Fig. 2(a) the
DOIA is convergent faster than the GMRES and FOM; however, these three algo-
rithms give the numerical solution having the same accuracy. The orthogonalities
specified in Eqs. (96) and (99) for the DOIA are plotted in Fig. 2(c).
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Figure 2: For example 2 solved by the FOM, GMRES and DOIA, comparing (a) 

residuals, (b) numerical errors, and (c) proving orthogonalities of DOIA. 

 

 

 

Figure 2: For example 2 solved by the FOM, GMRES and DOIA, comparing (a)
residuals, (b) numerical errors, and (c) proving orthogonalities of DOIA.

6.3 Example 3

Finding an n-order polynomial function p(x) = a0 +a1x+ . . .+anxn to best match
a continuous function f (x) in the interval of x ∈ [0,1]:

min
deg(p)≤n

∫ 1

0
[ f (x)− p(x)]2dx, (122)
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leads to a problem governed by Eq. (1), where A is the (n+ 1)× (n+ 1) Hilbert
matrix defined by

Ai j =
1

i+ j−1
, (123)

x is composed of the n+1 coefficients a0,a1, . . . ,an appeared in p(x), and

b =


∫ 1

0 f (x)dx∫ 1
0 x f (x)dx

...∫ 1
0 xn f (x)dx

 (124)

is uniquely determined by the function f (x).

The Hilbert matrix is a notorious example of highly ill-conditioned matrices. Eq. (1)
with the matrix A having a large condition number usually displays that an arbi-
trarily small perturbation of data on the right-hand side may lead to an arbitrarily
large perturbation to the solution on the left-hand side.

In this example we consider a highly ill-conditioned linear system (1) with A given
by Eq. (123). The ill-posedness of Eq. (1) increases fast with n. We consider an
exact solution with x j = 1, j = 1, . . . ,n and bi is given by

bi =
n

∑
j=1

1
i+ j−1

+σR(i), (125)

where R(i) are random numbers between [−1,1].

First, a noise with intensity σ = 10−6 is added on the right-hand side data. For
n = 300 we take m = 5 for both FOM and DOIA. Under ε = 10−3, both FOM and
DOIA are convergent with 3 steps. The maximum error obtained by the FOM is
0.037, while that obtained by the DOIA is 0.0144. In Fig. 3 we show the numerical
results, of which the accuracy of DOIA is good, although the ill-posedness of the
linear Hilbert problem n = 300 is highly increased.

Then we raise the noise to σ = 10−3, of which we find that both the GMRES and
DOIA under the above convergence ε = 10−3 and m = 5 lead to failure solutions.
So we take ε = 10−1 for the GMRES, DOIA and DORA, where β = 0.00015 is
used in the DORA. The GMRES runs two steps as shown in Fig. 4(a) by dashed-
dotted line, and the maximum error as shown in Fig. 4(b) by dashed-dotted line is
0.5178. The DOIA also runs with two iterations as shown in Fig. 4(a) by dashed
line, and the maximum error as shown in Fig. 4(b) by dashed line is reduced to
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Figure 3: For example 3 solved by the FOM and DOIA , (a) residuals, (b) showingα0, 

and (c) numerical errors. 

 

Figure 3: For example 3 solved by the FOM and DOIA, (a) residuals, (b) showing
α0, and (c) numerical errors.

0.1417. It is interesting that although the DORA runs 49 iterations as shown in
Fig. 4(a) by solid line, the maximum error as shown in Fig. 4(b) by solid line is
largely reduced to 0.0599. For this highly noised case the DOIA is better than the
GMRES, while the DORA is better than the DOIA. It can be seen that the improve-
ment of regularization by the DORA is obvious.
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Figure 4: For example 3 under a large noise solved by the GMRES, DOIA and DORA, 

(a) residuals, and (b) numerical errors. 

 

 

 

Figure 4: For example 3 under a large noise solved by the GMRES, DOIA and
DORA, (a) residuals, and (b) numerical errors.

6.4 Example 4

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = uxx(x, t), 0 < t < T, 0 < x < `,

u(0, t) = u0(t), u(`, t) = u`(t),
(126)

we solve u under a final time condition:

u(x,T ) = uT (x). (127)
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The fundamental solution of Eq. (126) is by

K(x, t) =
H(t)
2
√

πt
exp
(
−x2

4t

)
, (128)

where H(t) is the Heaviside function.

In the MFS the solution of u at the field point p = (x, t) can be expressed as a linear
combination of the fundamental solutions U(p,s j):

u(p) =
n

∑
j=1

c jU(p,s j), s j = (η j,τ j) ∈Ω
c, (129)

where n is the number of source points, c j are unknown coefficients, and s j are
source points being located in the complement Ωc of Ω = [0, `]× [0,T ]. For the
heat conduction equation we have the basis functions

U(p,s j) = K(x−η j, t− τ j). (130)

It is known that the location of source points in the MFS has a great influence on
the accuracy and stability. In a practical application of MFS to solve the BHCP,
the source points are uniformly located on two vertical straight lines parallel to
the t-axis, not over the final time, which was adopted by Hon and Li (2009) and
Liu (2011), showing a large improvement than the line location of source points
below the initial time. After imposing the boundary conditions and the final time
condition to Eq. (129) we can obtain a linear equations system (1) with

Ai j =U(pi,s j), x = (c1, · · · ,cn)
T,

b = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T,
(131)

and n = 2m1 +m2.

Since the BHCP is highly ill-posed, the ill-condition of the coefficient matrix A in
Eq. (1) is serious. To overcome the ill-posedness of Eq. (1) we can use the DOIA
and DORA to solve this problem. Here we compare the numerical solution with an
exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final time data is in the order of 10−4, which is
small by comparing with the value of the initial temperature f (x)= u0(x)= cos(πx)
to be retrieved, which is O(1). First we impose a relative random noise with an
intensity σ = 10% on the final time data. Under the following parameters m1 = 15,



Double Optimal Regularization Algorithms 29

m2 = 8, m = 16, and ε = 10−2, we solve this problem by the FOM, GMRES and
DOIA. With two iterations the FOM is convergent as shown Fig. 5(a); however,
the numerical error as shown in Fig. 5(b) is quite large, with the maximum error
being 0.264. It means that the FOM is failure for this inverse problem. The DOIA
is convergent with five steps, and its maximum error is 0.014, while the GMRES is
convergent with 16 steps and with the maximum error being 0.148. It can be seen
that the present DOIA converges very fast and is very robust against noise, and we
can provide a very accurate numerical result of the BHCP by using the DOIA.
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Figure 5: For example 4 solved by the FOM, GMRES and DOIA , comparing (a) 

residuals, and (b) numerical errors. 

 

 

 

 

Figure 5: For example 4 solved by the FOM, GMRES and DOIA, comparing (a)
residuals, and (b) numerical errors.

Next, we come to a very highly ill-posed case with T = 5 and σ = 100%. When the
final time data are in the order of 10−21, we attempt to recover the initial tempera-



30 Copyright © 2015 Tech Science Press CMES, vol.104, no.1, pp.1-39, 2015

ture f (x) = cos(πx) which is in the order of 100. Under the following parameters
m1 = 10, m2 = 8, m = 16, and ε = 10−4 and ε1 = 10−8, we solve this problem
by the DOIA and DORA, where β = 0.4 is used in the DORA. We let DOIA and
DORA run 100 steps, because they do not converge under the above convegence
criterion ε = 10−4 as shown in Fig. 6(a). Due to a large value of β = 0.4, the resid-
ual curve of DORA is quite different from that of the DOIA. The numerical results
of u(x,0) are compared with the exact one f (x) = cos(πx) in Fig. 6(b), whose max-
imum error of the DOIA is about 0.2786, while that of the DORA is about 0.183.
It can be seen that the improvement is obvious.
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Figure 6: For example 4 under large final time and large noise solved by the DOIA  

and DORA, comparing (a) residuals, and (b) numerical solutions and exact solution. 

 

 

Figure 6: For example 4 under large final time and large noise solved by the DOIA
and DORA, comparing (a) residuals, (b) numerical solutions and exact solution,
and (c) numerical errors.
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6.5 Example 5

Let us consider the inverse Cauchy problem for the Laplace equation:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, (132)

u(ρ,θ) = h(θ), 0≤ θ ≤ π, (133)

un(ρ,θ) = g(θ), 0≤ θ ≤ π, (134)

where h(θ) and g(θ) are given functions. The inverse Cauchy problem is spec-
ified as follows: Seeking an unknown boundary function f (θ) on the part Γ2 :=
{(r,θ)|r = ρ(θ), π < θ < 2π} of the boundary under Eqs. (132)-(134) with the
overspecified data being given on Γ1 := {(r,θ)|r = ρ(θ), 0 ≤ θ ≤ π}. It is well
known that the inverse Cauchy problem is a highly ill-posed problem. In the past,
almost all of the checks to the ill-posedness of the inverse Cauchy problem, the il-
lustrating examples have led to that the inverse Cauchy problem is actually severely
ill-posed. Belgacem (2007) has provided an answer to the ill-posedness degree of
the inverse Cauchy problem by using the theory of kernel operators. The founda-
tion of his proof is the Steklov-Poincaré approach introduced in Belgacem and El
Fekih (2005).

The method of fundamental solutions (MFS) can be used to solve the Laplace equa-
tion, of which the solution of u at the field point p = (r cosθ ,r sinθ) can be ex-
pressed as a linear combination of fundamental solutions U(p,s j):

u(p) =
n

∑
j=1

c jU(p,s j), s j ∈Ω
c. (135)

For the Laplace equation (132) we have the fundamental solutions:

U(p,s j) = lnr j, r j = ‖p− s j‖. (136)

In the practical application of MFS, by imposing the boundary conditions (133)
and (134) at N points on Eq. (135) we can obtain a linear equations system (1) with

pi = (p1
i , p2

i ) = (ρ(θi)cosθi,ρ(θi)sinθi),

s j = (s1
j ,s

2
j) = (R(θ j)cosθ j,R(θ j)sinθ j),

Ai j = ln‖pi− s j‖, if i is odd,

Ai j =
η(θi)

‖pi− s j‖2

(
ρ(θi)−s1

j cosθi−s2
j sinθi−

ρ ′(θi)

ρ(θi)
[s1

j sinθi− s2
j cosθi]

)
, if i is even,

x = (c1, . . . ,cn)
T, b = (h(θ1),g(θ1), . . . ,h(θN),g(θN))

T,
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(137)

in which n = 2N, and

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (138)

The above R(θ) = ρ(θ)+D with an offset D can be used to locate the source points
along a contour with a radius R(θ).

For the purpose of comparison we consider the following exact solution:

u(x,y) = cosxcoshy+ sinxsinhy, (139)

defined in a domain with a complex amoeba-like irregular shape as a boundary:

ρ(θ) = exp(sinθ)sin2(2θ)+ exp(cosθ)cos2(2θ). (140)

We solve this problem by the DOIA and DORA with n = 2N = 40 and m = 10,
where the noise being imposed on the measured data h and g is quite large with
σ = 0.3, and β = 0.0003 is used in the DORA. Through 10 iterations for both the
DOIA and DORA the residuals are shown in Fig. 7(a). The numerical solutions and
exact solution are compared in Fig. 7(b). It can be seen that the DOIA and DORA
can accurately recover the unknown boundary condition. As shown in Fig. 7(c),
when the DOIA has the maximum error 0.381, the DORA has the maximum error
0.253. We also apply the GMRES with m = 10 to solve this problem; however, as
shown in Fig. 7 it is failure, whose maximum error is 2.7.

Next we consider a large noise with σ = 40%. The value of β used in the DORA is
changed to β = 0.000095. Through 100 iterations for both the DOIA and DORA
the residuals are shown in Fig. 8(a). The numerical solutions and exact solution are
compared in Fig. 8(b). As shown in Fig. 8(c), when the DOIA has the maximum
error 0.5417, the DORA has the maximum error 0.2737. The improvement of the
accuracy by using the DORA than the DOIA is obvious.

Accordingly, we can observe that the algorithms DOIA and DORA can deal with
the Cauchy problem of the Laplace equation in a domain with a complex amoeba-
like irregular shape even under very large noises up to σ = 30% and σ = 40%, and
yield much better results than that obtained by the GMRES.

6.6 Example 6

One famous mesh-less numerical method used in the data interpolation for two-
dimensional function u(x,y) is the radial basis function (RBF) method, which ex-
pands u by

u(x,y) =
n

∑
k=1

akφk, (141)



Double Optimal Regularization Algorithms 33
 

 

 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f
(

)

(a) 

(c) 

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

E
rr

o
r 

o
f 
f
(

)

2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4



1 10 100

Number of steps

0

10

20

R
es

id
u
a
l

(b)

GMRES

DOIA

DORA

GMRES

DOIA

Exact

DORA

GMRES

DOIA

DORA

 

Figure 7: For example 5 solved by the GMRES, DOIA and DORA, comparing (a) 

residuals, (b) numerical solutions and exact solution, and (c) numerical errors. 

 

 

 

Figure 7: For example 5 solved by the GMRES, DOIA and DORA, comparing (a)
residuals, (b) numerical solutions and exact solution, and (c) numerical errors.

where ak are the expansion coefficients to be determined and φk is a set of RBFs,
for example,

φk = (r2
k + c2)N−3/2, N = 1,2, . . . ,

φk = r2N
k lnrk, N = 1,2, . . . ,

φk = exp
(
−

r2
k

a2

)
,

φk = (r2
k + c2)N−3/2 exp

(
−

r2
k

a2

)
, N = 1,2, . . . ,

(142)

where the radius function rk is given by rk =
√

(x− xk)2 +(y− yk)2, while (xk,yk),
k = 1, . . . ,n are called source points. The constants a and c are shape parameters. In
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Figure 8: For example 5 under large noise solved by the DOIA and DORA, com-
paring (a) residuals, (b) numerical solutions and exact solution, and (c) numerical
errors.

the below we take the first set of φk as trial functions, with N = 2 which is known
as a multi-quadric RBF [Golberg and Chen (1996); Cheng, Golberg and Kansa
(2003)]. There are some discussions about the optimal shape factor c used in the
MQ-RBF [Huang, Lee and Cheng (2007); Huang, Yen and Cheng (2010); Bayona,
Moscoso and Kindelan (2011); and Cheng (2012)].

Let Ω := {(x,y)|
√

x2 + y2≤ ρ(θ)} be the domain of data interpolation, where ρ(θ)
is the boundary shape function. By collocating n points in Ω to match the given data
and using Eq. (141) we can derive a linear system (1) with the coefficient matrix



Double Optimal Regularization Algorithms 35

given by

Ai j =
√

r2
i j + c2, (143)

where ri j =
√

(xi− x j)2 +(yi− y j)2, and (xi,yi), i= 1, . . . ,n are interpolated points.
Usually the shape factor c is a fixed constant, whose value is sensitive to the prob-
lem we attempt to solve.

We solve a quite difficult and well known interpolation problem of Franke function
[Franke (1982)]:

u(x,y) =
3
4

exp
(
−(9x−2)2 +(9y−2)2

4

)
+

3
4

exp
(
−(9x+1)2

49
− (9y+1)2

10

)
+

1
2

exp
(
−(9x−7)2 +(9y−3)2

4

)
− 1

5
exp[−(9x−4)2− (9y−7)2]

(144)

on the unit square. We apply the DOIA with m = 5 and c = 0.3 to solve this prob-
lem under the convergence criterion ε = 0.1, where we take ∆x = ∆y = 1/9 to be
a uniform spacing of distribution of source points as that used in Fasshauer (2002).
The residual is shown in Fig. 9(a), which is convergent with 22 iterations, and the
numerical error is shown in Fig. 9(b). The maximum error 0.0576 obtained by the
DOIA is better than 0.1556 obtained by Fasshauer (2002).

7 Conclusions

In an affine m-dimensional Krylov subspace we have derived a closed-form dou-
ble optimal solution of the n-dimensional linear residual equation (4), which was
obtained by optimizing two merit functions in Eqs. (27) and (30). The main proper-
ties were analyzed, and a key equation was proven to link these two optimizations.
Based on the double optimal solution, the iterative algorithm DOIA was developed,
which has an A-orthogonal property, and is proven to be absolutely convergent step-
by-step with the square residual error being reduced by a positive quantity ‖Azk‖2

at each iteration step. We have proved that the residual error obtained by the algo-
rithm DOIA is smaller than that obtained by other algorithms which are based on
the minimization of the square residual error ‖b−Ax‖2, including the FOM and
GMRES. We developed as well a simple double optimal regularization algorithm
(DORA) to tackle the ill-posed linear problem under a large noise, and as com-
pared with the GMRES and DOIA the regularization effect obtained by the DORA
is obvious. Because the computational costs of DOIA and DORA are very inex-
pensive with the need of only inverting an m×m matrix one time at each iterative
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Figure 9: For the data interpolation of Franke function, showing (a) residual, and (b) 

numerical error computed by the DOIA. 
Figure 9: For the data interpolation of Franke function, showing (a) residual, and
(b) numerical error computed by the DOIA.

step, they are very useful to solve a large scale system of linear equations with
an ill-conditioned coefficient matrix. Even when we imposed a large noise on the
ill-posed linear inverse problem, the DOIA and DORA were robust against large
noise, but both the FOM and GMRES were not workable.
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