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Numerical Study for a Class of Variable Order Fractional
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Abstract: The aim of this paper is to seek the numerical solution of a class of
variable order fractional integral-differential equation in terms of Bernstein poly-
nomials. The fractional derivative is described in the Caputo sense. Four kinds
of operational matrixes of Bernstein polynomials are introduced and are utilized to
reduce the initial equation to the solution of algebraic equations after dispersing the
variable. By solving the algebraic equations, the numerical solutions are acquired.
The method in general is easy to implement and yields good results. Numerical
examples are provided to demonstrate the validity and applicability of the method.
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1 Introduction

In recent years, fractional calculus has attracted many researchers successfully in
different disciplines of science and engineering. One of the main advantages of
the fractional calculus is that the fractional derivatives provide a superior approach
for the description of memory and hereditary properties of various materials and
processes [Galue, Kalla and Al-Saqabi (2007)]. Many numerical methods using
different kinds of fractional derivative operators for solving different types of frac-
tional differential equations have been proposed. The most commonly used ones
are Adomian decomposition method (ADM) [EI-Sayed (1998)], Variational iter-
ation method (VIM) [Odibat (2010)], Generalized differential transform method
(GDTM) [Momani and Odibat (2007)], Generalized block pulse operational ma-
trix method [Li and Sun. (2011)] and wavelet method [Yi and Chen (2012)] and so
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on.

Recently, more and more researchers are finding that numerous important dynami-
cal problems exhibit fractional order behavior which may vary with space and time.
This fact illustrates that variable order calculus provides an effective mathematical
framework for the description of complex dynamical problems. The concept of a
variable order operator is a much more recent development, which is a new orien-
tation in science. Different authors have proposed different definitions of variable
order differential operators, each of these with a specific meaning to suit desired
goals. The variable order operator definitions recently proposed in the science
include the Riemann-Liouvile definition, Caputo definition, Marchaud definition,
Coimbra definition and Grünwald definition [Lorenzo and Hartley (2007); Coimbra
(2003); Samko and Ross (1993); Samko. (1995); Soon, Coimbra and Kobayashi
(2003)].

Since the kernel of the variable order operators is too complex for having a variable-
exponent, the numerical solutions of variable order fractional differential equations
are quite difficult to obtain, and have not attracted much attention. To the best
of the authors’ knowledge, there are few references appeared on the discussion
the numerical of variable order fractional differential equation. Coimbra [Coim-
bra (2003)] employed a consistent approximation with first-order accurate for the
solution of variable order differential equations. Soon et al. [Soon, Coimbra and
Kobayashi (2003)] proposed a second-order Runge–Kutta method which is consist-
ing of an explicit Euler predictor step followed by an implicit Euler corrector step
to numerically integrate the variable order differential equation. Lin et al. [Lin,
Liu, and Anh (2009)] studied the stability and the convergence of an explicit finite-
difference approximation for the variable-order fractional diffusion equation with
a nonlinear source term. Zhuang et al. [Zhuang, Liu and Anh (2009)] obtained
explicit and implicit Euler approximations for the fractional advection–diffusion
nonlinear equation of variable-order. Aiming a variable-order anomalous subdif-
fusion equation, Chen et al. [Chen, Liu and Anh (2010)] employed two numerical
schemes one fourth order spatial accuracy and with first order temporal accuracy,
the other with fourth order spatial accuracy and second order temporal accuracy.
However, as far as we know, no one had attempted to seek the numerical solution
of the variable order fractional differential equations.

So in this paper, we introduce the Bernstein polynomials to seek the numerical
solution of the variable order fractional equation. With the simple structure and
perfect properties [Yousefi, Behroozifar and Dehghan (2011)], the Bernstein poly-
nomials play an important role in various areas of mathematics and engineering.
Those polynomials have been widely used in the solution of integral equations and
differential equations [Chen, Yi and Chen (2011)].
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In this paper, our study focuses on a class of variable order fractional integral-
differential equation as follows:

Dα(t)[u(x, t)g(x, t)]+
∂u(x, t)

∂ t
+
∫ t

0
u(x,T )dT +

∫ t

0
u(x,T )k (x,T )dT = f (x, t)

(1)

Subject to the initial conditions

u(x,0) = g(x) x ∈ [0,1]

u(0, t) = h(t) t ∈ [0,1]
(2)

where Dα(x) (u(x, t)g(x, t)) , 0 < α (x)≤ 1 is fractional derivative in Caputo sense,
when g(x, t) = u(x, t), the initial problem is changed to nonlinear equation. Among
f (x, t) ,g(x, t) ,u(x, t) ,k (x, t) are assumed to be casual functions of time and space
on the section (x, t) ∈ [0,1]× [0,1], where f (x, t) ,g(x, t) ,k (x, t) are known while
u(x, t) is the unknown.

The reminder of the paper is organized as follows: Sections 2 and 3 are preparative.
In Section 4, four kinds of operational matrixes with Bernstein polynomials are
derived and we applied the operational matrixes to solve the equation as given at
beginning. In Section 5, we present some numerical examples to illustrative the
method and to demonstrate efficiency of the method. We end the paper with a few
concluding remarks in Section 6.

2 Basic definitions and properties of the variable order fractional derivatives

In this section, we firstly provide some basic definitions and properties of the
variable order fractional order derivatives [Lorenzo and Hartley (2007); Coimbra
(2003)].

Definition 2.1: Captuo’s fractional derivate with order α (t) , (0 < α (t)≤ 1)

Dα(t)u(t) =
1

Γ(1−α (t))

∫ t

0+
(t− τ)−α(t)u′ (τ)dτ (0 < α (t)< 1) (3)

With the definition above, we can get the following formula (0 < α (t)≤ 1):

Dα(t)
∗ c = 0 (4)

Dα(t)
∗ xβ =

{
0 β = 0

Γ(β+1)
Γ(β+1−α(t))x

β−a(t) β = 1,2,3 · · · (5)
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3 Bernstein polynomials and their properties

3.1 The definition of Bernstein polynomials basis

The Bernstein polynomials of degree n are defined by

Bi,n (x) =
(

n
i

)
xi (1− x)n−i (6)

By using the binomial expansion of (1− x)n−i, Eq. (6) can be expressed as:

Bi,n (x) =
(

n
i

)
xi (1− x)n−i =

n−i

∑
k=0

(−1)k
(

n
i

)(
n− i

k

)
xi+k (7)

Now, we define:

ΦΦΦ(x) = [B0,n (x) ,B1,n (x) , · · · ,Bn,n (x)]
T (8)

where we can have

ΦΦΦ(x) = AAATTT n (x) (9)

where

AAA =



(−1)0
(

n
0

)
(−1)1

(
n
0

)(
n−0

1

)
· · · (−1)n−0

(
n
0

)(
n−0
n−0

)
0 (−1)0

(
n
1

)(
n−1

0

)
· · · (−1)n−1

(
n
1

)(
n−1
n−1

)
...

...
. . .

...

0 0 · · · (−1)0
(

n
n

)


(10)

TTT n (x) =
[
1,x,x2, · · · ,xn]T (11)

Clearly

TTT n (x) = AAA−1
ΦΦΦ(x) (12)

3.2 Function approximation

A function f (x) ∈ L2 (0,1) can be expressed in terms of the Bernstein Polynomials
basis. In practice, only the first (n+1) terms of Bernstein Polynomials are consid-
ered. Hence

f (x)'
n

∑
i=0

ciBi,n (x) = cT
ΦΦΦ(x) (13)
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where ccc = [c0,c1, · · · ,cn]
T .

Then we have

ccc = QQQ−1 ( f ,ΦΦΦ(x)) (14)

where QQQ is an (n+1)× (n+1) matrix, which is called the dual matrix of ΦΦΦ(x).

QQQ =
∫ 1

0
ΦΦΦ(x)ΦΦΦT (x)dx

=AAA
(∫ 1

0
TTT n (x)TTT n

T (x)dx
)

AAAT

=AAAHHHAAAT

(15)

where HHH is the Hilbert matrix:

HHH =


1 1

2 · · · 1
n+1

1
2

1
3 · · · 1

n+2
...

...
. . .

...
1

n+1
1

n+2 · · · 1
2n+1

 (16)

We can also approximate the function u(x, t) ∈ L2 ([0,1]× [0,1])as following:

u(x, t)'
n

∑
i=0

n

∑
j=0

ui, jBi,n (x)B j,n (t) = ΦΦΦ
T (x)UUUΦΦΦ(t) (17)

where

UUU =


u00 u01 · · · u0n

u10 u11 · · · u1n
...

...
. . .

...
un0 un1 · · · unn

 (18)

And UUU can be obtained as following:

UUU = QQQ−1 (ΦΦΦ(x) ,(ΦΦΦ(t) ,u(x, t)))QQQ−1 (19)

3.3 Convergence analysis

Suppose that the function f : [0,1] → R is m + 1 times continuously
differentiable, f ∈ Cm+1 [0,1], and Y = Span{B0,n,B1,n,B2,n · · · ,Bn,n}. If cccT ΦΦΦ(x)
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is the best approximation of f out of Y, then the mean error bound is presented as
follows:

∥∥ f − cccT
ΦΦΦ
∥∥

2 ≤
√

2MS
2m+3

2

(m+1)!
√

2m+3
(20)

where M = maxx∈[0,1]
∣∣ f (m+1) (x)

∣∣, S = max{1− x0,x0}.
Proof: We consider the Taylor polynomials

f1 (x) = f (x0)+ f ′ (x0)(x− x0)+ f ′′ (x0)
(x− x0)

2

2
+ · · ·+ f (m) (x0)

(x− x0)
m

m!

which we know

| f (x)− f1 (x)|=
∣∣∣ f (m+1) (ε)

∣∣∣ (x− x0)
m+1

(m+1)!
∃ε ∈ (0,1)

Since cccT ΦΦΦ(x) is the best approximation of f , so we have

∥∥ f − cT
Φ
∥∥2

2 ≤ ‖ f − f1‖2
2 =

∫ 1

0
( f (x)− f1 (x))

2dx

=
∫ 1

0

(∣∣∣ f (m+1) (ε)
∣∣∣ (x− x0)

m+1

(m+1)!

)2

dx

≤ 2M2S2m+3

[(m+1)!]2 (2m+3)

4 The operational matrix in terms of Bernstein polynomials

4.1 The operational matrix of the section as ∂u(x,t)
∂ t in terms of Bernstein poly-

nomials

The differentiation of vector ΦΦΦ(t)in Eq. (9) can be expressed as:

ΦΦΦ
′ (t) = DDDΦΦΦ(t) (21)

where DDD is the (n+1)× (n+1) operational matrix of derivatives for Bernstein
polynomials. Form Eq. (9) we have

ΦΦΦ
′ (t) = AAA


0
1
...

ntn−1

 (22)
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Define the (n+1)× (n) matrix VVV (n+1)×n and vector TTT ∗n (t) as:

VVV (n+1)×n =


0 0 · · · 0
1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · n

 , TTT ∗n (x) =


1
t
...

tn−1


(n×1)

(23)

Eq. (22) may then be restated as

ΦΦΦ
′ (t) = AAAVVV (n+1)×nTTT ∗n (t) (24)

We now expand vector TTT ∗n (t) in terms of ΦΦΦ(t). Form Eq. (12), then we get

TTT ∗n (t) = BBB∗ΦΦΦ(t) (25)

where

BBB∗ =


AAA−1
[1]

AAA−1
[2]
...

AAA−1
[n]

 (26)

AAA−1
[k] is kth row of AAA−1, k = 1,2, · · · ,n.

Then we have

ΦΦΦ
′ (t) = AAAVVV (n+1)×nBBB∗ΦΦΦ(t) (27)

Therefore we get the operational matrix of the section as ∂u(x,t)
∂ t as follows:

∂u(x, t)
∂ t

= ΦΦΦ
T (x)UUUΦΦΦ

′ (t) = ΦΦΦ
T (x)UUUAAAVVV (n+1)×nBBB∗ΦΦΦ(t) (28)

4.2 The operational matrix of the section as Dα(t) (u(x, t)g(x, t)) in terms of
Bernstein polynomials

If we approximate the function u(x, t) ,g(x, t) with Bernstein polynomials, it can be
written as u(x, t) = ΦΦΦ

T (x)UUUΦΦΦ(t) , g(x, t) = ΦΦΦ
T (x)GGGΦΦΦ(t), where UUU is unknown

and GGG is known. So we have:

Dα(t) [u(x, t)g(x, t)]

= Dα(t) [
ΦΦΦ

T (x)UUUΦΦΦ(t)ΦΦΦ
T (t)GGGΦΦΦ(x)

]
= ΦΦΦ

T (x)UUUDα(t) [
ΦΦΦ(t)ΦΦΦ

T (t)
]

GGGΦΦΦ(x)

= ΦΦΦ
T (x)UUUDα(t)

[
AAATTT ∗n (t)(AAATTT ∗n (t))

T
]

AAAT GGGΦΦΦ(x)

= ΦΦΦ
T (x)UUUAAADα(t)

[
TTT ∗n (t)(TTT

∗
n (t))

T
]

AAAT GGGΦΦΦ(x)

(29)
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= ΦΦΦ
T (x)UUUAAADα(t)


1 t . . . tn

t t2 . . . tn+1

...
...

. . .
...

tn t2n . . . t2n

AAAT GGGΦΦΦ(x)

=ΦΦΦ
T(x)UUUAAA


0 Γ(2)

Γ(2−α(t)) t
1−α(t) . . . Γ(n+1)

Γ(n+1−α(t)) t
n−α(t)

Γ(2)
Γ(2−α(t)) t

1−α(t) Γ(3)
Γ(3−α(t)) t

2−α(t) . . . Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t)

...
...

. . .
...

Γ(n+1)
Γ(n+1−α(t)) t

n−α(t) Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t) . . . Γ(2n+1)
Γ(2n+1−α(t)) t

2n−α(t)

AAATGGGΦΦΦ(x)

= ΦΦΦ
T (x)UUUAAAMMMAAAT GGGΦΦΦ(x)

Now we define

MMM =


0 Γ(2)

Γ(2−α(t)) t
1−α(t) . . . Γ(n+1)

Γ(n+1−α(t)) t
n−α(t)

Γ(2)
Γ(2−α(t)) t

1−α(t) Γ(3)
Γ(3−α(t)) t

2−α(t) . . . Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t)

...
...

. . .
...

Γ(n+1)
Γ(n+1−α(t)) t

n−α(t) Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t) . . . Γ(2n+1)
Γ(2n+1−α(t)) t

2n−α(t)


(30)

MMM is called the operational matrix of the section as Dα(t) (u(x, t)g(x, t)) with Bern-
stein polynomials.

So we have

Dα(t) [u(x, t)g(x, t)] = ΦΦΦ
T (x)UUUAAAMMMAAAT GGGΦΦΦ(x) (31)

4.3 The operational matrix of the section as
∫ t

0 u(x,T )dT in terms of Bernstein
polynomials

The integration of the vector ΦΦΦ(t) in Eq. (9) can be expressed as:∫ t

0
ΦΦΦ(t)dT = PPPΦΦΦ(t) (32)

Where PPP is the (n+1)× (n+1) operational matrix of integration for Bernstein
polynomials. So we have∫ t

0
ΦΦΦ(T )dT =

∫ t

0
AAATTT n (T )dT = AAA

∫ t

0
TTT n (T )dT

= AAA
∫ t

0


1
T
...

T n

dT = AAA


t

1
2 t2

...
1

n+1 tn+1

= AAApTTT p

(33)
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where AAAp is an (n+1)× (n+1) matrix:

AAAp = AAA


1 0 · · · 0
0 1

2 · · · 0
...

...
. . .

...
0 0 · · · 1

n+1

 , TTT p =


t
t2

...
tn+1

 (34)

where AAAp is an (n+1)× (n+1) matrix:

AAAp = AAA


1 0 · · · 0
0 1

2 · · · 0
...

...
. . .

...
0 0 · · · 1

n+1

 , TTT p =


t
t2

...
tn+1

 (35)

Now we approximate the elements of vector TTT p in terms of ΦΦΦ(t). By Eq. (12),
then we have:

tk = AAA−1
[k+1]ΦΦΦ(t) , k = 1, · · · ,n (36)

where AAA−1
[k+1] is the k+1 th row of AAA−1 for k = 1, · · · ,n. We just need to approximate

tn+1 = cccT
n+1ΦΦΦ(t). By using Eq. (14), we have

cccn+1 =QQQ−1
∫ 1

0
tn+1

ΦΦΦ(t)dt = QQQ−1


∫ 1

0 tn+1B0,n (t)dt∫ 1
0 tn+1B1,n (t)dt

...∫ 1
0 tn+1Bn,n (t)dt



=
QQQ−1

2n+2


 n

0


 2n+1

n+1



 n
1


 2n+1

n+2

 · · ·

 n
n


 2n+1

2n+1




T

(37)

We define

PPP1 =


AAA−1
[2]

AAA−1
[3]
...

AAA−1
[n+1]

cccn+1

 (38)
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Then we can get TTT p = PPP1ΦΦΦ(t). Therefore we have the operational matrix of inte-
gration as follows:

PPP = AAApPPP1 (39)

So we have∫ t

0
u(x,T )dT

=
∫ t

0
ΦΦΦ

T (x)UUUΦΦΦ(T )dT

= ΦΦΦ
T (x)UUUAAApPPP1ΦΦΦ(t)

(40)

4.4 The operational matrix of the section as
∫ t

0 u(x,T )k (x,T )dT in terms of
Bernstein polynomials

Firstly, we approximate the function k (x, t) with Bernstein polynomials, it can be
written as k (x, t) = ΦΦΦ

T (x)KKKΦΦΦ(t), and KKK is known. So we have∫ t

0
u(x,T )k (x, t)dT

=
∫ t

0

(
ΦΦΦ

T (x)UUUΦΦΦ(T )ΦΦΦ
T (T )KKKΦΦΦ(x)

)
dT

= ΦΦΦ
T (x)UUU

∫ t

0

(
ΦΦΦ(T )ΦΦΦ

T (T )
)
dT KKKΦΦΦ(x)

= ΦΦΦ
T (x)UUUAAA

∫ t

0


1 T · · · T n

T T 2 · · · T n+1

...
...

. . .
...

T n T n|+1 · · · T 2n

dT AAAT KKKΦΦΦ(x)

= ΦΦΦ
T (x)UUUAAA


t 1

2 t2 · · · 1
n+1 tn+1

1
2 t2 1

3 t3 . . . 1
n+2 tn+2

...
...

. . .
...

1
n+1 tn+1 1

n+2 tn+2 . . . 1
2n+1 t2n+1

AAAT KKKΦΦΦ(x)

= ΦΦΦ
T (x)UUUAAARRRAAAT KKKΦΦΦ(x)

(41)

We define

RRR =


t 1

2 t2 · · · 1
n+1 tn+1

1
2 t2 1

3 t3 . . . 1
n+2 tn+2

...
...

. . .
...

1
n+1 tn+1 1

n+2 tn+2 . . . 1
2n+1 t2n+1

 (42)
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RRR is called the operational matrix of the section as
∫ t

0 u(x,T )k (x,T )dT in terms of
Bernstein polynomials.

So the initial equation is transformed into the products of several dependent ma-
trixes as follows:

ΦΦΦ
T (x)UUUAAAMMMAAAT GGGΦΦΦ(x)+ΦΦΦ

T (x)UUUPPPΦΦΦ(t)+ΦΦΦ
T (x)UUUAAAVVV (n+1)×nBBB∗ΦΦΦ(t)

+ΦΦΦ
T (x)UUUAAARRRAAAT KKKΦΦΦ(x) = f (x, t)

(43)

Dispersing Eq. (43) with (xi, t j), (i = 1,2, · · · ,n; j = 1,2, · · · ,n) by using a sym-
bolic software such as "Mathematica", we can obtain U. So the numerical solution
of the original problem is obtained ultimately.

5 Numerical examples

Example1

D
t
3 [u(x, t)(x+ t +1)]+

∂u(x, t)
∂ t

+
∫ t

0
u(x,T )dT +

∫ t

0
u(x,T )(x+ t)dT = f (x, t)

u(x,0) = x2 u(0, t) = t2 [x, t] ∈ [0,1]× [0,1]

where

f (x, t)= 2t+
t3

3
+

t4

4
+

t3x
3

+tx2+
t2x2

2
+tx3− 3t1− t

3 [6t (9+8t)−6(−9+ t) tx]
(−9+ t)(−6+ t)(−3+ t)Γ

(
1− t

3

)
The exact solution of the above equation is u(x, t) = x2 + t2.

Taking n = 2, dispersing xi =
ki
3 −

1
6 , t j =

k j
3 −

1
6 (ki = 1,2,3;k j = 1,2,3), we can

obtain the matrix UUU as follows:

UUU =

 0 0 1
0 0.00217 0.99905
1 1.00036 1.99974


The numerical solution is u(x, t) = ΦΦΦ(x)UUUΦΦΦ(t), as the matrix UUU is given above,
and ΦΦΦ(x) =

[
(1− x)2 2(1− x)x x2

]T
, ΦΦΦ(t) =

[
(1− t)2 2(1− t) t t2

]T
.

The absolute error between the exact solution and the numerical solution is dis-
played as Figure 1.

Taking n = 3, dispersing xi =
ki
4 −

1
8 , t j =

k j
4 −

1
8 (ki = 1,2,3,4;k j = 1,2,3,4), we

can obtain the matrix UUU as follows:

UUU =
1
3


0 0 1 3
0 0 1 3
1 1 2 4
3 3 4 6


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The numerical solution is u(x, t) = ΦΦΦ(x)UUUΦΦΦ(t), as the matrix UUU is
given above, and ΦΦΦ(x) =

[
(1− x)3 3(1− x)2 x 3(1− x)x2 x3

]T
, ΦΦΦ(t) =[

(1− t)3 3(1− t)2 t 3(1− t) t2 t3
]T

The absolute error between the exact so-
lution and the numerical solution is displayed as Figure 2.

The numerical solution is      ,u x t x tΦ UΦ , as the matrix U is given above, and 

               
3 2 3 22 3 2 31 3 1 3 1 , 1 3 1 3 1

T T

x x x x x x x t t t t t t t          
   

Φ Φ

The absolute error between the exact solution and the numerical solution is displayed as 

Figure 2. 
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Figure 1: The absolute error whenn = 2.
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Example 2

D
sin t

3 [u(x, t)(xt)]+
∂u(x, t)

∂ t
+
∫ t

0
u(x,T )dT +

∫ t

0
u(x,T )(x+ t)dT = f (x, t)

u(x,0) = (1+ x)2 u(0, t) = (1+ t)2 [x, t] ∈ [0,1]× [0,1]

Where

f (x, t) = 2(1+ x+ t)+ t +
3t2

2
+ t3 +

t4

4
+3tx+3t2x+ t3x+3tx2 +

3t2x2

2
+ tx3

−
3t1− sin t

3 x
[
54(1+ t + x)2 +(1+ x)sin t (−3(5+4t +5x)+(1+ x)sin t)

]
Γ
(
1− sin t

3

)
(−9+ sin t)(−6+ sin t)(−3+ sin t)

The exact solution of the above problem is u(x, t) = (1+ x+ t)2.

Taking n = 3, dispersing xi =
ki
4 −

1
8 , t j =

k j
4 −

1
8 (i = j = 1,2, · · · ,4), the matrix

UUU is displayed as follows:

UUU=


1 5

3
8
3 4

5
3

23
9

34
9

16
3

8
3

34
9

47
9 7

4 16
3 7 9


The absolute error between the exact solution and the numerical solution is dis-
played in Table 1.

Table 1: The absolute error when n = 3.
t=0.1 t=0.3 t=0.5 t=0.7 t=0.9

x=0.0 0 0 0 0 0
x=0.1 1.78E-15 2.44E-15 4.44E-16 3.11E-15 4.77E-15
x=0.2 2.22E-15 2.66E-15 1.33E-15 5.10E-15 7.33E-15
x=0.3 2.89E-15 3.99E-15 4.44E-16 4.44E-15 5.99E-15
x=0.4 1.78E-15 2.66E-15 4.44E-16 5.33E-15 5.77E-15
x=0.5 1.78E-15 2.66E-15 4.44E-16 1.33E-15 3.55E-15
x=0.6 1.34E-15 3.11E-15 8.88E-16 1.33E-15 8.88E-15
x=0.7 2.23E-15 1.78E-15 1.78E-16 3.11E-15 2.66E-15
x=0.8 8.89E-16 2.67E-15 0 2.22E-15 4.44E-16
x=0.9 4.45E-16 1.78E-15 8.88E-16 4.44E-15 5.10E-15
x=1.0 1.78E-15 2.66E-15 8.88E-16 2.66E-15 5.55E-15
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Taking n = 4, dispersing xi =
ki
5 −

1
10 , t j =

k j
5 −

1
10 (i = 1,2, · · · ,5; j = 1,2, · · · ,5),

the matrix UUU is displayed as follows:

UUU=


1 3

2
13
6 3 4

3
2 2.125 2.91667 31

8 5
13
6 2.91667 3.83333 4.91667 6.1667
3 3.875 4.91667 6.125 7.5
4 5 37

6 7.5 9


The absolute error between the exact solution and the numerical solution is dis-
played as Table 2.

Table 2: The absolute error when n = 4.
t=0.1 t=0.3 t=0.5 t=0.7 t=0.9

x=0.0 0 0 0 0 0
x=0.1 4.22E-15 2.22E-16 3.55E-15 1.25E-14 1.70E-14
x=0.2 2.44E-15 4.44E-16 2.22E-15 1.14E-14 5.93E-15
x=0.3 2.22E-16 1.78E-15 3.33E-15 1.77E-15 1.23E-14
x=0.4 3.11E-15 1.78E-15 1.33E-15 1.77E-15 1.75E-14
x=0.5 2.22E-15 3.11E-15 1.77E-15 3.10E-15 1.02E-14
x=0.6 1.78E-15 2.66E-15 1.33E-15 4.88E-15 1.37E-14
x=0.7 1.78E-15 4.44E-16 3.102E-15 4.44E-15 4.23E-14
x=0.8 5.33E-15 2.66E-15 2.22E-15 1.55E-14 5.90E-14
x=0.9 7.99E-15 7.99E-15 3.10E-15 3.30E-14 4.001E-14
x=1.0 7.11E-15 1.51E-14 0 5.99E-14 5.37E-14

When g(x, t) = u(x, t), the initial equation becomes nonlinear equation. Example
3 describes the situation.

Example 3:

D
t
3 u2 (x, t)+D

t
4 u(x, t)+

∂ 2u(x, t)
∂ t2 = f (x, t)

u(x,0) = x2, u(0, t) = t2 (x, t) ∈ [0,1]× [0,1]

where

f (x, t) =2+
36t2− t

3
(
54t2 +(−12+ t)(−9+ t)x2

)
(−12+ t)(−9+ t)(−6+ t)(−3+ t)Γ

(
1− t

3

)
+

32t2− t
4

(32−12t + t2)Γ
(
1− t

4

)
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The exact solution of the above equation is u(x, t) = x2 + t2

This is a nonlinear variable order fractional differential equation, the numerical
solution can also be gained with the method proposed in Section 4 when n≤ 2.

Taking n= 2, dispersing xi =
ki
2 −

1
4 , t j =

k j
2 −

1
4 (ki = 1,2;k j = 1,2), we can obtain

the matrix UUU as follows:

UUU =

 0 0 1
0 0 1
1 1 2


The
numerical solution is u(x, t) = ΦΦΦ(x)UUUΦΦΦ(t), as the matrix UUU is given above, where
ΦΦΦ(x) =

[
(1− x)2 2(1− x)x x2

]T
, ΦΦΦ(t) =

[
(1− t)2 2(1− t) t t2

]T
.

The absolute error between the exact solution and the numerical solution is dis-
played as Figure 3.

 
   

      

2 22 23 4

2

36 54 12 9 32
, 2

12 9 6 3 1 32 12 1
3 4

t t

t t t t x t
f x t

t t
t t t t t t

 
    

  
   

                
   
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2 4 2 4

ji
i j i j

kk
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Figure 3: The absolute error for Example 3 of n = 2.

When n≥ 3, the computation is very large, getting the numerical solution is a very
difficult thing.

From Figures 1-3, Tables 1-2, we can see that the absolute error is very tiny and
only a small number of Bernstein polynomials are needed when n≥ 3. The calcu-
lating results also show that combining with Bernstein polynomials, the method in
this paper can be effectively used in the numerical solution of the fractional equa-
tion. At the same time the feasibility of the method can be also proved. From
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the above results, the numerical solutions are in good agreement with the exact
solution.

6 Conclusions

This article uses Bernstein polynomials method to solve a class of the variable or-
der fractional integral-differential equation by combining Bernstein polynomials
with the properties of fractional differentiation. Actually we derive four kinds of
operational matrixes using Bernstein polynomials. The matrixes are used to solve
the numerical solutions of a class of fractional integral-differential equations effec-
tively. We translate the initial equation into the product of some relevant matrixes
which can also be regarded as the system of linear equations after dispersing the
variable. And it is easy to solve by the least square method. Numerical examples
illustrate the powerful of the proposed method. The solutions obtained using the
suggested method show that numerical solutions are in very good coincidence with
the exact solution. The method can be applied by developing for the other fractional
problem.

However, there are many issues to be resolved, such as the section Ω1 = [0,1]×
[0,1] is transformed to Ω2 = [0,X ]× [0,T ], or the equations are nonlinear and so
on. This requires the efforts of all of us.
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