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Dynamic Instability of Straight Bars Subjected to
Impulsive Axial Loads Using the DEM
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Abstract: Since the half of the XX century, attention was given to the instability
of structures under parametric excitation, especially under periodic loads. On the
other hand, the instability of bars subjected to axial loads of impulsive type has
been little studied, in spite of the practical importance of the topic. Thus, in Engi-
neering Design it is frequently supposed, without tests or additional verifications,
that an axial load of short duration can exceed the Euler critical load of the bar
without inducing damage in the same.
Within this context, this paper proposes the use of the truss-like Discrete Element
Method (DEM) for determining the dynamic response of elastic straight bars sub-
jected to axial loads defined by pulses of short duration. The proposed approach
allows the consideration of initial imperfections, as well as large displacements
and other non-linear effects. The influence of the pulse duration and other ef-
fects in the response of the bar are also evaluated. Initially, the performance of
the proposed methodology is verified in static and dynamic instability problems
of homogeneous bars without geometrical imperfections, by comparing the DEM
results with analytical solutions available in the literature. After that, the DEM is
employed to analyze more complex cases, including bars with initial imperfections
and non-homogeneous bars, in which material properties, as Young’s modulus and
mass density, are assumed to be correlated Gaussian random fields. The proposed
methodology has proven to be a useful and easy tool for analysis of dynamic insta-
bility of bars and could therefore be used by designers for estimating the dynamic
buckling load.
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1 Introduction

Verification of stability of structures subjected to static loads, in particular, the de-
termination of buckling loads, is a routine task on Structural Engineering. How-
ever, the problem of instability of structures induced by dynamic loads only started
to receive attention after the Second World War, but with emphasis on the insta-
bility caused by parametric excitation; stand out in this context the contributions
of Bolotin (1961). Nevertheless, few studies address the problem of instability
due to transient loads, more specifically, impulsive axial loads. Koning and Taub
(1933) are responsible for pioneering studies in Aeronautical Engineering on dy-
namic instability of bars. Davidson (1953), Huffington Jr. (1963), Ari-Gur et al.
(1978, 1982, 1997), Simitses (1990), among others, present additional studies on
this topic. From these studies, it was generally accepted that, if a load is suddenly
applied on a bar and then released, the bar can support a higher value than its static
(slowly applied) buckling load, without inducing large damage in the bar.

Nowadays, especially due to the fact that structures have become very large and
very thin, implying that any slight impact may lead to local dynamic buckling, dy-
namic instability has become an important factor to be taken into account during the
structural design and therefore has received increasing attention. Thus, researchers
have been using different approaches, such as analytical solutions, numerical simu-
lations and experimental tests, in order to solve the problem of dynamic instability
of straight bars subjected to impact axial loads. Lindberg and Florence (1987)
present a detailed study on this subject.

Ari-Gur and Elishakoff (1997) presented a theoretical study of the dynamic insta-
bility of geometrically imperfect transversely isotropic columns under axial com-
pressive pulse. The analysis included transverse shear deformation as well as
translational and rotational inertia terms. The effect of transverse shear rigidity
was investigated for various pulse frequencies, ranging from quasi-static to impul-
sive compressive loads. An appropriate dynamic instability criterion was defined
and utilized and the corresponding buckling results were compared with those for
isotropic columns, as well as with results obtained by the classical beam theory.
The results showed that for isotropic columns the classical theory predicts accu-
rately the dynamic buckling strength. However, for columns with low transverse
shear rigidity, buckling loads predicted by the refined theory may be as low as al-
most two thirds of those estimated via the classical theory. These authors adopted
a buckling criterion that relates the peak axial displacement at the loaded end and
the peak lateral deflection to the intensity of the applied pulse force. Instability was
defined as a phenomenon, when a small increase in the pulse intensity results in
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a relatively large increase of the displacement response. This criterion resembles
the well-known Budiansky and Hutchinson (1966) and Hutchinson and Budian-
sky (1966) dynamic buckling criterion, for which buckling occurs when a small
increase in the load intensity causes a transition from a bounded response to an un-
bounded one. The meaning of this criterion is that at a certain level of load intensity
the axial resistance of the column is substantially reduced and a slightly stronger
pulse causes its collapse.

Vincent et al. (2004), with the aim of making transmission lines more robust me-
chanically, decided to study the dynamic loads that the transmission line towers
develop after line components fail. Broken conductor loads produce large magni-
tude force over a short duration (Kaminski et al., 2008), as axial impulsive loads
applied in the tower bars. The purpose of Vincent et al. (2004) were to determine
if the load capacity of transmission line lattice tower structures can be increased
because of short duration broken conductor loads. A series of tests was thus car-
ried out to observe the phenomenon on a real physical line and measure, primarily,
dynamic loading at various points. Fifteen tests were performed, including a fi-
nal destructive test with the collapse of two towers. A broad range of measuring
instruments and devices, as well as a highly customized data acquisition system,
were used for the tests. Numerical simulation of the tests was also implemented by
Vincent et al. (2004) using ADINA software. The results showed that failure mode
is a determining factor in the amplification of longitudinal loads at towers. The dy-
namic response of a line subjected to an insulator string failure is not characterized
by transient longitudinal imbalanced as sudden as for conductor failure. For tower
failure mode, the longitudinal loads measured were smaller than the loads originat-
ing from conductor failure. In conductor failure mode, two peak loads with a very
high dynamic magnification factor were observed. Should be noted that this study
of Vincent et al. (2004) focused on analysis of transient response up to the elastic
limit of tower members, i.e., until a compressed member starts buckling.

Del Prado et al. (2010) used the nonlinear finite element method to study the effect
of initial geometrical imperfections on the non-linear vibrations of cable stayed
masts subjected to axial time dependent loads. The non-linear equations were
solved using the Newton-Raphson method associated to an arc-length technique
and the Newmark method was used to calculate the time responses of the system.
Validation examples were presented and the influence of initial geometrical im-
perfections and cable tensioning was studied when stayed towers were subjected
to different types of axial loads. As Ari-Gur and Elishakoff (1997), Del Prado et
al. (2010) also used the Budianski’s criterion to study the loss of stability under
sudden and harmonic loads. The results showed the great influence of both cable
tensioning and cable positioning on the nonlinear behavior of the system.
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Stojanovic’ et al. (2011) studied free transverse vibration and buckling of a double-
beam continuously joined by a Winkler elastic layer under compressive axial load-
ing (F1 and F2) with the influence of rotary inertia and shear. The motion of the
system was described by a homogeneous set of two partial differential equations,
which was solved by using the classical Bernoulli-Fourier method. The natural fre-
quencies and associated amplitude ratios of an elastically connected double-beam
complex system and the analytical solution of the critical buckling load were deter-
mined. The theoretical analysis was illustrated by a numerical example, in which
the effect of physical parameters characterizing the vibrating system on the natu-
ral frequency, the associated amplitude ratios and the critical buckling load were
discussed. These authors concluded that the critical buckling load is influenced by
the ratio of the axial load F2 to F1 and the stiffness modulus of the Winkler elas-
tic layer. In addition, they also found that the rotary inertia does not influence the
critical buckling load model of a layered-beam system composed of two parallel
Rayleigh beams, yet when the model composed of two parallel Timoshenko beams
is considered, the influence of transverse shear causes a decrease in the critical
buckling load.

Motamarri and Suryanarayan (2012) studied analytically the problem of dynamic
elastic buckling of Euler-Bernoulli beams subjected to axial loads. A unified solu-
tion was presented as closed form analytical expressions, for peak load, time at peak
load and load-deflection curve. The accuracy of the unified analytical expressions
and the validity of the single mode dynamic buckling formulation were also exam-
ined by comparing with results obtained from exact solutions of the single mode
formulation for various boundary conditions and with the numerical results from
the dynamic response of a large number of degree of freedom finite element model.
These authors concluded that the unified expressions provide a very good estimate
of the buckling load over a wide range of loading rate and initial eccentricity.

Teter and Kolakowski (2013) described an analysis of dynamic response of thin-
walled composite columns with opened stiffened cross-sections. The columns were
subjected to an in-plane pulse loading and three different stability criteria were
applied: the Budiansky-Hutchinson, the Kleiber-Kotula-Saran and the phase-plane
one. A pulse loading of rectangular shape was concerned. The columns were
assumed to be simply supported at the ends. These authors concluded that there is a
good agreement of the results obtained by the Budiansky-Hutchinson criterion and
the phase-plane criterion, however, according to the Kleiber-Kotula-Saran criterion,
the critical value of the dynamic load factor was significantly lower.

Other researchers also studied the problem of dynamic instability in different areas
of knowledge and with different approaches, such as: Fereidooni et al. (2008),
Trikha et al. (2009) and Yeh et al. (2014), among others.
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In spite of the importance of the subject and the studies presented above, the topic
is not exhausted. Simple design specifications are not yet available and constitute
the subject of ongoing research efforts. Within this context, this paper proposed
a new methodology to study the dynamic instability of straight bars subjected to
axial impulsive loads (short pulses), using the truss-like Discrete Element Method
(DEM). The proposed numerical approach is verified by comparing the obtained re-
sults with the results obtained by theoretical-analytical solutions. After confirming
the good performance of the DEM in problems of static buckling of elastic straight
bars, problems of dynamic instability are solved and the results are presented in
graphical form, taking into account initial imperfections and large displacements.
Stochastic fields for the material properties, as Young’s modulus and mass den-
sity, are also implemented in the numerical analyses, following the methodology
proposed by Shinozuka and Deodatis (1996).

2 Theoretical bases

Leonhard Euler, in 1757, derived an equation that gives the maximum axial load
that a long, slender, ideal column can carry without buckling. An ideal column is
one that is perfectly straight, homogeneous, and free from initial stress. The Euler
critical buckling load, Pcr, of a column is obtained by:

Pcr =
π2EI

L2
f

(1)

in which E is the Young’s modulus, I is the moment of inertia of the cross section
and L f is the buckling length, whose value depends on the support conditions of the
column. For one end fixed and the other end free to move laterally, L f = 2.0L; for
both ends pinned (hinged, free to rotate), L f = L; for one end fixed and the other
end pinned, L f = 0.7L; for both ends fixed, L f = 0.5L; being L the unsupported
length of the column.

The fundamental frequency of transversal vibration of a prismatic structural mem-
ber (beam or column) subjected to an axial force P0 can be approximated by:

f1 = f0

√
1− P0

Pcr
(2)

in which f1 denotes the fundamental natural frequency of the member subjected to
an axial force P0, f0 denotes its reference natural frequency (i.e., the fundamental
natural frequency without the axial force P0, obtained by Equation (3)) and Pcr is
the critical elastic buckling load of the member, obtained by Equation (1). Equa-
tion (2) gives exact results when the vibration and buckling modes are identical,
constituting a satisfactory approximation when such modes are similar.
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The fundamental natural frequency of transversal vibration of a prismatic structural
member without axial force may be obtained by:

f0 =
(β0L)2

2π

√
EI

ρAL4 (3)

in which ρ is the mass density, A is the area of the cross section and β 0L is a
parameter whose value depends on the support conditions of the member. For
example, for one end fixed and the other end free to move laterally, β 0L = 1.875104;
for both ends pinned, β 0L = π; for one end fixed and the other end pinned, β 0L =
3.926602; for both ends fixed, β 0L = 4.730041.

3 Discrete Element Method (DEM)

In this paper, the proposed methodology suggests the representation of a solid by
means of an arrangement of one dimensional elements able to carry only axial
loads, as shown in Figure 1, called Discrete Element Method (DEM). The equiva-
lence between an orthotropic elastic continuum and the cubic arrangement of uni-
axial elements consisting of a cubic cell with eight nodes at its corners plus a central
node was shown by Nayfeh and Hefzy (1978).
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prismatic body. 

(a) 

L0 

y 

x (b) 

z 

Figure 1: DEM discretization strategy: (a) basic cubic module, (b) generation of a
prismatic body.

The equations that relate the properties of the elements with the elastic constants of
an isotropic medium are:

δ =
9ν

4−8ν
, EAn = EL2

0
(9+8δ )

2(9+12δ )
, EAd =

2
√

3
3

EAn (4)

in which E and ν denote Young’s modulus and Poisson’s ratio, respectively, while
An and Ad represent the areas of normal and diagonal elements, respectively. L0 is
the length of the longitudinal elements.
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The discrete elements representation of the orthotropic continuum was adopted by
the authors to solve structural dynamics problems by means of explicit direct nu-
merical integration of the equations of motion, assuming the mass lumped at the
nodes. Each node has three degrees of freedom, corresponding to the nodal dis-
placements in the three orthogonal coordinate directions. The resulting equations
of motion may be written in the well-known form:

MMM~̈x+CCC~̇x+~Fr (t)−~P(t) =~0 (5)

in which~x represents the vector of generalized nodal displacements, M the diagonal
mass matrix, C the damping matrix, also assumed diagonal, ~Fr (t) the vector of
internal forces acting on the nodal masses and ~P(t) the vector of external forces.

Obviously, if M and C are diagonal, Equations (5) are not coupled. Then the ex-
plicit central finite differences scheme may be used to integrate Equation (5) in
the time domain. Since the nodal coordinates are updated at every time step, large
displacements can be accounted for in a natural and efficient manner.

Another important feature of the proposed approach is the possibility of assumption
that all material properties, such as Young’s modulus (E) and mass density (ρ), are
not constant throughout the structure, but random fields. That is, relevant material
properties may be assumed to be correlated Gaussian random fields of the spa-
tial coordinates. The spectral representation method proposed by Shinozuka and
Deodatis (1996) for the simulation of three-dimensional homogeneous stochastic
fields, which provides one value of the simulated variable at each point in a pre-
viously discretized field is employed herein. It is necessary to describe the field
to be simulated by means of its power spectral density function or alternatively of
its autocorrelation function. It is important to mention that there is a correlation
between the same properties in adjacent elements. When the correlation length of a
property, say the elasticity modulus in the x-direction, is large in relation to the size
of the elements, the property will vary little between adjacent elements. The degree
of correlation depends on the correlation length of the property under consideration
and on the size of elements.

A new improvement in the DEM employed in this paper is the introduction of small
perturbations in the cubic arrangement, generated by small initial displacements
of nodal points. Basically, it is assumed that the nodes in the perturbed model
are displaced from their position in a perfect cubic arrangement, defined by nodal
coordinates (xn, yn, zn), as indicated below:

(xn + rxL0, yn + ryL0, zn + rzL0) (6)

in which rx, ry and rz are random numbers with a normal distribution with zero
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mean and coefficient of variation CV p, which is defined by the user. L0 denotes the
length of the longitudinal elements in the cubic cell.

Riera and Iturrioz (1998) and Riera et al. (2011) confirmed the reliability of the
method comparing DEM predictions for structures under impulsive loads with ex-
perimental results or other numerical techniques. Additionally, in other studies
using DEM, Dalguer et al. (2003), Rios and Riera (2004), Miguel et al. (2006),
Miguel and Riera (2007), Miguel et al. (2008), Iturrioz et al. (2009), Miguel et
al. (2010) and Riera et al. (2014) contributed to demonstrate the efficiency of the
method.

4 Illustrative examples

4.1 Studied member

The studied member is a steel bar, with one end fixed and the other end free to
move laterally, of square cross section of 0.15×0.15m and 6.0m long, as shown in
Figure 2. The bar was discretized with elements of L0 equal to 0.05m, totalizing
1080 cubic modules with 9048 DOF. Initially the material was supposed to be ho-
mogeneous, with Young’s modulus E = 2.0×1011Pa, mass density ρ = 7850kg/m3

and Poisson’s ratio ν = 0.25; and also the mesh was initially supposed does not
have imperfections.

Figure 2: Studied steel bar discretized with DEM.

4.2 Static analysis

Initially supposing that the bar is homogenous and the mesh is not perturbed, the
numerical simulation using DEM is carried out applying the load very slowly, simu-
lating a static analysis. The bar is subjected to an axial compression load increasing
slowly and lineally with the time.

The analytical result for the Euler critical buckling load, applying Equation (1), is
Pcr = 5.783×105N.
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Figure 3 shows a graph of axial compression load versus displacement in the free
end in the direction perpendicular to the load application, while Figure 4 shows the
corresponding Southwell plot.

Figure 3: Axial compression load versus transversal displacement for homoge-
neous material properties and perfect mesh.

Figure 4: Southwell plot for homogeneous material properties and perfect mesh.
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Observing Figure 3, it is noticed that the critical load estimated by DEM is around
Pcr = 5.8×105N, which can also be estimated by the Southwell plot (Figure 4),
through the inverse of the inclination, as being Pcr = 5.8×105N. Therefore, it is
concluded that as much the theoretical critical load as the critical load estimated by
DEM resulting in approximately the same value, showing the good performance of
the proposed method in estimating the buckling load.

Next, the bar is analyzed again simulating a static analysis, but now considering that
the Young’s modulus and the mass density are assumed to be correlated Gaussian
random fields of the spatial coordinates, according to the procedure proposed by
Shinozuka and Deodatis (1996), with mean values of E(E) = 2.0×1011Pa and E(ρ)
= 7850kg/m3 and coefficient of variation equal to 10% for both material properties.
The correlation lengths in the three directions were assumed to be the same and
equal to 40L0, i.e., 2m for both material properties. In addition, perturbations in
the DEM cubic mesh were introduced in this simulation, according to Equation (6),
with a coefficient of variation CV p equal to 1%.

Figure 5 shows a graph of axial compression load versus displacement in the free
end in the direction perpendicular to the load application, while Figure 6 shows the
corresponding Southwell plot.

Observing Figures 5 and 6, it is noticed that the critical load estimated by DEM is
around Pcr = 5.2×105N. As expected, due to non-homogeneous material properties

Figure 5: Axial compression load versus transversal displacement for non-
homogeneous material properties and imperfect mesh.
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and mesh imperfections, this critical buckling load is slightly lower (around 10%
smaller) than the value for homogeneous material properties and without mesh im-
perfections.

Figure 6: Southwell plot for non-homogeneous material properties and imperfect
mesh.

4.3 Dynamic analysis

Now, the same bar is subjected to an impact axial load of amplitude P0 and duration
td . Again, initially it is supposed that the bar is homogenous and the mesh is not
perturbed. The analytical result for the fundamental natural frequency of transver-
sal vibration without axial load, applying Equation (3), results f0 = 3.3974Hz, i.e.,
a fundamental period equal to T0 = 0.2943s.

Firstly, the duration td of the impact load is assumed to be bigger than the vibration
fundamental period of the bar (td > T0) and the amplitude P0 of the impact load is
assumed to be lower than the Euler critical buckling load (P0 < Pcr).

Figures 7 and 8 show the applied axial load and the transversal displacement versus
time graphs, respectively.

As the duration of the impulsive load is larger than the fundamental period of the
bar, it may be seen in Figure 8 that in the first 2 seconds, the bar vibrates with
frequency of 1.89Hz, increasing to 3.40Hz (equal to the theoretical value obtained
with Equation (3)) as soon as the axial load is removed. These values are in accor-
dance with Equation (2) for P0 equal 4.0×105N. It is also possible to check that the
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Figure 7: Applied axial impact load.

Figure 8: Transversal displacement versus time, for P0 = 4.0×105N and td = 2.0s.
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maximum dynamic load factor is close to 2, which would be the theoretical lineal
value without damping.

Next, the duration of the impact load was reduced to 0.29s, i.e., lower than the
fundamental period of the bar. The amplitude of the axial force was kept the same
as before, i.e., 4.0×105N. Figure 9 shows the transversal displacement versus time
graph.

Figure 9: Transversal displacement versus time, for P0 = 4.0×105N and td = 0.29s.

Now, the duration of the impact load was maintained equal to 0.29s, and the ampli-
tude of the axial force was assumed to be 5.8×105N, i.e., equal to the Euler critical
buckling load. Figure 10 shows the transversal displacement versus time graph.

As may be verified in the graph of Figure 10, when the applied load is equal to
the critical load, the period tends to infinite in the first 0.29s in which the load
is applied, i.e., frequency zero, confirming the result obtained by Equation (2).
Additionally, it can be seen in Figures 9 and 10 that as soon as the axial load is
removed (after 0.29s) the vibration frequency increases to 3.40Hz (equal to the
theoretical value obtained with Equation (3)).

As expected, the previous results confirm the good performance of the proposed
methodology in the static and dynamic instability analyses of homogenous bars
without geometrical imperfections.

Thus, now the DEM is used to carry out dynamic instability analyses of non-
homogeneous bars considering that the Young’s modulus and the mass density are
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Figure 10: Transversal displacement versus time, for P0 = 5.8×105N and td = 0.29s.
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assumed to be correlated Gaussian random fields of the spatial coordinates with
mean values of E(E) = 2.0×1011Pa and E(ρ) = 7850kg/m3 and coefficient of varia-
tion equal to 10% for both material properties. The correlation lengths in the three
directions were assumed to be the same and equal to 40L0, i.e., 2m for both mate-
rial properties. In addition, perturbations in the DEM cubic mesh were introduced
in these simulations, according to Equation (6), with a coefficient of variation CV p

equal to 1%.

Figure 11 summarizes the results of these several dynamic simulations, showing the
transversal maximum displacement versus axial force (for td = 0.29s), which could
serve as a preliminary criterion of decision on the occurrence or not of dynamic
instability, using, for instance, the well-known Budiansky-Hutchinson (1966) cri-
terion.

5 Conclusions

This paper proposed a numerical methodology to analyze dynamic instability of
straight bars subjected to impulsive axial loads based on the truss-like Discrete
Element Method (DEM). The proposed method is able to handle both static and
dynamic loads and also with both ideal and non-ideal bars. In the DEM, the inte-
gration of the equations of motion is carried out in an explicit way, by central finite
differences, allowing the consideration of large displacements and nonlinearities
easily.

Initially the DEM was applied to solve static and dynamic instability problems
of ideal bars, i.e., homogeneous bars without geometrical imperfections. These
results were compared with analytical solutions, showing the good performance of
the proposed methodology. After that, mesh imperfections and also the possibility
to assume that any material property to be correlated Gaussian random fields of the
spatial coordinates were implemented. These improvements led the DEM to be a
tool that is able to simulate more realistic cases, i.e., non-ideal members, in which
the bars have imperfections and can also be non-homogeneous.

Finally, the proposed methodology could be used by designers as a tool of easy use
for estimating the dynamic buckling load.
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