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Adaptive Differentiators via Second Order Sliding Mode
for a Fixed Wing Aircraft

M. Zaouche, A. Beloula, R. Louali 1, S. Bouaziz 2 and M. Hamerlain 3

Abstract: Safety automation of complex mobile systems is a current topic issue
in industry and research laboratories, especially in aeronautics. The dynamic mod-
els of these systems are nonlinear, Multi-Input Multi-Output (MIMO) and tightly
coupled. The nonlinearity resides in the dynamic equations and also in the aerody-
namic coefficients’ variability.
This paper is devoted to developing the piloting law based on the combination
of the robust differentiator with a dynamic adaptation of the gains and the robust
controller via second order sliding mode, by using an aircraft in virtual simulated
environments.
To deal with the design of an autopilot controller, we propose an environment
framework based on a Software In the Loop (SIL) methodology and we use Mi-
crosoft Flight Simulator (FS-2004) as the environment for plane simulation.
The first order sliding mode control may be an appropriate solution to this piloting
problem. However, its implementation generates a chattering phenomenon and a
singularity problem. To overcome these problems, a new version of the adaptive
differentiators for second order sliding modes is proposed and used for piloting.
For the sliding mode algorithm, higher gains values may be used to improve ac-
curacy; however this leads to an amplification of noise in the estimated signals. A
good tradeoff between these two criteria (accuracy, robustness to noise ratio) is dif-
ficult to achieve. On the one hand, these values must increase the gains in order to
derive a signal sweeping of some frequency ranges. On the other hand, low gains
values have to be imposed to reduce noise amplification. So, our goal is to develop
a differentiation algorithm in order to have a good compromise between error and
robustness to noise ratio. To fit this requirement, a new version of differentiators
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with a higher order sliding modes and a dynamic adaptation of the gains, is pro-
posed: the first order differentiator for the control of longitudinal speed and the
second order differentiator for the control of the Euler angles.

Keywords: Adaptive differentiators, second order sliding modes, Dynamic adap-
tation of the gains, Microsoft Flight Simulator.

1 Introduction

The control of dynamical systems in presence of uncertainties and disturbances is
a common problem to deal with when considering real plants. The effect of these
uncertainties on the dynamical systems should be carefully taken into account in
the controller design phase since they can degrade the performance or even lead
to system instability. For this reason, during recent years, the problem of control-
ling dynamical systems in presence of heavy uncertainty conditions has become
an important research subject. As a result, considerable progress has been attained
in robust control techniques, such as nonlinear adaptive control, model predictive
control, backstepping, sliding model control and others [Harkegard (2001); Slo-
tine (1991); Junkins, Subbarao and Verma, A. (2000); Chiroi, Munteanu, and Ursu
(2011)].

These techniques are able to guarantee the attainment of the control objectives in
spite of modeling errors and/or uncertainties on parameters that can affect the con-
trolled plant. Sliding mode control is generally considered to be very robust and
simple to implement, but the so-called chattering phenomenon (effects of the dis-
continuous nature of the control), and the high control activity, have originated a
certain skepticism about such an approach.

The first order sliding mode control can be a solution for this piloting problem;
however, its implementation generates the chattering phenomenon [Bandyopad-
hyay (2006); Sabanovic (2004); Perruquetti (2000)] and the singularity problem.
In order to avoid them, a new version of the differentiators with a dynamic adap-
tation of the gains via second order sliding modes approach, is proposed and used
for the piloting. These techniques ensure a good tradeoff between error and robust-
ness to noise ratio and especially a good accuracy for a certain frequency range,
regardless the gains setting of the algorithm. They have been used to estimate the
successive derivatives of the mode sliding surface S(t) and transmit them to the
control block, by using an aircraft in virtual simulated environments. It is real-time
virtual simulation which is close to the real world situation.

The piloting technique proposed in this work is more robust and simpler to imple-
ment than the quaternion one. It only requires information about the sliding mode
surface.
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2 Problem statement

Through a methodology based on the confrontation of the real and the simulated
worlds, the main objective of the present work is to design an autopilot based on
robust controller to maintain the desired trajectory (Figure 1).

Figure 1: Real trajectory.

To achieve this objective, we use Flight Simulator FS2004 as simulated world envi-
ronment coupled to a hardware and software development platform. It is developed
by Microsoft, with several simulated aircrafts included in its airplane library.
We chose the Zlin-142 airplane which is used in various aeronautic schools (pilot
training) because modify its electronics, actuators and sensors are essay to modify.

Figure 2: Aircraft and environment visualization.



162 Copyright © 2015 Tech Science Press CMES, vol.104, no.3, pp.159-184, 2015

3 Characteristics of the aircraft Zlin-142

Air Wrench tool gives access to flight dynamic characteristics (mudpond.org/Air
Wrench/main.htm). This tool allows creating and tuning flight dynamics files de-
scription of simulated planes models. This software uses aerodynamics formulas
and equations described on the Mudpond Flight Dynamics Workbook. It calculates
aerodynamic coefficients based on the physical characteristics and performance of
the aircraft (Table 1).

Table 1: FS2004 Aircraft simulated characteristics Zlin-142.

Dimensions Constant speed propeller Moments of inertia
Length : 7.42m Prop diameter: 2.08m Pitch : 2780.00

Wingspan: 9.27m Prop gear ratio 1.00: Roll : 4060.00
Wing surface area: 13.94m2 Tip velocity: 0.834mach Yaw : 2340.00

Wing root chord: 1.50m Prop blades: 2 Cross : 0.00
Aspect ratio: 6.17 Beta fixed pitch: 20.00deg
Taper ratio: 1.00 Prop efficiency: 0.870

Design altitude: 1524.0m

4 Implementation of a real-time interface between Microsoft Flight Simula-
tor and the module Real Time Windows Target of Simulink/Matlab

We design our Software to interface the simulated aircraft in Flight Simulator en-
vironment (read and write many sensors, actuators data and parameters).

Figure 3: Block diagram of the software environment design.
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We communicate with FS2004 by using a dynamic link library called FSUIPC.dll
(Flight Simulator Universal Inter-Process Communication). This library created by
Peter Dowson is downloadable from his website (www.schiratti:com/Dowson.html),
and can be installed by copying the directory (module) of FS2004. It allows exter-
nal applications to read and write in and from Microsoft Flight Simulator MSFS
by exploiting a mechanism for IPC (Inter-Process Communication) using a buffer
of 64 Ko. The organization of this buffer is explained in the documentation given
with FSUIPC, from which the Figure 4 is taken.

To read or write a variable, we need to know its address in the table, its format and
the necessary conversions. For example, the indicated air speed is read as a signed
long S32 at the address 0x02BC.

Figure 4: Part of the table FSUIPC.

The following data information is recorded in real time:

• Geographic position (latitude λ , longitude µ and altitude h), Ground speed
of the aircraft from the Global Positioning System (GPS);

• Pressure-altitude, vertical/Indicated air Speeds, angle-of-attack α and angle-
of-sideslip β from the air data measurement system;

• Rotations rates p, q, r, accelerations ax, ay, az , Euler angles ϕ , θ , ψ from
Inertial Measurement Unit (IMU).

In this work, the main goal is to maintain the desired aircraft’s trajectory; and to do
so, we propose the following approach:
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• Implementation of a real time interface between the flight simulator FS2004
and the module real time Windows target of Simulink/Matlab;

• Description and analysis of the aircraft system model;

• Development and implementation of the technique based on the combination
of the robust differentiator with a dynamic adaptation of the gains and the
robust controller via second order sliding mode for the design of the autopilot
controller;

• Flight tests.

5 System modeling

The model describing the system state is

ẋ = f (x, t)+g(x, t).U (1)

With x the aircraft state vector in the body frame:

x =
[

u v w p q r ϕ θ ψ λ µ h
]T

=
[

x1 · · · · · · · · · x12
]T (2)

U =
[

δt δe δa δr
]T The control vector and δt , δe, δa and δr denoting thrust

control, elevator deflection, aileron deflection and rudder deflection.
The nonlinear functions f (x) and q(x) are given by:

f (x, t) =
[

f1 (x, t) · · · · · · f9 (x, t)
]T (3)

f1(x, t) = x2x6− x3x5 +Cx2x5 +Cx4 +Cx5α +Cx1α̇−gsinx8

f2(x, t) = x3x4− x1x6 +Cy2x4 +Cy3x6 +Cy6β +Cy1β̇ +Cy7 +gsinx9 cosx8

f3(x, t) = x1x5− x2x4 +Cz2x5 +Cz4 +Cz5α +Cz1α̇ +gcosX9 cosX8

f4(x, t) =−
Izz

∆
(−Ixzx4x5 +(Iyy− Izz)x5x6 +Cl2x4 +Cl3x6)

− Ixz

∆
(−Ixzx5x6 +(Iyy− Ixx)x4x5−Cn2x4−Cn3x6)

− 1
∆
(Izz(Cl5β +Cl1β̇ +Cl7)− Ixz(Cn6β +Cn1β̇ )+Cn7)

f5(x, t) =
1

Iyy
(Izz− Ixx)x4x6 + Ixz(x2

6− x2
4)+Cm2x5 +Cm5α +Cm1α̇ +Cm4
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f6(x, t) =−
Ixz

∆
(Ixzx4x5− Ixx(Iyy− Izz)x5x6−Cl2x4−Cl3x6)

− Ixx

∆
(Ixzx5x6 +(Iyy− Ixx)x4x5 +Cn2x4 +Cn3x6)

− 1
∆
(−Ixz(Cl5β +Cl1β̇ +Cl7)+ Ixx(Cl5β +Cl1β̇ )+Cn7)

f7(x, t) = x4 + x5.sinx7. tanx8 + x6.cosx7. tanx8

f8(x, t) = x5.cosx7− x6.sinx7

f9(x, t) =
1

cosx8
. [x5.sinx7 + x6.cosx7]

g(X , t) =



Fprop.cos(αm)
m Cx3 0 0
0 0 Cy4 Cy5

Fprop.sin(αm)
m Cz3 0 0
0 0 a1 a2
0 Cm3 0 0
0 0 a3 a4
0 0 0 0
0 0 0 0
0 0 0 0


and

∆ = I2
xz− Ixx.Izz

a1 =−
(IzzCl4− IxzCn4)

∆

a2 =−
(IzzCl6− IxzCn5)

∆

a3 =−
(IxxCn4− IxzCl4)

∆

a4 =−
(IxxCn5− IxzCl6)

∆

The changing mass m(t) is

m(t) = m0− c.t (4)

m0 = maircra f t +m f uel is the total weight equal 1090Kg, c(t) is the cumulated fuel
consumption.
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The following condition must always hold:

mcarburant − c.t ≥ 0.

The aircraft motor position has a pitch and a yaw offset orientation angles. In the
case of our aircraft, the pitch setting is αm = 0.394 = 200deg, and the yaw setting
is βm = 0.00. The engine propulsion force is written in the body frame reference
[Boiffier, (1998)]:

F = Fp.

 cosβmcosαm

sinβm

cosβmsinαm

δt

Fp =
Km.ρ

Va

(5)

Va is the aerodynamic velocity, Km is a constant and σt is the throttle position (be-
tween 0.0 and 1.0).
The coefficients Cx, Cy,......,Cm are defined in Table 2.

Table 2: Expression of the modified aerodynamic coefficients.

Aer. coef. Cx Aer. coef. Cy Aer. coef. Cz

Cx1 =
QSCxα̇

m Cy1 =
QSbCyβ̇

2mV Cz1 =
Q.S.c.Czα̇

m.V
Cx2 =

QScCxq
mV Cy2 =

QSbCyp
2mV Cz2 =

QScCzq
mV

Cx3 =
QSCxδe

m Cy3 =
QSbCyr

2mV Cz3 =
QSCzδe

m

Cx4 =
QSCx0

m Cy4 =
QSCyδa

m Cz4 =
QSCz0

m

Cx5 =
QSCxα

m Cy5 =
QSCyδ r

m Cz5 =
QSCzα

m

Cy6 =
QSCyβ

m
Cy7 =

QSCy0
m

Aer. coef. Cm Aer. coef. Cn Aer. coef. Cl

Cm1 =
QSc2Cmα̇

V Cn1 =
QSb2Cnβ̇

2V Cl1 =
QSb2Clβ̇

2V

Cm2 =
QSc2Cmq

V Cn2 =
QSb2Cnp

2V Cl2 =
QSb2Cl p

2V

Cm3 =
QScCmδe

Iyy
Cn3 =

Q.S.b2.Cnr
2.V Cl3 =

QSb2Clr
2V

Cm4 = QScCm0 Cn4 = Q.S.b.Cnδa Cl4 = QSbClδa
Cm5 = QScCmα Cn5 = Q.S.b.Cnδ r Cl5 = QSbClβ

Cn6 = Q.S.b.Cnβ Cl6 = QSbClδ r
Cn7 = QSbCn0 Cl7 = QSbCl0



Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft 167

6 Analysis of the piloting

The aircraft dynamic analysis confirms that Roll and Yaw moments equations f4 (x)
and f6 (x) have the same shape and are similar. This observation enforces us to find
a control method which allows avoiding the singularity problem. In order to do so,
we propose to control the longitudinal speed u by the thrust control δt , the bank
angle ϕ by the aileron deflection δa, the pitch angle θ by the elevation deflection
δe and the azimuth angle ψ by the aileron and elevation deflections δa, δe . The
rudder deflection δr is used in the landing and the taking off. To make a turn, we
use bank to turn procedure which needs aileron and elevator deflections. It is based
on human piloting techniques.
We propose the following output vector:

y =
[

u ϕ θ ψ
]T (6)

The kinematic model is represented by the equations expressing f7 (x), f8 (x) and

f9 (x). Notice that the expression of f9 (x) contains a singularity when x8 = ±π

2
where the terms tgx8 and secx8 =

1
cosx8

are infinite. Such conditions occur in

aerobatic manoeuvres where the aircraft loops or climbs at a near vertical angle.
Two techniques are used to overcome these problems. The pitch angle can be
constrained so that the computation results in a valid floating point number. For
example, tg89.5 = 114.6 and this value can be used in computations when the
pitch attitude is between 89.50 and 90.50.

The numerical error introduced by this approximation only occurs at this extreme
flight attitude where its effects on the aircraft behavior may not be apparent. The
commonly used method is to use quaternion [Allerton (2009)]. In this work, we
propose the adaptive differentiators via sliding mode because they are very robust
and simpler to implement than the quaternion technique. They need only the sliding
mode surface.

7 Application of the adaptive differentiators for second order sliding mode

7.1 Review of high order sliding mode control

The state equations of the nonlinear system are given by:

ẋ = f (x, t)+g(x, t) .U

S = S (x, t)
(7)

and S (x, t) is the sliding mode surface. For our case S = y− yd , where yd is the
desired output signal.
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The task is to vanish the output S in finite time and to keep S≡ 0.
According to the conception of system relative degree, there are two conditions
[Bandyopadhyay (2006)].

Relative degree = 1, if and only if
∂ Ṡ
∂U
6= 0;

Relative degree ≥ 2, if
∂S(i)

∂U
= 0

(i = 1,2, ......,r−1) ,
∂S(r)

∂U
6= 0 (8)

The aim of the first order sliding mode control is to force the state to move on the
switching surface S (t,x). In high order sliding mode control, the purpose is to force
the state to move on the switching surface S (t,x) = 0 and to keep its (m−1)th first
successive derivatives null. In the case of second order sliding mode control, the
following relation must be verified:

S (t,x) = Ṡ (t,x) = 0 (9)

In arbitrary order sliding mode control, the core idea is that the discrete function
acts on a higher order sliding mode surface, making

S (t,x) = Ṡ (t,x) = · · ·= S(r−1) = 0 (10)

Suppose the relative degree of system (7) is r, generally speaking, when the control

input U first time appears in r-order derivative of S while
dS(r)

dU
6= 0, we take r-order

derivative of S for the output of system (6), S, Ṡ, S̈, · · · ,S(r−1) can be obtained. They
are continuous function for all the x and t. However, corresponding discrete control
law U acts on S(r).

So, the following expression can be obtained

S(r) = a(t,x)+b(t,x) .U (11)

Therefore, high order sliding mode control is transformed to stability of r order
dynamic system (7), (8). Through the Lie derivative calculation, one can directly
check that [Salgado (2004); Huangfu, Yigeng (2011)].

b = LgLr−1
f S =

dS(r)

dU
a = Lr

f S
(12)
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The sliding mode equivalent control is Ueq =−
a(t,x)
b(t,x)

. At present, the aim of the

control is to design a discrete feedback control, so that the new system converges
into origin on the r order sliding mode surface within limited time. However, in
equation (7), both a(t,x) and b(t,x) are bounded function. There are positive con-
stants Km, KM and C so that

0≺ Km ≤ b(t,x)≤ KM

| a(t,x) |≤C
(13)

7.2 Controller construction

Let p be a positive number. Denote

Σ0,r = S

Σ1,r = Ṡ+β1.N1,r.sign(S) ;

Σi,r = S(r)+βi.Ni,1.sign(Σi−1,r) i = 1, ....,r−1

N1,r =| S |
(r−1)

r

Ni,r =
(
| S |

p
r + | Ṡ |

p
r−1 .....+ | S(i−1) |

p
(r−i+1)

) (r−i)
p

Nr−1,r =

(
| S |

p
r + | Ṡ |

p
(r−1) .....+ | S(r−2)|

p
2

) 1
p

(14)

where β1, β2, ..., βr−1 are positive numbers.
In the above formulae, sign(.) denotes the usual sign function and when the argu-
ment is a vector, then sign(.) denotes a vector which elements are the signs of the
vector elements.

7.2.1 Theorem 1 [Levant (1998); Levant (2003)]

Let system (6) have relative degree r with respect to the output S and (11) be
fulfilled. Then with propely chosen positive parameters β1, β2, ..., βr−1 controller

U =−γ.sign(Σr−1,r(S, Ṡ, S̈, ....,S(r−1))) (15)

provides for the appearance of r-sliding mode S≡ 0 attracting trajectories in finite
time.
Certainly, the number of choices of βi is infinite. Here are a few examples with βi

tested for r � 3, p being the least common multiple of 1,2, ...,r.
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The sliding mode controller is given:

1. U =−γ.sign(S)

2. U =−γ.sign
(

Ṡ+ | S |
1
2 .sign(S)

)
3. U =−γ.sign

(
S̈+2.(| S |3 + | S |2)

1
6

)
.sign

(
Ṡ+ | S |

2
3 .sign(S)

) (16)

From the above equation (15) we can also see that, when r = 1, the controller is
traditional relay sliding mode control; when r = 2, in fact, the controller is a super
twisting algorithm of second order sliding mode.

Getting the differentiation of a given signal is always essential in automatic control
systems. We often need to differentiate a variable or a function. So there are a lot
of numerical algorithms for this issue. The same situation appears in the design of
high order sliding mode controller (15) that needs to calculate the derivative values
of sliding mode variable.

7.3 Differentiators for higher order sliding mode

For sliding mode algorithm, higher gains values can improve accuracy, but this
leads to an amplification of noise in the estimated signals. The compromise be-
tween these two criteria (accuracy, robustness to noise ratio) is difficult to achieve.
On the one hand, these values must increase the gains values in order to derive a
signal sweeping of certain frequency ranges. On the other hand low gains values
must be imposed to reduce noise amplification. Our goal is to develop a differenti-
ation algorithm in order to have a good compromise between error and robustness
to noise ratio especially to guarantee a good accuracy for certain frequency ranges,
regardless of the gains setting of the algorithm. To satisfy at best these criteria, we
propose a new version of the differentiators of higher order sliding modes with a
dynamic adaptation of the gains:

• Second-order differentiator for the control of the Euler angles ϕ , θ and ψ;

• First order differentiator for the control of longitudinal speed u.

7.4 For the Euler angles ϕ , θ and ψ

The relative degrees are:

rϕ = rθ = rψ = 2

The control input can be chosen as following:

U =−γ.sign
(

Ṡ+ | S |
1
2 .sign(S)

)
(17)
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Where

U =
[

δe δa δr
]T

S =
[

Sϕ Sθ Sψ

]T
γ =

 γϕ 0 0
0 γθ 0
0 0 γψ

 (18)

We propose the sliding mode surfaces from the differentiator:
S0 = z0− yd

S1 = z1− v0

S2 = z2− v1

(19)

Where the desired vector state variables and the outputs of the differentiator are
defined by:

yd =
[

ϕd θd ψd

]T

z0 =
[

z0ϕ z0θ z0ψ

]T

z1 =
[

z1ϕ z1θ z1ψ

]T

z2 =
[

z2ϕ z2θ z2ψ

]T

(20)

v0 and v1 are given by the adaptive second order differentiator.

ż0 = v0

v0 =−λ̂0 | S0 |
3
4 sign(S0)−K0.S0 + z1

ż1 = v1

v1 =−λ̂1 | S1 |
2
3 sign(S1)−K1.S1 + z2

ż2 = v2

v2 =−λ̂2. | S2 |
1
2 .sign(S2)− λ̂3.

∫ t
0 .sign(S2)dt−K2.S2

(21)

where K1,K2,K3 � 0.
The dynamic adaptation of the gains ˙̂

λi, i ∈ {1,2,3} are given by:
˙̂
λ0 =| S0 |

3
4 .sign(S0)S0

˙̂
λ1 =| S1 |

2
3 .sign(S1)S1

˙̂
λ2 =| S2 |

1
2 .sign(S2)S2

˙̂
λ3 = S2

∫ t
0 sign(S2)dt

(22)
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In case of using the differentiator, variable S is considered as given input of the
differentiator. Then, the output of differentiator z can be used to estimate corre-
sponding order derivative of S (Figure 6).
The reduction of the noise is assumed by the presence of the linear term KiSi in
the equation of each output i of the adaptive algorithm. This linear term can be
expressed as the law of the equivalent control which allows the reduction of the
chattering effect. The addition of this continuous term smooths the output noise
due to a low gain values. If the chosen values of these gains become very low,
the convergence time of the algorithm becomes slow. Therefore, the choice of the
convergence gains remains difficult and is based on a compromise between reduc-
tion of the noise and the convergence time of the adaptive differentiator. It should
also be noted that in the presence of noise, it is necessary to impose the small ini-
tial values of the dynamic gains to reduce the effect of the discontinuous control.
Moreover, the presence of integral term in the expressions of the dynamic gains
provides also the smoothing of the estimated derivatives. The application of the
differentiators with dynamic adaptation of the gains via sliding mode controller in
FS2004 is shown in the following figure:

Figure 5: Application of the adaptive differentiators for sliding mode controller in
FS2004.
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7.5 Simulation results

We run the Flight Simulator FS2004 and the interface with the module Real Time
Windows Target of Simulink/Matlab. The taking off of the aircraft Zlin-142 was
done by the keyboard. Then, we run our software to transmit the control inputs
based on the adaptive differentiators via second order sliding mode to the autopilot
controller in order to maintain the desired trajectory.

The input signals to the upper and lower saturation values of the control laws are
used to respect the actuators bounds. Scaled functions are added to take into ac-
count the actuators resolutions.

The robust differentiator via sliding mode technique is used to recover the desired
signal. Several flight tests were realized to demonstrate the effectiveness of the
combined controller/differentiator. We chose the parameters K0,i = 50 and K1,i =
50, where i = ϕ,θ ,ψ .

The desired signal injected and the output differentiators are shown in figure 6.

Figure 6: Reference and output differentiator.

We notice that the outputs of the differentiators z0, j where i = ϕ,θ ,ψ follows the
references ϕd , θd and ψd perfectly.

The surfaces sliding mode S0,ϕ,θ ,ψ are small (see Figure 8).

The Figure 9 show the error between the output differentiator z1 and v0. The signal
z1 follows v0.
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Figure 7: Surface sliding S0.

Figure 8: Output differentiator z1 and signal v0.
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Figure 9: Surface sliding mode S1.

The surface sliding mode S1 is shown in Figure 10.

The input signals to the upper and the lower saturation values of the aileron, rudder
and elevator deflections are used to respect the virtual Joystick (PPjoy) bounds.
Upper limit: 62767, lower limit: 1.

Airwrench gives the following data:

• Aileron parameters: Aileron area 1.30m2, aileron up angle limit 28deg, aileron
down angle limit 20deg;

• Elevator parameters: Elevator area 2.23m2, Elevator up angle limit 32deg,
Elevator down angle limit 30deg.

• Rudder parameters: Rudder area 0.72m2, Rudder angle limit 22deg.

The aileron, elevator and rudder deflections are shown in figures 10, 11, and 12.
We notice the absence of the chattering phenomenon.

The evolution parameters λ̂0, λ̂1 and λ̂2 are shown in Figure 13. It’s noticed that
they increase gradually with the variation of the surfaces S0,ϕ,θ ,ψ and S1,ϕ,θ ,ψ .

The flight tests demonstrate the robustness of the differentiator via second order
sliding mode. It makes it possible to ensure a better derivation of the desired in-
put signal in real time and this to ensure a good accuracy of tracking the desired
trajectory.
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Figure 10: Ailler control σa.

Figure 11: Elevator control σe.
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Figure 12: Rudder control σr.

Figure 13: Dynamic parameters evolution.
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7.6 For the control of the longitudinal speed u

The relative degree is:

ru = 1.

The control input can be chosen as following:

δt =−γ.sign(S0u) (23)

Where SOu = zOu−ud and γ � 0.

We propose the adaptive super twisting:
ż0u = v0u

v0u =−λ̂0u | S0u |
1
2 .sign(S0u)−Ku.S0u + z1u

ż1u = v1u

v1u =−λ̂1u.
∫ t

0 sign(S0u)dt

(24)

where Ku � 0.

The dynamic adaptation of the gains are given by:{ ˙̂
λ0u =| S0u |

1
2 .sign(S0u)S0u

˙̂
λ1u = S0u.

∫ t
0 sign(S0u)dt

(25)

8 Simulation results

We chose the parameter γ = 62767.

The reference is the longitudinal speed u expressed in m/s. We notice the presence
of the error between the reference and the output differentiator (figure 14). This
error varies between 1.8 and 6m/s (see figure 15).

We notice that they increase gradually with the variation of the surface S0u.

The simulations results are:

• The output differentiator follows the reference;

• The tracking error is acceptable;

• Absence of the chattering phenomenon.
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Figure 14: Reference and output differentiator.

Figure 15: Surface sliding mode S0u.
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Figure 16: Dynamic parameters evolution.

9 Conclusion

In this paper, a combination of the robust differentiator with a dynamic adaptation
of the gains and the robust controller via second order sliding mode for an air-
craft autopilot has been presented. Our approach uses the environment simulator
(FS2004) to reduce the design process complexity.

The aircraft dynamic analysis confirms that Roll and Yaw moments equations are
similar and have the same shape. This observation enforced us to find a method
of control which permits avoiding the singularity problem. To solve this problem,
we proposed a new version of the differentiators for higher order sliding modes
with a dynamic adaptation of the gains approach. This technique is more robust
and simpler to implement than the quaternion one and only needs the information
about the sliding mode surface.

The first order Sliding mode autopilot controller is characterized by its robustness
and takes account of model uncertainties and external disturbances. Unfortunately,
the application of this control law is confronted to the serious problem of the chat-
tering phenomenon. To prevent this drawback, adaptive differentiators for the sec-
ond order sliding mode controller were designed and applied.

For sliding mode algorithm, choosing higher gains values can improve accuracy
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but this leads to an amplification of noise in the estimated signals. The compro-
mise between these two criteria (accuracy, robustness to noise ratio) is generally
difficult to achieve. On the one hand, these values must increase the gains values in
order to derive a signal sweeping certain frequency ranges. On the other hand, low
gains values must be imposed to reduce noise amplification. Hence, we developed
a differentiation algorithm in order to get a good compromise between error and
robustness to noise ratio and at the same time guarantee a sufficient accuracy for a
specific frequency range, regardless the gains setting of the algorithm. To satisfy at
best these criteria, we have proposed a new version of the adaptive differentiators
of:

• First order differentiator for the control of longitudinal speed u;

• Second-order differentiator for the control of the Euler angles ϕ , θ and ψ .

Consequently, using this approach we obtained the following results:

i) Absence of the chattering phenomenon in the control signals inputs;

ii) Higher accuracy of the convergence of the system towards surface, owing to the
fact that the system is governed by the expression: S = Ṡ = 0.

The flight tests demonstrate the robustness of the new version adaptive differentia-
tors for the second order sliding mode. The former ensures a better derivation of
the desired input signal in real time and this ensures a good accuracy in term of
tracking for a desired reference.
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