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A Jacobi Spectral Collocation Scheme Based on
Operational Matrix for Time-fractional Modified

Korteweg-de Vries Equations

A.H. Bhrawy1,2, E.H. Doha3, S.S. Ezz-Eldien4 and M.A. Abdelkawy2

Abstract: In this paper, a high accurate numerical approach is investigated for
solving the time-fractional linear and nonlinear Korteweg-de Vries (KdV) equa-
tions. These equations are the most appropriate and desirable definition for physical
modeling. The spectral collocation method and the operational matrix of fractional
derivatives are used together with the help of the Gauss-quadrature formula in or-
der to reduce such problem into a problem consists of solving a system of algebraic
equations which greatly simplifying the problem. Our approach is based on the
shifted Jacobi polynomials and the fractional derivative is described in the sense
of Caputo. In addition, the presented approach is applied also to solve the time-
fractional modified KdV equation. For testing the accuracy, validity and applica-
bility of the developed numerical approach, we apply it to provide high accurate
approximate solutions for four test problems.

Keywords: KdV equation, Jacobi polynomials, Operational matrix, Gauss quadra-
ture, Collocation spectral method, Caputo derivative

1 Introduction

In recent years, many engineering and physical scientists have interested in study-
ing the fractional calculus (theories of derivatives and integrals with any non-integer
arbitrary order) for its ability to describe many engineering, physical and math-
ematical phenomena, see [Alcoutlabi and Martinez-Vega (1998); Chen, Han and
Liu (2014); Biswas, Bhrawy, Abdelkawy, Alshaery and Hilal (2014); Pang, Chen
and Sze (2014); Kumar, Singh and Kumar (2015); Lin, Wang and Wei (2015);
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Garrappa (2015); Li (2014); Wang, Liu, Chen, Liu and Liu (2014); Chen, Liu, Li
and Sun (2014); Sadati, Ghaderi and Ranjbar (2013); Dehghan, Abbaszadeh and
Mohebbi (2015a); Kumar, Singh and Sushila (2013); Abdelkawy, Zaky, Bhrawy
and Baleanu, (2015)]. Furthermore, studying the properties of the fractional differ-
ential equations (differential equations with non-integer arbitrary order) and find-
ing effective analytical and numerical solutions for them have become very im-
portant to be studied, for instance, the fractional sub-equation method [Wang and
Xu (2014a) and Wang and Xu (2014b)]; the kernel-based approximation technique
[Dou and Hon (2014)], the predictor-corrector method [Yu, Liu, Turner and Bur-
rage (2014)], the sumudu decomposition method [Al-Khaled (2015)]; the wave-
form relaxation methods [Jiang and Ding (2013)], the Haar wavelet operational
matrix [Ray (2012)], the fast alternating-direction finite difference method [Wang
and Du (2014)], the Taylor matrix method [Gulsu, Ozturk and Anapal (2013)] and
others [Wang, Du, Tan, Li and Nie (2013); Wei, Chen and Sun (2014); Shukla,
Tamsir, Srivastava and Kumar (2014); Hwang and Geubelle (2000); El-Danaf and
Hadhoud (2012); Wei and Zeng (2012); Valipour, Yaghoobi and Mashinchi (2014);
Li, Chen and Ye (2011); Garrappa and Popolizio (2011)]. Recently, the spectral
methods have been used based on some orthogonal polynomials to solve high-
order differential and fractional differential equations, see [Abd-Elhameed (2014);
Avila, Ramos and Atluri (2009); Bhrawy and Abdelkawy (2015); Bhrawy and Zaky
(2015b); Dehghan, Abbaszadeh and Mohebbi (2015b)].

The operational matrices of fractional derivatives have been derived for some types
of orthogonal polynomials such as, Legendre polynomials [Saadatmandi and De-
hghan (2010)], Chebyshev polynomials [Doha, Bhrawy and Ezz-Eldien (2011)]
and Jacobi polynomials [Doha, Bhrawy and Ezz-Eldien (2012)] that used together
with the tau- and collocation spectral methods to solve types of ordinary fractional
differential equations. Also, the operational matrices of fractional integrals have
been derived for some types of orthogonal polynomials such as Chebyshev poly-
nomials [Bhrawy and Alofi (2013)], Jacobi polynomials [Doha, Bhrawy and Ezz-
Eldien (2012)] and Laguerre polynomials [Bhrawy, Alghamdi and Taha (2012)]
that used together with the tau- and collocation spectral methods to solve fractional
differential equations. Recently, the operational matrices of fractional derivatives
and those of fractional integrals have been used with the help of the tau-spectral
method to solve types of partial fractional differential equations, see [Saadatmandi
and Dehghan (2011); Bhrawy and Zaky (2015a); Doha, Bhrawy and Ezz-Eldien
(2015)]. More recently, the operational matrices have been used for obtaining the
numerical solution of types of optimal control problems [Bhrawy, Doha, Baleanu,
Ezz-Eldien and Abdelkawy (2015)] and the Lane-Emden type equations [Doha,
Abd-Elhameed and Bassuony (2015)].
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The KdV equation has been used to describe a large number of engineering and
physical phenomena, see [Karpman (1998); Leblond and Sanchez (2003); Liu,
Zhou, Liu and Luo (2003); Gao and Tian (2001)]. The time-fractional KdV (mod-
ified KdV) equation is a generalization of the classical KdV (modified KdV) equa-
tion that obtained by replacing the first-order time derivative term by a fractional
derivative one of order ν , 0 < ν ≤ 1. Wang [Wang (2007)] applied the homotopy
perturbation method for an analytical solution of the fractional KdV equation, while
in [El-Wakil, Abulwafa, Zahran and Mahmoud (2011)], the authors applied the
He’s variational-iteration method to solve the time-fractional KdV equation. Re-
cently, Guo at al. [Guo, Mei, Fang and Qiu (2012)] used the fractional variational it-
eration method based on the He’s polynomials to introduce compacton and solitary
pattern solutions for the nonlinear time-fractional dispersive KdV-type equations
involving Jumarie’s fractional derivative. On the other hand, Abdulaziz et al. [Ab-
dulaziz, Hashim and Ismail (2009)] introduced the fractional modified KdV equa-
tion and applied the homotopy-perturbation method for its approximate solution,
while in [Kurulay and Bayram (2010)], the authors applied the two-dimensional
differential transform method for an approximate analytical solution of the frac-
tional modified KdV equation.

The main goal of the current paper is to introduce some efficient numerical tech-
niques to solve spectrally the time-fractional linear, nonlinear and modified KdV
equations. Our numerical techniques are based on the shifted Jacobi collocation
spectral method and the operational matrix of fractional derivative together with
the help of the Gauss quadrature formula to reduce thus problems into a problem
consists of solving a system of algebraic equations that can be solved by any itera-
tive method.

The current paper is organized as follows. In Section 2, we introduce some def-
initions and notations of fractional calculus with some properties of Jacobi poly-
nomials. In Sections 3, 4 and 5, the operational matrix of fractional derivative is
used together with the Jacobi tau-spectral method to solve the time-fractional linear,
nonlinear and modified KdV equations, respectively. In Section 6, some numeri-
cal examples are introduced for ensuring the validity and accuracy of the presented
technique. Also a conclusion is given in Section 7.

2 Preliminaries and notation

2.1 Fractional calculus definitions

Riemann-Liouville and Caputo fractional definitions are the two most used from
other definitions of fractional derivatives which have been introduced recently.
Definition 1.1. The integral of order γ ≥ 0 (fractional) according to Riemann-



188 Copyright © 2015 Tech Science Press CMES, vol.104, no.3, pp.185-209, 2015

Liouville is given by

Iγ f (x) =
1

Γ(γ)

∫ x

0
(x− t)γ−1 f (t)dt, γ > 0, x > 0,

I0 f (x) = f (x),
(1)

where

Γ(γ) =
∫

∞

0
xγ−1e−xdx

is gamma function.

The operator Iγ satisfies the following properties

Iγ Iδ f (x) = Iγ+δ f (x),

Iγ Iδ f (x) = Iδ Iγ f (x),

Iγxβ =
Γ(β +1)

Γ(β +1+ γ)
xβ+γ .

(2)

Definition 1.2. The Caputo fractional derivative of order γ is defined by

Dγ f (x) =
1

Γ(m− γ)

∫ x

0
(x− t)m−γ−1 dm

dtm f (t)dt, m−1 < γ ≤ m, x > 0, (3)

where m is the ceiling function of γ .

The operator Dγ satisfies the following properties

DγC = 0, (C is constant),

IγDγ f (x) = f (x)−
m−1

∑
i=0

f (i)(0+)
xi

i!
,

Dγxβ =
Γ(β +1)

Γ(β +1− γ)
xβ−γ ,

Dγ(λ f (x)+µg(x)) = λDγ f (x)+µDγg(x).

(4)

2.2 Shifted Jacobi polynomials

The Jacobi polynomial of degree j, denoted by P(α,β )
j (z); α ≥ −1, β ≥ −1 and

defined on the interval [−1,1], constitute an orthogonal system with respect to the
weight function ω(α,β )(z) = (1− z)α(1+ z)β , i.e.,∫ 1

−1
P(α,β )

j (z)P(α,β )
k (z)ω(α,β )(z)dz = δ jkγ

(α,β )
k ,
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where δ jk is the Kronecker function and

γ
(α,β )
k =

2α+β+1Γ(k+α +1)Γ(k+β +1)
(2k+α +β +1)k!Γ(k+α +β +1)

.

The shifted Jacobi polynomial of degree j, denoted by P(α,β )
L, j (x); α ≥−1, β ≥−1

and defined on the interval [0,L], is generated by introducing the change of variable

z=
2x
L
−1, i.e., P(α,β )

j (
2x
L
−1)≡P(α,β )

L, j (x). Then the shifted Jacobi polynomials are

constituting an orthogonal system with respect to the weight function ω
(α,β )
L (x) =

xβ (L− x)α with the orthogonality property∫ L

0
P(α,β )

L, j (x)P(α,β )
L,k (x)ω(α,β )

L (x)dx = h(α,β )
L,k , (5)

where

h(α,β )
L,k = (

L
2
)α+β+1

δ jkγ
(α,β )
j =

Lα+β+1Γ(k+α +1)Γ(k+β +1)
(2k+α +β +1)k!Γ(k+α +β +1)

δ jk.

The shifted Jacobi polynomials are generated from the three-term recurrence rela-
tions

P(α,β )
L, j+1(x) = (µ jx−ξ j)P

(α,β )
L, j (x)−ζ jP

(α,β )
L, j−1(x), j ≥ 1,

with

P(α,β )
L,0 (x) = 1, P(α,β )

L,1 (x) =
1
L
(α +β +2)x− (β +1),

where

µ j =
(2 j+α +β +1)(2 j+α +β +2)

L( j+1)( j+α +β +1)
,

ξ j =
(2 j+α +β +1)(2 j2 +(1+β )(α +β )+2 j(α +β +1))

( j+1)( j+α +β +1)(2 j+α +β )
,

ζ j =
(2 j+α +β +2)( j+α)( j+β )

( j+1)( j+α +β +1)(2 j+α +β )
.

The explicit analytic form of the shifted Jacobi polynomials P(α,β )
L, j (x) of degree j

is given by

P(α,β )
L, j (x) =

j

∑
k=0

(−1) j−k Γ( j+β +1)Γ( j+ k+α +β +1)
Γ(k+β +1)Γ( j+α +β +1)( j− k)!k!Lk xk, (6)
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and this in turn, enables one to get

P(α,β )
L,i (0) = (−1)i Γ(i+β +1)

Γ(β +1) i!
,

DqP(α,β )
L,i (0) = (−1)i−q Γ(i+β +1)(i+α +β +1)q

LqΓ(i−q+1) Γ(q+β +1)
, q≤ i,

P(α,β )
L,i (L) =

Γ(i+α +1)
Γ(α +1) i!

,

DqP(α,β )
L,i (L) =

Γ(i+α +1)(i+α +β +1)q

LqΓ(i−q+1) Γ(q+α +1)
, q≤ i,

which will be of important use later.

Assume y(x) is a square integrable function with respect to the Jacobi weight func-
tion ω

(α,β )
L (x) in (0,L), then it can be expressed in terms of shifted Jacobi polyno-

mials as

y(x) =
∞

∑
j=0

a jP
(α,β )
L, j (x),

from which the coefficients a j are given by

a j =
1

h(α,β )
L, j

∫ L

0
ω

(α,β )
L (x)y(x)P(α,β )

L, j (x)dx, j = 0,1, · · · . (7)

If we approximate y(x) by the first (N +1)-terms, then we can write

yN(x)'
N

∑
j=0

a jP
(α,β )
L, j (x), (8)

which alternatively may be written in the matrix form:

yN(x)' AT
∆L,N(x), (9)

with

A =



a0
a1
...

a j
...

aN


, ∆L,N(t) =



P(α,β )
L,0 (x)

P(α,β )
L,1 (x)

...
P(α,β )

L, j (x)
...

P(α,β )
L,N (x)


. (10)
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Similarly, let y(x, t) be an infinitely differentiable function defined on 0 < x ≤ L
and 0 < t ≤ τ. Then it is possible to express as

yM,N(x, t) =
M

∑
i=0

N

∑
j=0

yi jP
(α,β )
τ,i (t)P(α,β )

L, j (x) = ∆
T
τ,M(t)Y∆L,N(x), (11)

with

Y =



y00 y01 · · · y0 j · · · y0N

y10 y11 · · · y1 j · · · y1N
...

...
. . .

...
. . .

...
yi0 yi1 · · · yi j · · · yiN
...

...
. . .

...
. . .

...
yM0 yM1 · · · yM j · · · yMN


,

and

yi j =
1

h(α,β )
τ,i h(α,β )

L, j

∫
τ

0

∫ L

0
y(x, t)P(α,β )

τ,i (t) P(α,β )
L, j (x) ω

(α,β )
τ (t) ω

(α,β )
L (x) dxdt,

i = 0,1, · · · ,M, j = 0,1, · · · ,N.

(12)

The fractional differentiation of order ν of ∆L,N(x) can be expressed as

Dν
∆L,N(x)' D(ν)∆L,N(x), (13)

where D(ν) is the (N +1)× (N +1) Jacobi operational matrix of differentiation of
order ν in the Caputo sense and is defined as follows:

D(ν) =



0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0

Ψ
(α,β )
ν (dνe,0) Ψ

(α,β )
ν (dνe,1) · · · Ψν(dνe, j) · · · Ψ

(α,β )
ν (dνe,N)

...
...

. . .
...

. . .
...

Ψ
(α,β )
ν (i,0) Ψ

(α,β )
ν (i,1) · · · Ψ

(α,β )
ν (i, j) · · · Ψ

(α,β )
ν (i,N)

...
...

. . .
...

. . .
...

Ψ
(α,β )
ν (N,0) Ψ

(α,β )
ν (N,1) · · · Ψ

(α,β )
ν (N, j) · · · Ψ

(α,β )
ν (N,N)


,
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where

Ψ
(α,β )
ν (i, j)

=
i

∑
k=dνe

(−1)i−k Lα+β−ν+1Γ( j+β +1)Γ(i+β +1)Γ(i+ k+α +β +1)

h(α,β )
L, j Γ( j+α +β +1)Γ(k+β +1)Γ(i+α +β +1)Γ(k−ν +1)(i− k)!

×
j

∑
l=0

(−1) j−l Γ( j+ l +α +β +1) Γ(α +1) Γ(l + k+β −ν +1)
Γ(l +β +1) Γ(l + k+α +β −ν +2) ( j− l)! l!

.

Note that in D(ν), the first dνe rows, are all zero, (see [ Doha, Bhrawy and Ezz-
Eldien (2011)] for proof).

3 Time-fractional linear KdV equation

In this section, we use the operational matrix of fractional derivatives, the collo-
cation spectral method and the Gauss quadrature formula with the shifted Jacobi
polynomials as the basis functions to solve the time-fractional linear KdV equa-
tion:

∂ νu(x, t)
∂ tν

+A
∂u(x, t)

∂x
+B

∂ 3φ(x, t)
∂x3 = s(x, t), (14)

with the initial condition

u(x,0) = q(x), 0 < x≤ L, (15)

and boundary conditions

u(0, t) = f (t),
∂u(L, t)

∂x
= g(t),

∂ 2u(L, t)
∂x2 = h(t), 0 < t < τ, (16)

where ν , (0 < ν ≤ 1), A, B are real constants and s(x, t) is the source function.
The function u(x, t) is assumed to be the causal function of time and space, i.e.,
vanishing for t < 0 and x < 0.

First, the initial-boundary value problem (14)-(16) is equivalent to the boundary
value problem

∂ νu(x, t)
∂ tν

+u(x,0)−q(x)+A
∂u(x, t)

∂x
+B

∂ 3φ(x, t)
∂x3 = s(x, t), (17)

with the boundary conditions (16).

Now, we approximate u(x, t) and s(x, t) by the shifted Jacobi polynomials as

uM,N(x, t)' ∆
T
τ,M(t)U∆L,N(x),

sM,N(x, t)' ∆
T
τ,M(t)S∆L,N(x),

(18)
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where U is an unknown coefficients (M+1)× (N +1) matrix, while S is a known
matrix that can be written as

S =



s00 s01 · · · s0 j · · · s0N

s10 s11 · · · s1 j · · · s1N
...

...
. . .

...
. . .

...
si0 si1 · · · si j · · · siN
...

...
. . .

...
. . .

...
sM0 sM1 · · · sM j · · · sMN


,

where the coefficients si j; i = 0,1, · · · ,M, j = 0,1, · · · ,N can be evaluated by

si j =
1

h(α,β )
τ,i h(α,β )

L, j

∫
τ

0

∫ L

0
s(x, t)P(α,β )

τ,i (t) P(α,β )
L, j (x) ω

(α,β )
τ (t) ω

(α,β )
L (x) dxdt,

i = 0,1, · · · ,M, j = 0,1, · · · ,N.

For general function s(x, t), it is more difficult to compute the previous integral
exactly. Using the Jacobi-Gauss quadrature formula, we can approximate the coef-
ficients si j as

si j =
1

h(α,β )
τ,i h(α,β )

L, j

M

∑
δ=0

N

∑
ε=0

s(x(α,β )
L,N,ε , t

(α,β )
τ,M,δ )P

(α,β )
τ,i (t(α,β )

τ,M,δ )P
(α,β )
L, j (x(α,β )

L,N,ε )ϖ
(α,β )
τ,M,δ ϖ

(α,β )
L,N,ε ,

i = 0,1, · · · ,M, j = 0,1, · · · ,N,

where x(α,β )
L,N,ε , 0 ≤ ε ≤ N are the zeros of Jacobi-Gauss quadrature in the inter-

val (0,L), with ϖ
(α,β )
L,N,ε , 0 ≤ ε ≤ N are corresponding Christoffel numbers and

t(α,β )
τ,M,δ , 0 ≤ δ ≤ M are the zeros of Jacobi-Gauss quadrature in the interval (0,τ),

with ϖ
(α,β )
τ,M,δ , 0≤ δ ≤M are corresponding Christoffel numbers.

Using Eqs. (13) and (18), we can write

∂ νu(x, t)
∂ tν

' ∆
T
τ,M(t)DT

(ν)U∆L,N(x),

∂u(x, t)
∂x

' ∆
T
τ,M(t)UD(1)∆L,N(x),

∂ 3u(x, t)
∂x3 ' ∆

T
τ,M(t)UD(3)∆L,N(x),

u(x,0)' ∆
T
τ,M(0)U∆L,N(x).

(19)
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By substituting (18) and (19) in (17), we get

∆
T
τ,M(t)DT

(ν)U∆L,N(x)+A∆
T
τ,M(t)UD(1)∆L,N(x)+B∆

T
τ,M(t)UD(3)∆L,N(x)

+∆
T
τ,M(0)U∆L,N(x)−q(x) = ∆

T
τ,M(t)S∆L,N(x).

(20)

We collocate (20) at (M+1)(N−2) points, as

∆
T
τ,M(ti)DT

(ν)U∆L,N(x j)+A∆
T
τ,M(ti)UD(1)∆L,N(x j)+B∆

T
τ,M(ti)UD(3)∆L,N(x j)

+∆
T
τ,M(0)U∆L,N(x j)−q(x j) = ∆

T
τ,M(ti)S∆L,N(x j),

(21)

where ti, i = 0,1, · · · ,M are the roots of P(α,β )
τ,M+1(t), while x j, j = 0,1, · · · ,N− 3

are the roots of P(α,β )
L,N−2(x), this generates a system of (M + 1)(N − 2) nonlinear

algebraic equations in the unknown expansion coefficients, ui j, i= 0,1, · · · ,M; j =
0,1, · · · ,N−2, and the rest of this system is obtained from the boundary conditions
(16), as

∆
T
τ,M(ti)U∆L,N(0) = f (ti),

∆
T
τ,M(ti)UD(1)∆L,N(L) = g(ti),

∆
T
τ,M(ti)UD(2)∆L,N(L) = h(ti),

i = 0,1, · · · ,M. (22)

The (M+1)(N−2) system (21) may be combined with the 3(M+1) system (22)
to be written as a (M+1)(N+1) system of nonlinear algebraic equations in the un-
known expansion coefficients ui j, that can solved using Newton’s iterative method.
Consequently uM,N(x, t) given in (18) can be calculated.

4 Time-fractional nonlinear KdV equation

In this section, we apply the numerical technique obtained in the previous section
to solve the time-fractional nonlinear KdV equation:

∂ νu(x, t)
∂ tν

+Au(x, t)
∂u(x, t)

∂x
+B

∂ 3φ(x, t)
∂x3 = s(x, t), (23)

with the initial condition (15) and the boundary conditions (16).

As in the previous section, we can rewrite (23) as in the following form:

∂ νu(x, t)
∂ tν

+u(x,0)−q(x)+Au(x, t)
∂u(x, t)

∂x
+B

∂ 3φ(x, t)
∂x3 = s(x, t), (24)

with the boundary conditions (16).



A Jacobi Spectral Collocation Scheme 195

After approximating u(x, t) and s(x, t) by the shifted Jacobi polynomials as in Eq.

(18), and writing
∂ νu(x, t)

∂ tν
,

∂u(x, t)
∂x

,
∂ 3u(x, t)

∂x3 and u(x,0) as in Eq. (19), we get

∆
T
τ,M(t)DT

(ν)U∆L,N(x)+A
(
∆

T
τ,M(t)U∆L,N(x)

)(
∆

T
τ,M(t)UD(1)∆L,N(x)

)
+B∆

T
τ,M(t)UD(3)∆L,N(x)+∆

T
τ,M(0)U∆L,N(x)−q(x)

= ∆
T
τ,M(t)S∆L,N(x).

(25)

Now, we collocate Eq. (25) at (M+1)(N−2) points, as

∆
T
τ,M(ti)DT

(ν)U∆L,N(x j)+A
(
∆

T
τ,M(ti)U∆L,N(x j)

)(
∆

T
τ,M(ti)UD(1)∆L,N(x j)

)
+B∆

T
τ,M(ti)UD(3)∆L,N(x j)+∆

T
τ,M(0)U∆L,N(x j)−q(x j)

= ∆
T
τ,M(ti)S∆L,N(x j),

(26)

this generates a system of (M + 1)(N − 2) nonlinear algebraic equations in the
unknown expansion coefficients, ui j, i = 0,1, · · · ,M; j = 0,1, · · · ,N− 2, and the
rest of this system is obtained from the boundary conditions (16), as in Eq. (22).

The (M+1)(N−2) system (26) may be combined with the 3(M+1) system (22)
to be written as a (M+1)(N+1) system of nonlinear algebraic equations in the un-
known expansion coefficients ui j, that can solved using Newton’s iterative method.
Consequently uM,N(x, t) given in (18) can be calculated.

5 Time-fractional modified KdV equation

In this section, we consider the following time-fractional modified KdV equation

∂ νu(x, t)
∂ tν

+Au2(x, t)
∂u(x, t)

∂x
+B

∂ 3φ(x, t)
∂x3 = s(x, t), 0 < x≤ L, 0 < t < τ, (27)

with the initial condition (15) and the boundary conditions (16).

As in the previous section, Eq. (27) can be written as

∂ νu(x, t)
∂ tν

+u(x,0)−q(x)+Au2(x, t)
∂u(x, t)

∂x
+B

∂ 3φ(x, t)
∂x3 = s(x, t), (28)

with the boundary conditions (16).

After approximating u(x, t) and s(x, t) by the shifted Jacobi polynomials as in Eq.

(18), and writing
∂ νu(x, t)

∂ tν
,

∂u(x, t)
∂x

,
∂ 3u(x, t)

∂x3 and u(x,0) as in Eq. (19), we get

∆
T
τ,M(t)DT

(ν)U∆L,N(x)+A
(
∆

T
τ,M(t)U∆L,N(x)

)2(
∆

T
τ,M(t)UD(1)∆L,N(x)

)
+B∆

T
τ,M(t)UD(3)∆L,N(x)+∆

T
τ,M(0)U∆L,N(x)−q(x)

= ∆
T
τ,M(t)S∆L,N(x).

(29)
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Now, we collocate Eq. (29) at (M+1)(N−2) points, as

∆
T
τ,M(ti)DT

(ν)U∆L,N(x j)+A
(
∆

T
τ,M(ti)U∆L,N(x j)

)2(
∆

T
τ,M(ti)UD(1)∆L,N(x j)

)
+B∆

T
τ,M(ti)UD(3)∆L,N(x j)+∆

T
τ,M(0)U∆L,N(x j)−q(x j)

= ∆
T
τ,M(ti)S∆L,N(x j),

(30)

this generates a system of (M + 1)(N − 2) nonlinear algebraic equations in the
unknown expansion coefficients, ui j, i = 0,1, · · · ,M; j = 0,1, · · · ,N− 2, and the
rest of this system is obtained from the boundary conditions (16), as in Eq. (22).

The (M+1)(N−2) system (30) may be combined with the 3(M+1) system (22)
to be written as a (M+1)(N+1) system of nonlinear algebraic equations in the un-
known expansion coefficients ui j, that can solved using Newton’s iterative method.
Consequently uM,N(x, t) given in (18) can be calculated.

6 Numerical results

For ensuring the efficiency of the proposed numerical techniques, the numerical
results of some numerical examples of the time-fractional linear, nonlinear and
modified KdV equation have been introduced in this section. Also, comparisons
between our results and the exact solutions of such problems are introduced.

6.1 Linear fractional KdV equation

As the first example, we consider the linear time-fractional KdV equation studied
in [Momani, Odibat and Alawanh (2008)]:

∂ νu(x, t)
∂ tν

+
∂u(x, t)

∂x
+

∂ 3φ(x, t)
∂x3 =

2t2−ν

Γ(3−ν)
cos(x), (31)

with the initial condition

u(x,0) = 0,

u(0, t) = t2,
∂u(π

2 , t)
∂x

=−t2,
∂ 2u(π

2 , t)
∂x2 = 0,

and the exact solution is u(x, t) = t2 cos(x).

Momani et al. [Momani, Odibat and Alawanh (2008)] introduced this problem and
applied the variational iteration method for introducing an approximate solution
for it. In order to show the high accuracy of the numerical technique presented in
Section 3, we have applied it to solve problem (31). In Table 1, we list the absolute
errors at α = β = 1, x= π

2 with ν = 0.50, ν = 0.90 and different values of M, (M =
N). Also, Figs. 1-2 show the absolute error functions at α = β = 0, N = M = 12
with ν = 0.50 and ν = 0.90, respectively.
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Figure 1: Absolute error function at α = β = 0 with N = M = 12 and ν = 0.5 for
problem (31).
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Figure 2: Absolute error function at α = β = 0 with N = M = 12 and ν = 0.9 for
problem (31).
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Table 1: Absolute errors at α = β = 1, x = π

2 with two different choices of ν for
problem (31).

x
ν = 0.50 ν = 0.90

M = 4 M = 8 M = 12 M = 4 M = 8 M = 12
0.0 7.80.10−5 3.20.10−10 2.13.10−15 7.84.10−4 1.16.10−9 8.92.10−15

0.1 1.04.10−4 3.36.10−9 1.10.10−14 5.72.10−4 2.10.10−9 1.05.10−14

0.2 3.90.10−4 1.60.10−8 5.77.10−14 5.48.10−4 8.64.10−9 3.34.10−14

0.3 9.63.10−4 4.03.10−8 1.46.10−13 7.61.10−4 2.36.10−8 8.72.10−14

0.4 1.84.10−3 7.72.10−8 2.80.10−13 1.24.10−3 4.91.10−8 1.79.10−13

0.5 3.05.10−3 1.27.10−7 4.64.10−13 2.05.10−3 8.69.10−8 3.16.10−13

0.6 4.61.10−3 1.92.10−7 6.98.10−13 3.19.10−3 1.38.10−7 5.03.10−13

0.7 6.53.10−3 2.70.10−7 9.85.10−13 4.71.10−3 2.04.10−7 7.43.10−13

0.8 8.82.10−3 3.64.10−7 1.32.10−12 6.62.10−3 2.86.10−7 1.04.10−12

0.9 1.14.10−2 4.73.10−7 1.72.10−12 8.95.10−3 3.84.10−7 1.39.10−12

1.0 1.45.10−2 5.97.10−7 2.17.10−12 1.16.10−2 4.99.10−7 1.81.10−12

6.2 Homogeneous fractional KdV equation

As the second example, we consider the nonlinear homogeneous time-fractional
KdV equation [Momani (2005); Odibat and Momani (2009)]

∂ νu(x, t)
∂ tν

+6u(x, t)
∂u(x, t)

∂x
+

∂ 3φ(x, t)
∂x3 = 0, (32)

with the initial-boundary conditions

u(x,0) =
1

1+ cosh(x)
, u(0, t) =

1
1+ cosh(t)

,

∂u(1, t)
∂x

=
2et+1(et − e)
(et + e)3 ,

∂ 2u(1, t)
∂x2 =

1
4
(−2+ cosh(t−1))sech4(

t−1
2

),

and the exact solution u(x, t) = 1
2 sech2(1

2(x− t)).

In [Momani (2005)] and [Odibat and Momani (2009)], the Adomian decomposi-
tion method and the variational iteration method have been applied respectively to
approximate the solution of this problem. In Fig. 3, we plot the absolute error
function at α = β = 0 with N = M = 12 and ν = 1 for problem (32), while Fig. 4
present the approximate values of u(x,1) as function of space at N = 10, α = β = 1
and various choices of ν , ν = 1, 0.90, 0.70, 0.50 and 0.30.

From Fig. 3, it is clear that adding few terms of shifted Jacobi polynomials, good
approximations of the exact solution were achieved. On the other hand, Fig. 4 ob-
tain that as ν approaches to 1, the solution for the integer order system is recovered.
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Figure 3: Absolute error function at α = β = 0 with N = M = 12 and ν = 1 for
problem (32).

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

à

à

à

à

à

à

à

à

à

à
à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô
ô

0.0 0.2 0.4 0.6 0.8 1.0

0.40

0.42

0.44

0.46

0.48

0.50

x

uH
x,

1L ô Ν=1

ò Ν=0.90

ì Ν=0.70

à Ν=0.50

æ Ν=0.30

Figure 4: Approximate solution of u(x,1) at α = β = 1, N = 10 and ν =
1, 0.90, 0.70, 0.50 and 0.30 for Example (32).



200 Copyright © 2015 Tech Science Press CMES, vol.104, no.3, pp.185-209, 2015

6.3 Inhomogeneous fractional KdV equation

Consider the following inhomogeneous time-fractional KdV equation

∂ νu(x, t)
∂ tν

+6u(x, t)
∂u(x, t)

∂x
+

∂ 3φ(x, t)
∂x3 = ex

( 6t3−ν

Γ(4−ν)
+ t3 +6t6

)
, (33)

with the initial-boundary conditions

u(x,0) = 0,

u(0, t) = t3,
∂u(1, t)

∂x
=

∂ 2u(1, t)
∂x2 = et3,

and the exact solution u(x, t) = t3ex.

Table 2 lists the L∞ and L2 errors at α = β = 0 and ν = 0.40, ν = 0.80 with
different values of M, (M = N), while in Table 3, we obtain the absolute errors at
α = β = 1, t = 1 at ν = 0.40, ν = 0.80 with different values of M, (M = N). Also,
in Figs. 5-6, we plot the absolute error functions at α = β = 1, N = M = 12 with
ν = 0.20 and ν = 0.60, respectively.
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Figure 5: Absolute error function at α = β = 1 with N = M = 12 and ν = 0.2 for
problem (33).
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Figure 6: Absolute error function at α = β = 1 with N = M = 12 and ν = 0.6 for
problem (33).

Table 2: L∞ and L2 errors at α = β = 0 with two different choices of ν for problem
(33).

M
ν = 0.40 ν = 0.80

L∞ L2 L∞ L2

4 1.95959.10−3 1.23297.10−3 1.25798.10−3 3.26505.10−3

6 1.62731.10−6 5.53182.10−7 1.59100.10−6 5.29697.10−7

8 1.46047.10−9 2.95973.10−10 1.39004.10−9 2.74151.10−10

10 4.86055.10−13 8.59688.10−14 4.77173.10−13 8.53537.10−14

12 2.66453.10−15 2.73496.10−16 1.33226.10−15 2.94995.10−16

6.4 Fractional modified KdV equation

Here, we consider the fractional modified KdV equation in the form:

∂ νu(x, t)
∂ tν

+6u2(x, t)
∂u(x, t)

∂x
+

∂ 3φ(x, t)
∂x3

=
2t2−ν

Γ(3−ν)
cos(x)+ t2 sin(x)−6t6 cos2(x)sin(x),

(34)
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Table 3: Absolute errors at α = β = 1, t = 1 with two different choices of ν for
problem (33).

x
ν = 0.20 ν = 0.60

M = 4 M = 8 M = 12 M = 4 M = 8 M = 12
0.1 8.19.10−4 6.38.10−10 1.33.10−15 6.27.10−4 5.81.10−10 1.77.10−15

0.2 1.49.10−3 6.45.10−10 3.10.10−15 1.13.10−3 5.41.10−10 2.66.10−15

0.3 1.96.10−3 3.11.10−10 5.10.10−15 1.45.10−3 1.70.10−10 2.88.10−15

0.4 2.21.10−3 5.08.10−10 5.99.10−15 1.58.10−3 6.76.10−10 3.33.10−15

0.5 2.26.10−3 1.89.10−9 7.77.10−15 1.54.10−3 2.07.10−9 4.44.10−15

0.6 2.18.10−3 3.46.10−9 8.88.10−15 1.40.10−3 3.65.10−9 4.88.10−15

0.7 2.04.10−3 4.82.10−9 8.88.10−15 1.21.10−3 5.02.10−9 4.88.10−15

0.8 1.91.10−3 6.07.10−9 9.76.10−15 1.06.10−3 6.27.10−9 5.32.10−15

0.9 1.84.10−3 7.23.10−9 9.32.10−15 9.86.10−4 7.43.10−9 5.32.10−15

1.0 1.83.10−3 7.64.10−9 9.76.10−15 9.70.10−4 7.85.10−9 5.32.10−15

with the initial-boundary conditions

u(x,0) = 0,

u(0, t) = t2,
∂u(π

2 , t)
∂x

=−t2,
∂ 2u(π

2 , t)
∂x2 = 0,

and the exact solution u(x, t) = t2 cos(x).
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Figure 7: Absolute error function at α = β = 0 with N = M = 12 and ν = 0.8 for
problem (34).
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This problem has been solved by using the technique discussed in Section 5. Table
4 list the maximum absolute errors (MAEs) at α = β = 0 with different choices
of M, (M = N) and ν . Also, Figs. 7-8 plot the absolute error functions at α =
β = 0, N = M = 12 with ν = 0.20 and 0.80, respectively. Finally, in Fig. 9, we
plot the logarithmic graphs of the MAEs (log10Error) at two different choices of ν

and various choices of M, (N = M); by using the presented algorithm. From this
figures, it is shown that the numerical errors decay rapidly as M increase.
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Table 4: MAEs at α = β = 0 with different choices of M, (M = N) and ν for
problem (34).

M ν = 0.2 ν = 0.6 ν = 0.8
4 6.51996.10−2 1.47553.10−2 9.70825.10−3

6 9.89460.10−4 2.67555.10−4 1.63932.10−4

8 1.28407.10−6 4.95732.10−7 3.97162.10−7

10 1.65863.10−9 1.01662.10−9 9.37753.10−10

12 2.67075.10−12 2.56228.10−12 2.54873.10−12

7 Conclusions

In the current paper, an accurate numerical technique is constructed and applied to
solve the linear and nonlinear time-fractional KdV equations. The operational ma-
trix of fractional derivatives is used together with the collocation spectral method
based on the shifted Jacobi polynomials for reducing such problems into a problem
consists of solving a system of algebraic equations which simplifying the prob-
lem. The fractional derivative is described in the sense of Caputo. In addition,
the presented technique is applied also to solve the time-fractional modified KdV
equation. The numerical results have been achieved demonstrated the high effi-
ciency and accuracy of our techniques. Moreover, only a small number of shifted
Jacobi polynomials is needed to obtain a satisfactory solution.
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