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Abstract: This paper presents a high-order coupled compact integrated RBF (CC
IRBF) approximation based domain decomposition (DD) algorithm for the dis-
cretisation of second-order differential problems. Several Schwarz DD algorithms,
including one-level additive/ multiplicative and two-level additive/ multiplicative/
hybrid, are employed. The CCIRBF based DD algorithms are analysed with dif-
ferent mesh sizes, numbers of subdomains and overlap sizes for Poisson problems.
Our convergence analysis shows that the CCIRBF two-level multiplicative version
is the most effective algorithm among various schemes employed here. Especially,
the present CCIRBF two-level method converges quite rapidly even when the do-
main is divided into many subdomains, which shows great promise for either serial
or parallel computing. For practical tests, we then incorporate the CCIRBF into
serial and parallel two-level multiplicative Schwarz. Several numerical examples,
including those governed by Poisson and Navier-Stokes equations are analysed to
demonstrate the accuracy and efficiency of the serial and parallel algorithms im-
plemented with the CCIRBF. Numerical results show: (i) the CCIRBF-Serial and
-Parallel algorithms have the capability to reach almost the same solution accu-
racy level of the CCIRBF-Single domain, which is ideal in terms of computational
calculations; (ii) the CCIRBF-Serial and -Parallel algorithms are highly accurate
in comparison with standard finite difference, compact finite difference and some
other schemes; (iii) the proposed CCIRBF-Serial and -Parallel algorithms may be
used as alternatives to solve large-size problems which the CCIRBF-Single domain
may not be able to deal with. The ability of producing stable and highly accurate
results of the proposed serial and parallel schemes is believed to be the contribu-
tion of the coarse mesh of the two-level domain decomposition and the CCIRBF
approximation. It is noted that the focus of this paper is on the derivation of highly
accurate serial and parallel algorithms for second-order differential problems. The
scope of this work does not cover a thorough analysis of computational time.
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1 Introduction

Traditional techniques such as the finite difference method (FDM), finite volume
method (FVM), finite element method (FEM) and boundary element method (BEM)
are among the most popular numerical solution methods for partial differential
equations (PDEs) governing many problems in engineering and sciences. These
methods are based on some discretisation of a problem domain into small elements.
These elements are not overlapping each other. If an element is heavily distorted,
approximations on this element are of poor quality, leading to unacceptable accu-
racy or possibly failed computation. Element-free methods are developed to ad-
dress the issues associated with element distortions by using different approxima-
tion methods over a cluster of scattered nodes. The smooth particle hydrodynam-
ics method (SPH) [Lucy (1977)] is one of the initial and well developed element-
free methods. The diffusive element method (DEM) [Nayroles, Touzot, and Villon
(1992)] was the first element-free method to employ moving least squares (MLS)
approximation [Lancaster and Salkauskas (1981)] in constructing their shape func-
tions over scattered nodes. Several element-free methods have been proposed since
then, including the element-free Galerkin method (EFG) [Belytschko, Lu, and Gu
(1994)], reproducing kernel particle method (RKPM) [Liu, Chen, Chang, and Be-
lytschko (1996)], partition of unity (PU) method [Babuska and Melenk (1997)] and
meshless local Petrov-Galerkin method (MLPG) [Atluri and Zhu (1998)]. For an
overview on these element-free methods, readers may find more details in [Be-
lytschko, Krongauz, Organ, Fleming, and Krysl (1996); Chen, Lee, and Eskandar-
ian (2006)] and references therein.

In the last three decades, there has been great interest in using element-free radial
basis function (RBF) methods for the numerical solutions of various types of PDEs.
Kansa (1990a,b) introduced a new approach for this kind of problems, using radial
basis functions (RBFs) (here referred as differential/direct RBF or DRBF) for the
approximate solutions of PDEs. Mai-Duy and Tran-Cong (2001a,b, 2003) then
proposed an idea of using indirect/integrated radial basis functions (IRBFs) for the
solution of PDEs. Numerical examples in Mai-Duy and Tran-Cong (2001a,b, 2003,
2005) show that the IRBF approach achieves a greater accuracy than the DRBF ap-
proach. It has been shown that these RBF methods are more accurate than the tra-
ditional techniques such as the FDM, FVM and FEM [Zerroukat, Power, and Chen
(1998); Li, Cheng, and Chen (2003); Thai-Quang, Mai-Duy, Tran, and Tran-Cong
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(2012)]. Furthermore, the RBF approaches can work with simple discretisation
based on a Cartesian grid. However, when dealing with large-scale problems, a
big obstacle for the global RBF method is that the system matrix is generally ill-
conditioned, non-symmetric and dense. Therefore, the RBF method needs to be
combined with the domain decomposition (DD) method to reduce the density and
ill-conditioning of the matrix for an accurate solution.

The earliest idea of DD was introduced as a classical Schwarz alternating algo-
rithm by Schwarz in 1870. Generally, DD methods can be classified into two major
methods: overlapping methods, which are referred to as Schwarz methods, and
non-overlapping methods, which are referred to as iterative substructuring or Schur
complement methods [Smith, Bjorstad, and Gropp (1996); Quarteroni and Valli
(1999); Toselli and Widlund (2005)]. In this work, we will concentrate on iterative
Schwarz DD methods using overlapping subdomains. The overlapping DD meth-
ods have a simple algorithmic structure because there is no need to solve the conti-
nuity problem across subdomain interfaces [Cai (2003)]. The overlapping methods
provide parallel, potentially fast and robust algorithms for the solution of linear or
nonlinear systems of equations resulting usually from the discretisation of PDEs.

It is noted that the convergence characteristics of the DD based methods are sensi-
tive to the choice of the number of subdomains, mesh sizes and overlap sizes. In
particular, having too many subdomains leads to a very large coarse mesh problem,
while having too few subdomains requires the solution of large problems for each
subdomain. Furthermore, having too small overlaps usually leads to large number
of iterations, while having too large overlaps leads to the solution of large prob-
lems for each subdomain. In this point of view, efficient DD based methods should
stably converge with small number of iterations for a wide range of numbers of
subdomains and mesh sizes, using small number of overlaps.

In this paper, we investigate convergence characteristics of the recently developed
three-point coupled compact integrated RBF (CCIRBF) approximation scheme pro-
posed in [Tien, Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2015)] when incor-
porated into the Schwarz DD algorithms for solving Poisson problems. Different
types of Schwarz DD algorithms are utilised, including the one-level additive/ mul-
tiplicative and two-level additive/ multiplicative/ hybrid Schwarz. In the one-level
algorithm, a fine mesh problem on each subdomain is solved and the subdomain
solutions are interpolated back to the global grid. The two-level algorithm is for-
mulated by adding the coarse mesh problem to the one-level problem. The use of
the coarse mesh generally reduces the number of iterations. The present CCIRBF
based Schwarz DD algorithms are investigated with various grid sizes, number of
subdomains and overlap sizes. It is found that the present CCIRBF two-level mul-
tiplicative version is far better than the other CCIRBF based DD versions in terms
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of iteration count. The present CCIRBF two-level multiplicative version shows a
great promise for both serial and parallel computing because it is stable with var-
ious numbers of subdomains and grid sizes while being able to converge quickly
with very small overlap sizes.

Then, we incorporate the CCIRBF into serial and parallel two-level multiplicative
Schwarz for practical tests. We parallelise problems which are decomposed by the
two-level multiplicative Schwarz with a colouring technique. The serial and paral-
lel algorithm are so called CCIRBF-Serial and -Parallel, respectively. To analyse
their accuracy and efficiency, analytical examples including Poisson and Navier-
Stokes equations are performed. Lid driven cavity problems, in which Taylor-series
type boundary condition for vorticity is first implemented in the context of the
CCIRBF, are also analysed as practical applications. Numerical results show: (i)
the results produced by CCIRBF-Serial and -Parallel have almost the same solution
accuracy with those calculated by the CCIRBF-Single domain, which is computa-
tionally ideal; (ii) the CCIRBF-Serial and -Parallel algorithms are highly accurate
in comparison with standard FDM, higher-order compact finite difference (HOC)
and some other schemes; (iii) the proposed CCIRBF-Serial and -Parallel algorithms
can efficiently solve large-size problems. The proposed CCIRBF-Serial and Par-
allel algorithms may be used effectively for large-scale problems which the single
domain algorithms are struggling to handle.

This paper is organised as follows. Section 2 reviews the CCIRBF approximation
scheme. In Section 3, we briefly describe the one-level additive/ multiplicative
and two-level additive/ multiplicative/ hybrid. In Section 4, the GMRES iterative
method is briefly mentioned. Section 5 explains the serial and parallel two-level
multiplicative Schwarz DD methods, followed by Section 6 which details the par-
allel technique. Numerical examples demonstrating the convergence analysis and
effectiveness of the algorithms are presented in Section 8. Finally, the concluding
remarks of the article are given in Section 9.

2 CCIRBF scheme

The coupled compact integrated radial basis function (CCIRBF) approximation
scheme developed by Tien, Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2015)
is utilised in this paper. Readers may find more details about CCIRBF scheme in
[Tien, Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2015)], which are summarised
here for convenience.

The essence of the CCIRBF scheme is to couple extra information of the nodal first
and second derivative values via their identity equations, which makes the scheme
more accurate, stable and efficient. Hereafter, for brevity, η denotes either x or
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y in a generic local stencil {η1,η2,η3}, where η1 < η2 < η3 and η2 ≡ η(i, j), are
illustrated in Figure 1.

Figure 1: Compact three-point 1D-IRBF stencil for interior nodes.

2.1 First derivatives at interior nodes

For the coupled compact approximation of the first derivatives at interior nodes,
nodal derivative values (i.e. extra information) are chosen as not only

{
du1
dη

; du3
dη

}
but also

{
d2u1
dη2 ; d2u3

dη2

}
. At a particular interior node, the approximation is processed

through three steps: (i) we first approximate its first derivative over its associated
three-point stencil involving

{
du1
dη

; du3
dη

}
; (ii) we then approximate its first derivative

over the same stencil used in step (i) involving
{

d2u1
dη2 ; d2u3

dη2

}
; (iii) an identity equa-

tion of the first derivative is employed to enhance the level of compactness of the
stencil. Both

{
du1
dη

; du3
dη

}
and

{
d2u1
dη2 ; d2u3

dη2

}
are incorporated into the first derivative

approximation.

2.1.1 First derivatives at interior nodes involving
{

du1
dη

; du3
dη

}
At η = η2, the approximation formulation of the stencil is expressed in the matrix-
vector form as[
−µ1F4 1 −µ1F5

]
u′n +

[
0 0 0

]
u′′n =

[
µ1F1 µ1F2 µ1F3

]
un, (1)

where {µ1Fi}5
i=1 is the set of IRBFs in the physical space, in which 1 and F stand for

the 1st derivatives to be approximated and the extra information of the nodal first
derivative values chosen, respectively; u′n = [u′1

n,u′2
n,u′3

n]
T ; u′′n = [u′′1

n,u′′2
n,u′′3

n]
T ;

and un = [u1
n,u2

n,u3
n]T . It is noted that u′′n is introduced here to produce a general

form for the coupling task which is mentioned later on.

2.1.2 First derivatives at interior nodes involving
{

d2u1
dη2 ; d2u3

dη2

}
At η = η2, the approximation formulation of the stencil is expressed in the matrix-
vector form as[

0 1 0
]

u′n +
[
−µ1S4 0 −µ1S5

]
u′′n =

[
µ1S1 µ1S2 µ1S3

]
un, (2)
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where {µ1Si}5
i=1 is the set of IRBFs in the physical space, in which 1 and S stand for

the 1st derivatives to be approximated and the extra information of the nodal second
derivative values chosen, respectively; u′n = [u′1

n,u′2
n,u′3

n]
T ; u′′n = [u′′1

n,u′′2
n,u′′3

n]
T ;

and un = [u1
n,u2

n,u3
n]T .

2.1.3 First derivative couplings at interior nodes

At η = η2, a coupling equation in matrix-vector form is described as[
µ1F4 0 µ1F5

]
u′n +

[
−µ1S4 0 −µ1S5

]
u′′n

=
[
(µ1S1−µ1F1) (µ1S2−µ1F2) (µ1S3−µ1F3)

]
un, (3)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T .

2.2 First derivatives at boundary nodes

At the boundary nodes, the first derivatives are approximated in special compact
stencils. Consider the boundary node, e.g. η1. Its associated stencil is {η1,η2,η3,η4}
as shown in Figure 2. For the coupled compact approximation of the first derivative
at the boundary node η1, nodal derivative values (i.e. extra information) are chosen
as both du2

dη
and d2u2

dη2 . The approximation is processed through three steps: (i) we
first approximate its first derivative over its associated four-point stencil involving
du2
dη

; (ii) we then approximate its first derivative over the same stencil used in step

(i) involving d2u2
dη2 ; (iii) an identity equation of the second derivative is employed to

enhance the level of compactness of the stencil. Both du2
dη

and d2u2
dη2 are incorporated

into the second derivative approximation.

Figure 2: Special compact four-point 1D-IRBF stencil for boundary nodes.

2.2.1 First derivatives at boundary node η1 involving du2
dη

[
1 −µsp1F5 0 0

]
u′n +

[
0 0 0 0

]
u′′n

=
[

µsp1F1 µsp1F2 µsp1F3 µsp1F4
]

un, (4)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T ; and un=[u1
n,u2

n,u3
n,u4

n]T.
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2.2.2 First derivatives at boundary node η1 involving d2u2
dη2

[
1 0 0 0

]
u′n +

[
0 −µsp1S5 0 0

]
u′′n

=
[

µsp1S1 µsp1S2 µsp1S3 µsp1S4
]

un, (5)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T ; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T ; and un=[u1
n,u2

n,u3
n,u4

n]T.

2.2.3 First derivative coupling at boundary node η1

[
0 µsp1F5 0 0

]
u′n +

[
0 −µsp1S5 0 0

]
u′′n

=
[
(µsp1S1−µsp1F1) (µsp1S2−µsp1F2) (µsp1S3−µsp1F3) (µsp1S4−µsp1F4)

]
un,

(6)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

In a similar manner, one is able to calculate the first derivative at the boundary node
ηnη

.

2.3 Second derivatives at interior nodes

In a similar manner as in Section 2.1, one is able to calculate the coupled compact
approximation of the second derivatives at interior nodes as follows.

2.3.1 Second derivatives at interior nodes involving
{

du1
dη

; du3
dη

}
At η = η2, the approximation formulation of the stencil is expressed in the matrix-
vector form as[
−ν2F4 0 −ν2F5

]
u′n +

[
0 1 0

]
u′′n =

[
ν2F1 ν2F2 ν2F3

]
un, (7)

where {ν2Fi}5
i=1 is the set of IRBFs in the physical space, in which 2 and F stand

for the 2nd derivatives to be approximated and the extra information of the first
derivatives, respectively; u′n = [u′1

n,u′2
n,u′3

n]
T ; u′′n = [u′′1

n,u′′2
n,u′′3

n]
T ; and un =

[u1
n,u2

n,u3
n]T .

2.3.2 Second derivatives at interior nodes involving
{

d2u1
dη2 ; d2u3

dη2

}
At η = η2, the approximation formulation of the stencil is expressed in the matrix-
vector form as[

0 0 0
]

u′n +
[
−ν2S4 1 −ν2S5

]
u′′n =

[
ν2S1 ν2S2 ν2S3

]
un, (8)
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where {ν2Si}5
i=1 is is the set of IRBFs in the physical space, in which 2 and S

stand for the 2nd derivatives to be approximated and the extra information of the
second derivatives, respectively; u′n = [u′1

n,u′2
n,u′3

n]
T ; u′′n = [u′′1

n,u′′2
n,u′′3

n]
T ; and

un = [u1
n,u2

n,u3
n]T .

2.3.3 Second derivative couplings at interior nodes

At η = η2, a coupling equation in the matrix-vector form is described as[
ν2F4 0 ν2F5

]
u′n +

[
−ν2S4 0 −ν2S5

]
u′′n

=
[
(ν2S1−ν2F1) (ν2S2−ν2F2) (ν2S3−ν2F3)

]
un, (9)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T .

2.4 Second derivatives at boundary nodes

In a similar manner as in Section 2.2, one is able to calculate the coupled compact
approximation of the second derivatives at boundary nodes as follows.

2.4.1 Second derivatives at boundary node η1 involving du2
dη[

0 −νsp2F5 0 0
]

u′n +
[

1 0 0 0
]

u′′n

=
[

νsp2F1 νsp2F2 νsp2F3 νsp2F4
]

un, (10)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

2.4.2 Second derivatives at boundary node η1 involving d2u2
dη2

[
0 0 0 0

]
u′n +

[
1 −νsp2S5 0 0

]
u′′n

=
[

νsp2S1 νsp2S2 νsp2S3 νsp2S4
]

un, (11)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

2.4.3 Second derivative coupling at boundary node η1[
0 νsp2F5 0 0

]
u′n +

[
0 −νsp2S5 0 0

]
u′′n

=
[
(νsp2S1−νsp2F1) (νsp2S2−νsp2F2) (νsp2S3−νsp2F3) (νsp2S4−νsp2F4)

]
un,
(12)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

In an similar manner, one is able to calculate the second derivative at the boundary
node ηnη

.
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2.5 Matrix assembly for first and second derivative expressions

The IRBF system on a grid line for the first derivative is obtained by letting the
interior node taking value from 2 to (nη − 1) in (1), (2), and (3); and, making use
of (4), (5), and (6) for the boundary nodes 1 and nη . In a similar manner, the IRBF
system on a grid line for the second derivative is obtained by letting the interior
node taking value from 2 to (nη −1) in (7), (8), and (9); and, making use of (10),
(11), and (12) for the boundary nodes 1 and nη . The resultant matrix assembly is
expressed as

A1F 0
A1S B1S
A1FS B1FS
A2F B2F
0 B2S
A2FS B2FS


︸ ︷︷ ︸

Coefficient matrix

[
u′n

u′′n
]
=



R1F
R1S
R1FS
R2F
R2S
R2FS

 un , (13)

where A1F, A1S, B1S, A1FS, B1FS, A2F, B2F, B2S, A2FS, B2FS, and 0 are nη ×

nη matrices; u′n =
{

u′1
n,u′2

n, ...,u′nη

n
}T

; u′′n =
{

u′′1
n,u′′2

n, ...,u′′nη

n
}T

; and un ={
u1

n,u2
n, ...,unη

n
}T . The coefficient matrix is sparse with diagonal, bi-diagonal,

and tri-diagonal sub-matrices. Solving (13) yields

u′n = Dηun, (14)

u′′n = Dηηun, (15)

where Dη and Dηη are nη ×nη matrices. The approximations of the first and sec-
ond derivatives, u′ and u′′, respectively, are will be used in the following sections.

3 Domain decomposition preconditioners

This paper presents the implementation of the Schwarz domain decomposition
(DD) preconditioned GMRES techniques using the CCIRBF approximation scheme
for the convergence analysis for Poisson problems. In order to describe the working
principles of the Schwarz DD methods, we will first reintroduce the classical alter-
nating and parallel Schwarz algorithms for Poisson problems as below. For more
information about the Schwarz DD methods, readers are referred to the literature
in [Smith, Bjorstad, and Gropp (1996); Danaila (2007)].
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3.1 Classical Schwarz

In one dimension, the Poisson problem is expressed as follows.
−u′′(x) = f (x) for x ∈ (a,b),
u(a) = ua,

u(b) = ub,

(16)

where u′′ are the operators of the approximation of the second derivative; f are
given right hand side values; u are solutions; and ua and ub are boundary val-
ues. The computational interval [a,b] is discretised on n + 2 points xi = a + ih
for i = 0, ...,n+ 1 with a uniform step h = b−a

n+1 . For simplicity, we decompose
the computational interval [a,b] into two subintervals with overlapping: we choose
odd value n and two integer values il and ir symmetric with respect to n+1

2 such
that il < n+1

2 < ir. We set xl = ilh and xr = irh, thus defining two intervals [a,xr]
and [xl,b] with a nonempty overlap [a,xr]∩ [xl,b] = [xl,xr] = Ω0 6=∅. The problem
domain and subdomains become Ω = (a,b), Ω1 = (a,xr), and Ω2 = (xl,b), respec-
tively. It is noted that the domains Ω, Ω1 and Ω2 do not include their boundaries
and ∪2

i=1Ωi = Ω.

We now compute the solution u to the problem (16) by solving two problems on
subintervals [a,xr] and [xl,b]. The solution u1 (respectively u2) is expected to be the
restriction on the [a,xr] (respectively [xl,b]) of the solution u to the problem on the
full interval [a,b]. The two solutions u1 and u2 must therefore be identical within
the overlapping region [xl,xr], which allows us to define the boundary conditions in
xl and xr

u1(xr) = β = u2(xr) and u1(xl) = α = u2(xl), (17)

Initially, the values of α and β are "guessed" by linear interpolation of the global
boundary conditions

α =
1

b−a
{ua(b− xl)+ub(xl−a)} , (18)

β =
1

b−a
{ua(b− xr)+ub(xr−a)} . (19)

3.1.1 Classical Alternating Schwarz

In alternating Schwarz method, a sequence (un
1,u

n
2) for n ≥ 0 is built by solving

alternatively the same equations (16) in [a,xr] and [xl,b] with the values on the
boundary defined by the previously computed values in the other subdomain. The
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alternating Schwarz method begins by selecting an initial guess u2
0(xr) = β . Then,

iteratively for n = 1,2,3..., one solves the boundary value problem

[a,xr]


−u′′1

n(x) = f (x) for x ∈Ω1 = (a,xr),

u1
n(a) = ua,

u1
n(xr) = u2

n−1(xr),

(20)

for solution u1
n. This is followed by the solution of the boundary value problem

[xl,b]


−u′′2

n(x) = f (x) for x ∈Ω2 = (xl,b),
u2

n(xl) = u1
n(xl),

u2
n(b) = ub,

(21)

for solution u2
n.

3.1.2 Classical Parallel Schwarz

In parallel Schwarz method, we set u1
0(xl) =α and u2

0(xr) = β . The computations
in [a,xr] and [xl,b] are made in parallel

[a,xr]


−u′′1

n(x) = f (x) for x ∈ (a,xr),

u1
n(a) = ua,

u1
n(xr) = u2

n−1(xr),

(22)

and

[xl,b]


−u′′2

n(x) = f (x) for x ∈ (xl,b),
u2

n(xl) = u1
n−1(xl),

u2
n(b) = ub,

(23)

for solution u1
n and u2

n.

The classical algorithms described above can be modified to get additive, multi-
plicative and hybrid DD preconditioners used in a Krylov subspace solver such as
GMRES. For convenience, we only summarise those DD preconditioners in this
paper as below. For more details, readers refer to [Smith, Bjorstad, and Gropp
(1996)]).

3.2 Addictive, multiplicative and hybrid Schwarz preconditioner

Figure 3 illustrates the decomposition of the global domain Ω into two subdomains
Ωi, where Ωi are overlapping subdomains. We define the restriction map Ri from
global domain Ω to subdomain Ωi as follows.

R1 =
[

IΩ1 0
]
, (24)
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Figure 3: An example of decomposition of a domain into two subdomains.

R2 =
[

0 IΩ2

]
, (25)

where I are identity matrices. Then, subdomain matrix is defined as

Ai = RiART
i , (26)

where A is the problem system matrix and RT
i is the interpolation map from global

domain Ω to subdomain Ωi. For general description, we assume that the global
domain Ω is divided into q-subdomains, where q≥ 2.

3.2.1 One-level additive Schwarz preconditioner

The one-level additive Schwarz preconditioner is simply formulated as

Algorithm 1 : one-level additive Schwarz preconditioner

v←
q

∑
i=1

Bir, (27)

where r is the residual; Bi = RT
i A−1

i Ri restricts the residual r to subdomain Ωi; and
v is Krylov vector in the GMRES algorithm.

3.2.2 One-level multiplicative Schwarz preconditioner

One-level multiplicative Schwarz preconditioner, the sequential version of the one-
level additive Schwarz preconditioner, is expressed as follows.

Algorithm 2 : one-level multiplicative Schwarz preconditioner

v← B1r, (28)

v← v+B2(r−Av), (29)

...

v← v+Bq(r−Av). (30)
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Figure 4: An example of discretisation of two coarse meshes.

Partition of unity coarse meshes for two-level algorithms : In the two-level
methods, coarse meshes need to be constructed. We define the coarse mesh on the
existing fine mesh [Jenkins, Kees, Kelley, and Miller (2001)]. By this way, we
do not need to create the coarse mesh geometry or use the geometric information
about subdomains. Figure 4 shows the discretisation of a fine mesh into two coarse
meshes with one coarse mesh map per subdomain Ωi, where Ω0 = Ω1 ∩Ω2 is
an overlapping region. We use a partition of unity (PU), i.e. to sum up to one
everywhere in the domain of calculation. We let Pi be a PU subordinate to the
covering partition Ωi of Ω with the following conditions

P1 +P2 = 1,
0≤ P1,P2 ≤ 1,
P1 ≡ 1 on Ω1 \Ω0 and P1 ≡ 0 on Ω2 \Ω0,

P2 ≡ 1 on Ω2 \Ω0 and P2 ≡ 0 on Ω1 \Ω0.

(31)

Similarly to the one-level, we will choose R0, a coarse mesh restriction map from
fine to coarse meshes, such that it has the form

R0 =

[
W1

W2

]
, (32)

where W1 and W2 are defined as

W1 = P1/‖P1‖2 and W2 = P2/‖P2‖2, (33)
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‖·‖2 denotes Euclidean norm. A Galerkin or variational coarse grid correction uses
the fine grid matrix to obtain the coarse mesh matrix as follows.

A0 = R0ART
0 , (34)

where RT
0 is a coarse mesh interpolation map from fine to coarse meshes. For

general description, we again assume that the global domain Ω is divided into q-
subdomains, where q≥ 2.

3.2.3 Two-level additive Schwarz preconditioner

The two-level additive Schwarz is formed by adding the coarse mesh problem to
the one-level additive problem

Algorithm 3 : two-level additive Schwarz preconditioner

v←

(
RT

0 A−1
0 R0 +

q

∑
i=1

Bi

)
r. (35)

3.2.4 Two-level multiplicative Schwarz preconditioner

The two-level multiplicative Schwarz is formed by adding the coarse mesh problem
to the one-level multiplicative as follows. It is noted that the coarse mesh problem
is solved only once at the beginning of calculation.

Algorithm 4 : two-level multiplicative Schwarz preconditioner

v← RT
0 A−1

0 R0r, (36)

v← v+B1(r−Av), (37)

...

v← v+Bq(r−Av). (38)

3.2.5 Two-level hybrid I Schwarz preconditioner

The two-level hybrid I is formulated on the basis of the one-level multiplicative by
adding the coarse mesh problem to its last stage

Algorithm 5 : two-level hybrid I Schwarz preconditioner

v← B1r, (39)

v← v+B2(r−Av), (40)

...

v← v+Bq(r−Av). (41)

v← v+RT
0 A−1

0 R0r. (42)
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3.2.6 Two-level hybrid II Schwarz preconditioner

The two-level hybrid II is formulated on the basis of the one-level additive by
adding the coarse mesh problem to its last stage

Algorithm 6 : two-level hybrid II Schwarz preconditioner

v←
q

∑
i=1

Bir, (43)

v← v+RT
0 A−1

0 R0(r−Av). (44)

4 GMRES

We utilise a generalised minimal residual algorithm (GMRES) for solving non sym-
metric linear systems. More information about GMRES may be found in [Saad and
Schultz (1986); Behr (2014); Strang (2007)]. Consider the linear system

Au = f, (45)

where f are given right hand side values; u are unknowns; and A is the problem
system matrix. The GMRES algorithm is outlined in Table 1, where AlgorithmF
is used to represent one of the six preconditioning algorithms mentioned above and
ε is the GMRES tolerance.

5 Serial and parallel two-level multiplicative Schwarz DD methods

For numerical examples, we incorporate the CCIRBF into serial and parallel two-
level multiplicative Schwarz DD methods to solve the linear system (45) as follows.

5.1 Serial two-level multiplicative Schwarz

First, solve the coarse mesh problem once at the beginning

u← B0(f−Au), (46)

Then, solve the fine mesh problem

u← u+B1(f−Au), (47)

...

u← u+Bq(f−Au), (48)

where Bi = RT
i A−1

i Ri.
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Table 1: GMRES Algorithm.

Initialisation

r0← f−Au0 compute initial residual

β ←‖r0‖2 compute initial residual norm

v1← r0/β define first Krylov vector

g← βe1 initialise right hand side

Iteration

1. for j = 1,2, ...,k, ..., until satisfied do
2. v j+1← AlgorithmF (v j) preconditioning step

3. v j+1← Av j+1 matrix-vector product

4. for i = 1,2, ..., j modified Gramm-Schmidt orthogonalisa-

tion

5. hi, j← (vi,v j+1)

6. v j+1← v j+1−hi, jvi

7. h j+1, j←‖v j+1‖2

8. v j+1← v j+1/h j+1, j define next Krylov vector

9. for i = 1,2, ..., j previous Givens rotation on H

10.

{
hi, j← cihi, j + sihi+1, j

hi+1, j←−sihi, j + cihi+1, j

11. γ ←
√

h2
j, j +h2

j+1, j compute next Givens rotation

12. c j← h j, j/γ; s j← h j+1, j/γ

13.

{
h j, j← γ

h j+1, j← 0
Givens rotation on H

14.

{
g j← c jg j

g j+1←−s jg j
Givens rotation on g

15. if
∣∣g j+1

∣∣≤ ε exit loop loop convergence check

Form approximate solution
y1
...

y j

←


h1,1 · · · h1, j
...

. . .
...

0 · · · h j, j


−1

g1
...

g j

 back substitution

uk← u0 +Vkyk. form approximate solution

Note: AlgorithmF is used to represent one of the six preconditioning algorithms

mentioned in Section 8.1.
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5.2 Parallel two-level multiplicative Schwarz

The serial two-level multiplicative Schwarz method mentioned above has very little
potential for parallelism. This is easily fixed. It is noted that there are often many
subdomains which share no common grid points as shown in Figure 5. The numer-
ical solution on these subdomains, therefore, could be updated simultaneously, in
parallel.

Figure 5: Colouring of 5×5 subdomains into four classes.

Define a colouring of the subdomains in the way described in [Smith, Bjorstad, and
Gropp (1996)]. For each subdomain, we associate a colour in the way that no two
subdomains sharing common grid points have the same colour. Let i be the number
of colours used.

In this paper, we introduce the coarse mesh problem into the original colouring
technique of Smith, Bjorstad, and Gropp (1996). We can now generate a i-step
method as follows.

First, solve the coarse mesh problem once at the beginning

un← B0 (f−Aun) , (49)

Then, solve the fine mesh problem

un+1/i← un + ∑
i∈Ω1

Bi (f−Aun) , (50)

un+2/i← un+1/i + ∑
i∈Ω2

Bi

(
f−Aun+1/i

)
, (51)

...

un+1← un+(i−1)/i + ∑
i∈Ω4

Bi

(
f−Aun+(i−1)/i

)
, (52)

where (n+1) is the current time level.
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6 Parallelism

The parallel implementation is based on the colouring technique explained in Sec-
tion 5.2. As shown in Figure 5, four colours are used to mark colours of subdomains
so that subdomains with the same colour do not overlap each other. In each sub-step
from (50) to (52), one colour is considered, each CPU is assigned to solve the prob-
lem in each subdomain within that colour. Then, the result from subdomains will
be exchanged between themselves in order for each subdomain to obtain a unique
copy of the whole domain solution. In next substep, the next colour is considered
until the convergence measurement reaches a predefined value.

In this implementation, the broadcast communication is used because each sub-
domain needs to send information to and receive it from all other subdomains. As
whole domain solution is kept in each subdomain and is updated after each substep,
the convergence measurement calculated in each subdomain is consistent with all
other subdomains. This ensures the concurrent convergence of subdomains and
thus alleviate the need of a dedicated termination algorithm for the whole system.

7 Stream function-vorticity formulation

The transient Navier-Stokes equations for an incompressible viscous fluid in the
stream function-vorticity formulation are expressed in the dimensionless conserva-
tive forms as follows.

∂ω

∂ t
+

∂ (uω)

∂x
+

∂ (vω)

∂y
=

1
Re

(
∂ 2

∂x2 +
∂ 2

∂y2

)
ω, (53)

(
∂ 2

∂x2 +
∂ 2

∂y2

)
ψ =−ω. (54)

It is well known that equations in conservative form generally produce more ac-
curate results compared to those of non-conservative form [Niyogi, Chakrabartty,
and Laha (2009)]. In equations (53) and (54), ψ is the stream function; ω is the
vorticity; Re =Ul/ν is the Reynolds number, in which ν , l and U are the kinematic
viscosity, characteristic length and characteristic speed of the flow, respectively; u
and v, velocity components in x- and y-direction, are given by

u =
∂ψ

∂y
and v =−∂ψ

∂x
. (55)

At current time level, n, stream function equation is expressed as(
∂ 2

∂x2 +
∂ 2

∂y2

)
ψ

n =−ω
n−1, (56)
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And velocities are expressed as

un =
∂ψn

∂y
and vn =−∂ψn

∂x
. (57)

The temporal discretisation of (53) results in

ωn−ωn−1

∂ t
=

1
Re

(
∂ 2

∂x2 +
∂ 2

∂x2

)
ω

n−1− ∂ (unωn−1)

∂x
− ∂ (vnωn−1)

∂y
. (58)

8 Numerical examples

We chose the MQ function as the basis function in the present calculations

Gi(x) =
√

(x− ci)2 +a2
i , (59)

where ci and ai are the centre and the width of the i-th MQ, respectively. For each
stencil, the set of nodal points is taken to be the same as the set of MQ centres. We
simply choose the MQ width as ai = βhi, where β is a positive scalar and hi is the
distance between the i-th node and its closest neighbour.

Measurement Criteria: We evaluate the performance of the present schemes
through the following measures

i. the root mean square error (RMS) is defined as

RMS =

√
∑

N
i=1
(

fi− f i
)2

N
, (60)

where fi and f i are the computed and exact values of the solution f at the i-th
node, respectively; and, N is the number of nodes over the whole domain.

ii. the average absolute error (L1) is defined as

L1 =
1
N

N

∑
i=1
| fi− f i|. (61)

iii. the global convergence rate with respect to the grid refinement is defined
through

RMS(h)≈ γhα = O(hα), (62)

where h is the grid size; and γ and α are exponential model’s parameters.
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iv. a flow is considered to reach its steady state when√
∑

N
i=1
(

f n
i − f n−1

i

)2

N
< 10−8. (63)

v. Speed-up, S, and efficiency, E are defined as

S =
Ts

Tp
, (64)

E =
S
p
×100, (65)

where Ts is computation time on single CPU; Tp is computation time on
parallel CPUs; and p is number of parallel CPUs. In particular, Ts is defined
as the computation time of the CCIRBF-Single domain in this paper.

Subdomain partition: Referring the subdomain partition presented in [Jenkins,
Kees, Kelley, and Miller (2001)], we let h = 2−m be the scale of the fine mesh and
let the overlap o be the nearest integer larger than

2mo1, (66)

where o1 is the overlap that depends on the physical subdomain. For examples,
overlap of 1% is determined by letting o1 = 0.01. The global grid is an n×n mesh
where n = 2m + o. We will use 2p subdivisions in each directions so there will be
2p+1 subdomains, each of size m×m, where

m = 2m−p +o−1. (67)

The scale H of the subdomains is defined as 2−p. This way of partition allows for a
perfect split with all intervals having equal length. Figure 6 illustrates an example
of decomposition of the 2D domain Ω.

In this work, calculations are done with a Dell computer, Precision T7600. Its
specifications are Intel(R) Xeon(R) CPU E5-2687W 0 3.10 GHz 3.10 GHz (2
processors), memory(RAM) of 128GB and 64-bit operating system. The Matlab(R)
version 2012 is utilised. In serial and parallel algorithms, the overlapping is chosen
between 1% to 25%. In parallel computing, the percentage of communication time
is calculated with respect to its total computation time.
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Figure 6: An example of decomposition of Ω into subdomains Ω1,Ω2, ...,Ωk, ....

8.1 Convergence analysis of CCIRBF based additive / multiplicative / hybrid
Schwarz for 2D Poisson

We now apply the GMRES algorithms described in Section 4 for the 2D case.
The 2D Poisson problem becomes −(u′′xx + u′′yy) = f . We consider the right hand
side f equal to −2π2sin(πx)sin(πy) and the solution is required to be zero on the
boundary of [0,1]2. Calculations are carried out on coarse meshes of size H =
1/4, 1/8 and 1/16 and fine meshes of size roughly h = 1/32,1/64 and 1/128.
The value of β = 50 is simply chosen. We terminate calculations when the GM-
RES residual is smaller than 0.01. We tabulate iteration counts upon termination.
In Tables 2-7, H is decreased by a factor of two going down the columns and
h is similarly decreased going across the rows. We increase the overlap size as
{1%,5%,10%,15%,20%,25%}. We consider calculations having the number of
iteration larger than 100 to be not stable and unlikely to converge. For plots of
iteration count versus overlap percentage and of GMRES residual versus iteration
count, we deliberately choose the case where H = 1/8 and h = 1/128 to be a
representative case for each overlap case because calculations with H = 1/8 and
h = 1/128 are reasonably stable in our experiments.
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8.1.1 One-level additive Schwarz preconditioner

Table 2 shows the iteration counts of the one-level additive preconditioned GMRES
using the present CCIRBF. More details about convergence characteristics of the
present CCIRBF one-level additive algorithm are shown in Figure 7. It appears that
the present CCIRBF one-level additive algorithm performs best with an overlap
around 20%.
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Figure 7: One-level additive preconditioned GMRES using the present CCIRBF:
Iteration count versus overlap percentage (top) and GMRES residual versus itera-
tion count (bottom).
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Table 2: One-level additive preconditioned GMRES using the present CCIRBF:
number of iteration required to achieve convergence.

present CCIRBF
H \h 1/32 1/64 1/128

overlap = 1%
1/4 17 23 20
1/8 23 29 19
1/16 32 39 18

overlap = 5%
1/4 12 13 18
1/8 13 13 21
1/16 11 13 26

overlap = 10%
1/4 10 14 14
1/8 10 17 16
1/16 13 16 18

overlap = 15%
1/4 12 10 10
1/8 15 13 14
1/16 18 16 17

overlap = 20%
1/4 12 12 9
1/8 15 16 13
1/16 23 23 19

overlap = 25%
1/4 9 10 11
1/8 13 14 15
1/16 20 21 21

8.1.2 One-level multiplicative Schwarz preconditioner

The iteration counts of the one-level multiplicative preconditioned GMRES using
the present CCIRBF are provided in Table 3. The iteration counts of the present
CCIRBF one-level multiplicative algorithm are much smaller than those of the
present CCIRBF one-level additive algorithm tabulated in Tables 2, except the case
of 1% overlap. Especially, with cases where H = 1/16, the iteration counts of the
present CCIRBF one-level multiplicative algorithm are much smaller than those
figures of the present CCIRBF one-level additive algorithm in Tables 2. Plots of it-
eration count versus overlap percentage and GMRES residual versus iteration count
are illustrated in Figure 8. It can be seen that the present CCIRBF one-level multi-
plicative algorithm performs best with the overlap between 15% and 20%.
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Figure 8: One-level multiplicative preconditioned GMRES using the present
CCIRBF: Iteration count versus overlap percentage (top) and GMRES residual ver-
sus iteration count (bottom).
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Table 3: One-level multiplicative preconditioned GMRES using the present
CCIRBF: number of iteration required to achieve convergence.

present CCIRBF
H \h 1/32 1/64 1/128

overlap = 1%
1/4 51 25 11
1/8 19 95 12
1/16 19 34 17

overlap = 5%
1/4 8 7 8
1/8 9 9 11
1/16 9 10 16

overlap = 10%
1/4 6 7 7
1/8 7 9 9
1/16 7 12 12

overlap = 15%
1/4 6 6 6
1/8 8 6 7
1/16 12 7 8

overlap = 20%
1/4 6 6 6
1/8 7 7 6
1/16 8 7 7

overlap = 25%
1/4 5 5 5
1/8 5 5 6
1/16 5 6 6

8.1.3 Two-level additive Schwarz preconditioner

Table 4 shows the iteration counts of the two-level additive preconditioned GM-
RES using the present CCIRBF. The present CCIRBF two-level additive scheme
is comparable with the present CCIRBF one-level additive scheme shown in Table
2. As shown in Figure 9, the present CCIRBF two-level additive scheme performs
best with an overlap of around 10%.

8.1.4 Two-level multiplicative Schwarz preconditioner

Table 5 shows the iteration statistics of the two-level multiplicative preconditioned
GMRES using the present CCIRBF. In comparison with the present CCIRBF one-
level additive/ multiplicative and two-level additive algorithms shown in Table 2,
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Figure 9: Two-level additive preconditioned GMRES using the present CCIRBF:
Iteration count versus overlap percentage (top) and GMRES residual versus itera-
tion count (bottom).
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Table 4: Two-level additive preconditioned GMRES using the present CCIRBF:
number of iteration required to achieve convergence.

present CCIRBF
H \h 1/32 1/64 1/128

overlap = 1%
1/4 16 21 21
1/8 15 19 20
1/16 11 16 16

overlap = 5%
1/4 11 13 17
1/8 11 11 15
1/16 16 17 10

overlap = 10%
1/4 9 12 13
1/8 12 10 11
1/16 15 16 18

overlap = 15%
1/4 10 9 9
1/8 16 15 15
1/16 15 16 16

overlap = 20%
1/4 9 10 8
1/8 14 14 13
1/16 22 21 19

overlap = 25%
1/4 11 11 12
1/8 14 14 14
1/16 21 21 21

3 and 4, respectively, the present CCIRBF two-level multiplicative algorithm is
superior with much smaller iterations. Figure 10 depicts fast convergence of the
present CCIRBF two-level multiplicative algorithm for overlap from 10% up to
25%. Moreover, the smaller the overlap size, the faster the calculation, and there-
fore, the overlap of 10% is recommended for the present CCIRBF two-level multi-
plicative.

For comparison purposes, we incorporate the high order compact finite differ-
ence (HOC) of [Tian, Liang, and Yu (2011)] into the DD two-level multiplica-
tive Schwarz preconditioned GMRES algorithm. It can be seen that the present
CCIRBF two-level multiplicative scheme produces much better results than those
of the HOC two-level multiplicative scheme at the overlap of 1% and 25%. For
other overlap cases, the present CCIRBF two-level multiplicative algorithm is com-



278 Copyright © 2015 Tech Science Press CMES, vol.104, no.4, pp.251-304, 2015

parable with the HOC two-level multiplicative algorithm.
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Figure 10: Two-level multiplicative preconditioned GMRES using the present
CCIRBF: Iteration count versus overlap percentage (top) and GMRES residual ver-
sus iteration count (bottom).
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Table 5: Two-level multiplicative preconditioned GMRES using the HOC and
present CCIRBF: number of iteration required to achieve convergence.

HOC present CCIRBF
Tian et al. (2011)

H \h 1/32 1/64 1/128 1/32 1/64 1/128
overlap = 1%

1/4 100+ 100+ 59 10 13 12
1/8 100+ 100+ 88 9 13 11
1/16 – 100+ 100+ 5 9 8

overlap = 5%
1/4 20 5 6 7 6 7
1/8 8 4 5 5 5 7
1/16 30 6 2 8 7 4

overlap = 10%
1/4 3 4 5 4 5 5
1/8 4 2 3 5 5 4
1/16 4 5 5 5 8 8

overlap = 15%
1/4 3 3 3 5 4 4
1/8 4 4 4 6 5 4
1/16 2 3 4 9 5 5

overlap = 20%
1/4 2 2 3 4 4 3
1/8 4 4 4 5 5 4
1/16 3 3 3 6 6 4

overlap = 25%
1/4 5 5 6 4 4 3
1/8 6 6 7 5 4 4
1/16 6 6 6 4 4 4

8.1.5 Two-level hybrid I Schwarz preconditioner

The iteration statistics of the two-level hybrid I preconditioned GMRES using the
present CCIRBF are presented in Table 6. In comparison with the present CCIRBF
two-level multiplicative shown in Table 5, the present CCIRBF two-level hybrid I
is less effective with larger iteration counts. Plots of iteration count versus overlap
percent and GMRES residual versus iteration count for the present CCIRBF two-
level hybrid I are depicted in Figure 11. It can be seen that the present CCIRBF
two-level hybrid I performs best around an overlap of 10%.



280 Copyright © 2015 Tech Science Press CMES, vol.104, no.4, pp.251-304, 2015

0 5 10 15 20 25
6

7

8

9

10

11

12

13

14

15

16

Overlap percentage

It
er

at
io

n 
co

un
t

0 2 4 6 8 10 12 14 16

10
−2

10
−1

10
0

Iteration count

G
M

R
E

S 
re

si
du

al

 

 
1 percent
5 percent
10 percent
15 percent
20 percent
25 percent

Figure 11: Two-level hybrid I preconditioned GMRES using the present CCIRBF:
Iteration count versus overlap percentage (top) and GMRES residual versus itera-
tion count (bottom).
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Table 6: Two-level hybrid-I preconditioned GMRES using the present CCIRBF:
number of iteration required to achieve convergence.

present CCIRBF
H \h 1/32 1/64 1/128

overlap = 1%
1/4 15 17 14
1/8 13 28 16
1/16 6 15 14

overlap = 5%
1/4 9 9 10
1/8 8 8 9
1/16 10 11 6

overlap = 10%
1/4 6 7 8
1/8 8 6 6
1/16 8 10 11

overlap = 15%
1/4 8 6 6
1/8 8 7 7
1/16 12 8 8

overlap = 20%
1/4 7 6 6
1/8 7 7 7
1/16 9 8 7

overlap = 25%
1/4 6 6 6
1/8 7 7 7
1/16 7 7 7

8.1.6 Two-level hybrid II Schwarz preconditioner

Table 7 reports the iteration counts of the two-level hybrid-II preconditioned GM-
RES using the present CCIRBF. At the overlap of 1%, 5%, 10% and 15%, the
present CCIRBF two-level hybrid-II shows better results compared to those of the
present CCIRBF one- and two-level additive in Tables 2 and 4, respectively. For
other overlap cases where H = 1/16, the iteration counts of the present CCIRBF
two-level hybrid-II algorithm are much smaller than those figures of the present
CCIRBF one- and two-level additive algorithm in Tables 2 and 4, respectively. Fig-
ure 12 plots the iteration count versus the overlap percent and the GMRES residual
versus the iteration count from which it can be observed that the present CCIRBF
two-level hybrid-II performs best around an overlap of 10%.
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Figure 12: Two-level hybrid II preconditioned GMRES using the present CCIRBF:
Iteration count versus overlap percentage (top) and GMRES residual versus itera-
tion count (bottom).
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Table 7: Two-level hybrid-II preconditioned GMRES using the present CCIRBF:
number of iteration required to achieve convergence.

present CCIRBF
H \h 1/32 1/64 1/128

overlap = 1%
1/4 12 16 16
1/8 12 14 13
1/16 11 12 12

overlap = 5%
1/4 10 10 13
1/8 10 10 12
1/16 14 14 10

overlap = 10%
1/4 9 11 12
1/8 12 10 11
1/16 15 16 16

overlap = 15%
1/4 10 9 9
1/8 14 13 13
1/16 15 16 17

overlap = 20%
1/4 10 10 8
1/8 15 15 14
1/16 19 20 18

overlap = 25%
1/4 11 11 12
1/8 14 15 15
1/16 18 19 19

8.1.7 Final comparison of the six algorithms using the present CCIRBF

For comparison purpose, at H = 1/8 and h = 1/128, we finally choose the overlap
percentages at which each of the six algorithms using the present CCIRBF gives its
best performance. Figure 13 shows the comparison of the six algorithms in terms
of the GMRES residual versus the iteration count. It can be seen that the present
CCIRBF two-level multiplicative at 10% overlap reaches the prescribed residual
with the least iterations of only 4. After that, both the present CCIRBF one-level
multiplicative at 20% overlap and the present CCIRBF two-level hybrid I at 10%
overlap require 6 iterations to reach the prescribed GMRES residual. Then, both
the present CCIRBF two-level additive at 10% overlap and the present CCIRBF
two-level hybrid II at 10% overlap take 11 iterations to get to the target GMRES
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Figure 13: Comparison of the six algorithms using the present CCIRBF: GMRES
residual versus iteration count.

8.2 Poisson equation

In order to study the spatial accuracy of the present CCIRBF-Serial and -Parallel
algorithms, we consider the following Poisson equation

d2u
dx2

1
+

d2u
dx2

2
=−18π

2 sin(3πx1)sin(3πx2), (68)

subject to Dirichlet boundary condition derived from the following exact solution

u = sin(3πx1)sin(3πx2), (69)

on a square domain [0,1]2. The calculations are carried out on a set of uniform grids
of {21×21,32×32,42×42,53×53,63×63,74×74,84×84,95×95,105×105}.
The CCIRBF-Serial and -Parallel are considered to reach its steady state when its
RMS is smaller than 10−9. The value of β = 50 is chosen for calculations. Table
8 illustrates the proposed CCIRBF-Serial using 2× 2 subdomains and CCIRBF-
Parallel using 4× 4 subdomains are able to produce the same solution accuracy
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Figure 14: Poisson equation, β = 50: The effect of grid size h on the solution
accuracy RMS. It is noted that the results for the CCIRBF-Single domain, CCIRBF-
Serial and CCIRBF-Parallel are indistinguishable.

to those of the CCIRBF-Single domain. For comparison purposes, we incorpo-
rate the standard central FDM and the HOC of Tian, Liang, and Yu (2011) into
the two-level DD. Figure 14 shows that the proposed CCIRBF-Serial and -Parallel
outperform the FDM-Serial and HOC-Serial in terms of solution accuracy. The so-
lutions converge as O(h4.7) for the CCIRBF-Single domain, -Serial and -Parallel,
O(h4.8) for the HOC-Serial, and O(h2.0) for the FDM-Serial.

An analysis of computational efficiency of the three algorithms, CCIRBF-Single
domain, -Serial and -Parallel are illustrated in Table 9. Table 9 shows that the
CCIRBF-Serial and -Parallel are generally much more efficient than the CCIRBF-
Single domain. In term of computation time, the CCIRBF-Parallel generally uses
less time to reach the same accuracy than the CCIRBF-Serial does. In term of effi-
ciency, the CCIRBF-Serial is much more efficient than the CCIRBF-Parallel at low
numbers of grids. However, the efficiency of the CCIRBF-Parallel increases and
becomes better than that of the CCIRBF-Serial as the number of grids increases.
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8.3 Navier-Stokes equation

To construct a test problem of the stream function-vorticity formulation with known
solution, we specify the stream function described in [Richards and Crane (1979)]

ψ =

(
x2 + y2

)
4

(
ln
(
x2 + y2)−2

)
, (70)

on the unit square. The corresponding vorticity function, derived from (54), results
in

ω = ln
(
x2 + y2) , (71)

The calculations are carried out on a uniform grid of 21× 21. A wide range of
Reynold numbers, Re = [10,30,50,70,90,120,150,200], is employed. The value
of β = 50 is chosen for calculations. Starting values of ω are analytic values of
(71). To solve the steady vorticity equation, we utilise the vorticity equation (53),
where ∂u

∂ t is a pseudo time-derivative term. The vorticity equation (53) is sub-
jected to Dirichlet boundary condition derived from the exact solution of (71). We
deliberately employ a small time step, ∆t = 10−6, to minimise the effect of the ap-
proximate error in time. The criterion to be satisfied for termination of the iteration
scheme is given∣∣∣∣ωn−ωn−1

ωn−1

∣∣∣∣< 10−6. (72)

Figure 15 shows numerical results produced by CCIRBF-Single domain, -Serial
and -Parallel are much more accurate than those computed by the standard central
FDM in Richards and Crane (1979). Table 10 shows the CCIRBF-Serial and -
Parallel produce the same results with those of the CCIRBF-Single domain.

8.4 Lid driven cavity

The classical lid driven cavity has been considered as the test problem for the val-
uation of numerical methods and the validation of fluid flow solvers for the past
decades. Figure 16 shows the problem definition and boundary conditions. The
discretisation of the cavity domain is shown in Figure 17.

To derive the boundary conditions of the vorticity, the grid arrangement close to the
bottom wall ( j = 1) is illustrated in Figure 18. Apply Taylor series up to second
order for ψi, j=2 [Biringen and Chow (2011)]

ψi, j=2 = ψi, j=1 +
∂ψi, j=1

∂y
h+

∂ 2ψi, j=1

∂y2
h2

2
, (73)



A High-order Coupled Compact Integrated RBF Approximation 289

Re

101 102

R
M

S

10-8

10-6

10-4

10-2

FDM [Richards and Crane (1978)]
CCIRBF-Single domain
present CCIRBF-Serial
present CCIRBF-Parallel

Re

101 102

It
e
r
a
ti

o
n
s

100

101

102

103

FDM [Richards and Crane (1978)]
CCIRBF-Single domain
present CCIRBF-Serial
present CCIRBF-Parallel

Figure 15: Navier Stokes problem with analytic solution, numerical solution using
a grid of 21× 21, β = 50: The effect of Reynold number Re on the solution ac-
curacy L1 of vorticity (top) and on iteration number (bottom). It is noted that the
results for the CCIRBF-Single domain, CCIRBF-Serial and CCIRBF-Parallel are
indistinguishable.

Table 10: Navier Stokes analytic solution, β = 50: The effect of Reynold number
Re on the solution accuracy RMS of vorticity.

Re
CCIRBF-Single domain present CCIRBF-Serial present CCIRBF-Parallel

L1 L1 L1
10 6.8802E-07 6.8802E-07 6.8802E-07
30 6.4819E-07 6.4819E-07 6.4819E-07
50 6.4047E-07 6.4047E-07 6.4047E-07
70 6.3717E-07 6.3717E-07 6.3717E-07
90 6.3534E-07 6.3534E-07 6.3534E-07

120 6.3374E-07 6.3374E-07 6.3374E-07
150 6.3278E-07 6.3278E-07 6.3278E-07
200 6.3182E-07 6.3182E-07 6.3182E-07
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Figure 16: Lid driven cavity: problem configuration and boundary conditions in
terms of the stream function.

Figure 17: Lid driven cavity: domain discretisation.
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Figure 18: Lid driven cavity: Grid arrangement close to the bottom wall.

Using

−∂ 2ψi, j = 1
∂y2 = ωi, j=1 = ωbottom wall; and

∂ψi, j=1

∂y
= ui, j=1 = ubottom wall, (74)

Equation (73) becomes

ψi, j=2 = ψi, j=1 +ubottom wallh−ωbottom wall
h2

2
, (75)

or

ωbottom wall = (ψi, j=1−ψi, j=2)
2
h2 +ubottom wall

2
h
. (76)

Similarly, at the top wall ( j = ny)

ωtop wall =
(
ψi, j=ny−ψi, j=ny−1

) 2
h2 −utop wall

2
h
. (77)

At the left wall (i = 1)

ωleft wall = (ψi=1, j−ψi=2, j)
2
h2 −uleft wall

2
h
. (78)

At the right wall (i = nx)

ωright wall = (ψi=nx, j−ψi=nx−1, j)
2
h2 +uright wall

2
h
. (79)

The numerical integration is done according to the following steps.
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1. Set initial conditions at t = 0 (e.g., at all interior points set ω
n−1
i, j = 0).

2. Obtain interior values of ψn
i, j by solving(

∂ 2

∂x2 +
∂ 2

∂y2

)
ψ

n
i, j =−ω

n−1
i, j . (80)

3. Compute interior points of velocities by calculating

un
i, j =

∂ψn
i, j

∂y
and vn

i, j =−
∂ψn

i, j

∂x
. (81)

4. Calculate (76) to (79) for boundary values of ωn
i, j using ψn

i, j.

5. Find right hand side (RHS) of vorticity equation (58)

RHSn
i, j =

1
Re

(
∂ 2

∂x2 +
∂ 2

∂x2

)
ω

n−1
i, j −

∂ (un
i, jω

n−1
i, j )

∂x
−

∂ (vn
i, jω

n−1
i, j )

∂y
. (82)

6. Compute interior values of ωn
i, j using (58)

ω
n
i, j = ω

n−1
i, j +∆tRHSn

i, j. (83)

7. If a prescribed convergence criterion is reached, terminate the calculation; oth-
erwise, go back to step 2.

Uniform grids of {11×11,31×31,41×41,51×51} and a range of Re∈{100,400,
1000} are employed in the simulation. A fixed time step is chosen to be ∆t =
0.0001. Results of the present schemes are compared with some others [Ghia,
Ghia, and Shin (1982); Gresho, Chan, Lee, and Upson (1984); Bruneau and Jouron
(1990); Deng, Piquet, Queutey, and Visonneau (1994b); Botella and Peyret (1998);
Sahin and Owens (2003); Thai-Quang, Le-Cao, Mai-Duy, and Tran-Cong (2012)].
From the literature, FDM results using very dense grids presented by Ghia, Ghia,
and Shin (1982) and pseudo-spectral results presented by Botella and Peyret (1998)
have been referred as "Benchmark" results for comparison purposes.

Tables 11, 12 and 13 show the present results for the extrema of the vertical and
horizontal velocity profiles along the horizontal and vertical centrelines of the cav-
ity for several Reynolds numbers. For Re = 100 (Table 11) and Re = 1000 (Table
13), the "Errors" are evaluated relative to "Benchmark" results of Botella and Peyret
(1998). The results obtained by the present schemes are very comparable with oth-
ers.
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Figure 19: Lid driven cavity: Profiles of the u-velocity along the vertical centreline
and the v-velocity along the horizontal centreline for Re = 100 (top), Re = 400
(middle) and Re = 1000 (bottom) with the grid of 51×51.
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Figure 20: Lid driven cavity: Streamlines of the flow for Re = 100 (top), Re = 400
(middle) and Re = 1000 (bottom) with the grid of 91×91. The contour values used
here are taken to be the same at those in [Ghia, Ghia, and Shin (1982)].

From Tables 11, 12 and 13, we can observe the present scheme effectively achieves
the benchmark results with fewer grids in comparison with the grids of some other
methods used to obtain the benchmark results. In addition, those velocity profiles at
Re ∈ {100,400,1000} with the grid of 51×51, are displayed in Figure 19, where
the present solutions match the benchmark ones very well. The present scheme
effectively achieves the benchmark results with fewer numbers of grids of 51×51
in comparison with the grid of 129× 129 used to obtain the benchmark results in
[Ghia, Ghia, and Shin (1982)].

To exhibit contour plots of the flow, a range of Re∈{100,400,1000} and the grid of
91×91 are employed. Figures 20 and 21 show streamlines and iso-vorticity lines,
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Figure 21: Lid driven cavity: Iso-vorticity lines of the flow for Re = 100 (top),
Re = 400 (middle) and Re = 1000 (bottom) with the grid of 91×91. The contour
values used here are taken to be the same at those in [Ghia, Ghia, and Shin (1982)].

which are derived from the velocity field. These plots are also in good agreement
with those reported in the literature.

For simplicity, the results of CCIRBF-Parallel are chosen to be plotted in Figures
19, 20 and 21. It is noted that the results of CCIRBF-Serial and -Parallel are indis-
tinguishable.

Table 14 shows the indicative comparison of computational efficiency of the CCIR
BF-Single domain, -Serial and - Parallel for the case of Re= 100 with various num-
bers of grids. The CCIRBF-Serial and -Parallel are more efficient to be compared
with the CCIRBF-Single domain.
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9 Concluding remarks

In this work, we carry out a convergence analysis for different types of domain
decomposition (DD) preconditioners implemented with the coupled compact inte-
grated RBF (CCIRBF). The performance of the present CCIRBF based algorithms
are analysed in terms of the iteration count with different mesh sizes, number of
subdomains and overlap sizes. The numerical results show that

i. the present CCIRBF two-level multiplicative algorithm is the best one com-
pared with the other present CCIRBF based algorithms.

ii. the present CCIRBF two-level multiplicative algorithm is better than the
HOC two-level multiplicative algorithm for the case of 1% and 25% over-
laps. For other overlap cases, the present CCIRBF two-level multiplicative
algorithm is comparable with the HOC two-level multiplicative algorithm.

In the implementation of the present CCIRBF in the DD preconditioners, we found
that the incorporation of a coarse mesh problem into the multiplicative precondi-
tioner is necessary to obtain a significant reduction in the computational iteration
count. The present CCIBRF two-level multiplicative method yields small iteration
counts over a wide range of numbers of subdomains, grid sizes and overlap sizes in
our examples.

The present work introduces highly accurate serial and parallel algorithms using
the CCIRBF for heat and fluid flow problems. The beauty of the proposed se-
rial and parallel schemes is that they are able to produce almost the same level
of accuracy as that of the single domain scheme. In computational examples, the
results produced by serial and parallel algorithms are very compatible with other
methods such as finite element method (FEM) and finite difference method (FDM).
The capability of producing the stable and highly accurate results of the proposed
algorithms is due to the utilisation of the coarse mesh of the two-level DD and
the CCIRBF approximation. The serial and parallel algorithms offer a divide-
and-conquer solution for large-scale partial differential equation (PDE) problems.
Therefore, the proposed algorithms may be used as alternatives to the single domain
scheme to solve large-scale problems which the single domain scheme is generally
struggling to solve due to its ill-conditioned or fully populated companion matrix.
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