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Meshless Local Petrov-Galerkin Method for Rotating
Euler-Bernoulli Beam

V. Panchore1, R. Ganguli2 and S. N. Omkar3

Abstract: Free vibration problem of a rotating Euler-Bernoulli beam is solved
with a truly meshless local Petrov-Galerkin method. Radial basis function and
summation of two radial basis functions are used for interpolation. Radial basis
function satisfies the Kronecker delta property and makes it simpler to apply the
essential boundary conditions. Interpolation with summation of two radial basis
functions increases the node carrying capacity within the sub-domain of the trial
function and higher natural frequencies can be computed by selecting the complete
domain as a sub-domain of the trial function. The mass and stiffness matrices are
derived and numerical results for frequencies are obtained for a fixed-free beam and
hinged-free beam simulating hingeless and articulated helicopter blades. Stiffness
and mass distribution suitable for wind turbine blades are also considered. Results
show an accurate match with existing literature.

Keywords: Petrov-Galerkin Method, Radial Basis Function, Rotating Euler-Ber-
noulli Beam, Free Vibration.

1 Introduction

In conventional finite element method, considerable time is required to mesh the
structure. Problems with large deformation lead to unreliable results and higher
order derivatives of the field variable are discontinuous at the element boundaries.
Meshless method is an option to overcome such problems, where the formulation
is based on the nodal distribution within the structure. A meshless local Petrov-
Galerkin method does not require a background mesh while formulating shape
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functions and integrating the weak form. Unlike other meshless methods, it is a
truly meshless method [Atluri et al. (2013)].

The Galerkin method yields a weak form of the problem, where basis functions
to construct test function and basis functions to construct trial function are chosen
to be the same and yield a system of symmetric matrices. In contrast, the Petrov-
Galerkin method, where trial function and test functions are constructed using dif-
ferent basis functions yields a system of unsymmetric matrices.

A rotating Euler-Bernoulli beam equation contains a centrifugal force term which
varies along the length of the beam [Johnson (1980); Bisplinghoff, Ashley, and
Halfman (1996); Bramwell, Done, and Balmford (2001)] and makes it difficult to
get the analytical solutions. Analytical solution can be obtained assuming the cen-
trifugal force to be constant along the length of the beam [Bokaian (1990)]. Semi-
analytical solutions are obtained using Frobenius method [Giurgiutiu and Stafford
(1977); Banerjee(2000)]. Solution of a rotating Euler-Bernoulli beam problem is
generally obtained using the finite element method [Putter and Manor (1978); Hoa
(1979); Bauchau and Hong (1987); Chung and Yoo (2002)]. This problem was
solved using Galerkin finite element method [Nagaraj and Shanthakumar (1975)],
using variable order finite element method [Hodges and Rutkowski (1981)], and
using spectral finite element method [Wang and Wereley (2004); Vinod, Gopalakr-
ishnan, and Ganguli (2007)]. Gunda and Ganguli (2007) found that stiff string basis
functions can accelerate the convergence of rotating beam finite element method.
In a further paper [Gunda, Gupta, and Ganguli (2008)] they found that hybrid com-
binations of polynomials and the stiff string basis functions are very useful for
fast convergence. Sushma and Ganguli (2012) showed that a collocation approach
which satisfies the governing differential equation of the rotating beam yields su-
perior basis functions. These works clearly showed that basis functions play an
important role in the convergence of finite element methods for rotating beams.
This naturally led to the idea to use meshless methods which completely depend on
basis functions and avoid the problem of mesh generation. Considerable research is
still required in obtaining the rotating beam solution with analytical and numerical
techniques.

Moving least squares interpolation functions do not satisfy the Kronecker delta
property and essential boundary conditions are enforced using penalty parameters
and Lagrange multiplier method [Liu (2003)]. A new weighing function was used
for moving least squares interpolation which almost satisfies the Kronecker delta
property [Most and Bucher (2005)]. Radial basis functions do satisfy the Kronecker
delta property and essential boundary conditions can be enforced easily. Moving
Kriging interpolation is also an option with meshless methods and it satisfies the
Kronecker delta property [Hu, Wang, Li, Gu, and Han (2014)]. Radial basis func-
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tions were used as trial functions for solving ill-posed time-domain inverse prob-
lems, where collocation method yields a weak form of the problem and solutions
were found to be independent of the accurate initial guess [Elgohary, Dong, Junkins
and Atluri (2014)], a similar combination of radial basis function and collocation
method was used for solving nonlinear initial value problems [Elgohary, Dong,
Junkins and Atluri (2014)], and for solving the orbit propagation of the two-body
problem [Elgohary, Junkins and Atluri (2015)].

Diffused element method was introduced to overcome the drawbacks of the finite
element method and required only spatial location of the nodes [Nayroles, Touzot,
and Villon (1992)]. Element free Galerkin method which requires a background
mesh showed improvements over the diffused element method and used moving
least square interpolation [Belytschko, Lu, and Gu (1994)]. Weak form of Galerkin
method is solved with meshfree method using moving Kriging interpolation [Hu,
Wang, Li, Gu, and Han (2014)].

Meshless local Petrov-Galerkin method is suitable to different test functions and
trial functions, six different formulation were discussed based on the combinations
of test functions and trial functions [Atluri and Shen (2002); Atluri (2004)]. Mostly
C0 and C1 continuous problems were solved using meshless local Petrov-Galerkin
method [Andreaus, Batra, and Porfiri (2005); Gu and Liu (2001); Long and Atluri
(2002)]. In literature, non-rotating beam equations were solved using moving least
squares interpolation [Atluri, Cho, and Kim (1999)] and radial basis function inter-
polation [Raju, Phillips and Krishnamurthy (2004)]. Various methods are derived
from the meshless local Petrov-Galerkin method [Atluri (2004)], a meshless local
Petrov-Galerkin mixed finite difference method was used for solving solid mechan-
ics problems [Atluri, Liu and Han (2006)] and a meshless local Petrov-Galerkin
mixed collocation method was used for solving elasticity problems [Atluri, Liu and
Han (2006)]. Meshless local Petrov-Galerkin method was also applied to the heat
transfer problem [Tian and Rao (2012)].

In this paper, we solve the free vibration problem of a rotating Euler-Bernoulli beam
using meshless local Petrov-Galerkin method. Radial basis function and summa-
tion of two radial basis functions are used for interpolation. Summation of two
radial basis functions approximation increases the node carrying capacity within
the sub-domain of the trial function and higher natural frequencies can be com-
puted using only one sub-domain of the trial function. For fixed parameters, we get
7 and 10 nodes with one function approximation and summation of two functions
approximation, respectively. Equal nodal density is assumed in each sub-domain
of the trial function for accuracy [Belinha (2014)]. Results are compared with lit-
erature and we find a very accurate match with existing results.
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2 Rotating Euler-Bernoulli beam differential equation

Governing differential equation of a rotating Euler-Bernoulli uniform beam is given
by [Johnson (1980)]

∂ 2

∂x2 (EI(x)
∂ 2w(x, t)

∂x2 )+m(x)
∂ 2w(x, t)

∂ t2 − ∂

∂x
(G(x)

∂w(x, t)
∂x

) = 0 (1)

Here, EI(x) and m(x) are the stiffness and mass distribution along the length of the
beam, w is the transverse displacement and G(x) is the centrifugal force and it is
given by

G(x) =
R∫

x

m(x)Ω2xdx (2)

where, Ω is the angular velocity and R is the radius of the rotating beam.

Mass and stiffness distributions along the length of the beam are given by

m(x) = m0(1+a
x
R
) (3)

EI(x) = EI0(1+b1
x
R
+b2

x2

R2 +b3
x3

R3 ) (4)

Here, EI0 and m0 are the stiffness and mass distribution at the root of the beam.
Parameters a, b1, b2, and b3 can be chosen independently [Wright et al. (1982)].
We get singularity for a = −1 at x = R, so we reach a condition a 6= −1. Figure 1
shows a non-uniform rotating Euler-Bernoulli beam.

Figure 1: A rotating Euler-Bernoulli beam.

For free vibration problem, we assume solution w(x, t) = eiωtw̄ to get

d2

dx2 (EI(x)
d2w̄
dx2 )−m(x)ω2w̄− d

dx
(G(x)

dw̄
dx

) = 0 (5)
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where, ω is the natural frequency. Weak form of equation (5) is given by

∫
Ωs

v(x){ d2

dx2 (EI(x)
d2w̄
dx2 )−m(x)ω2w̄− d

dx
(G(x)

dw̄
dx

)}dx = 0 (6)

where, v(x) is the test function.

3 Weak formulation for the meshless local Petrov-Galerkin method

The formulation of a meshless local Petrov-Galerkin method is based on the nodal
test function. Weak formulation is integrated over the sub-domain of the nodal
test function. Equations can be written for each nodal test function sub-domain.
Figure 2 shows nodal distribution within a a rotating Euler-Bernoulli beam. Here,
Ω

(i)
s is the sub-domain of the nodal test function and Γ

(i)
s is the boundary of the

nodal test function. 2Sv is the length of the sub-domain of the nodal test function
and 2St is the length of the sub-domain of the trial function. A similar approach
is used in literature for a non-rotating Euler-Bernoulli beam [Raju, Phillips and
Krishnamurthy (2004)].

Figure 2: Nodal distribution for a meshless local Petrov-Galerkin method.
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Equation (6) can be written for a meshless local Petrov-Galerkin method as

∫
ΩS

EI(x)
d2v
dx2

d2w̄
dx2 dx+

∫
ΩS

G(x)
dv
dx

dw̄
dx

dx−
∫
Ωs

m(x)ω2vw̄dx

+η

[
d
dx

(EI(x)
d2w̄
dx2 )v−G(x)v

dw̄
dx

]
Ωs∩Γw̄

−η

[
EI(x)

dv
dx

d2w̄
dx2

]
Ωs∩Γθ

+αw̄ [(w̄− w̃)v]
Ωs∩ΓW̄

+αθ

[(
dw̄
dx
− θ̃

)
dv
dx

]
ΩS∩Γθ

= 0

(7)

where, αw̄ and αθ are penalty parameters to apply the essential boundary condi-
tions. w̃ and θ̃ are the essential boundary conditions. η is a unit vector and it is
positive on the right hand side of the sub-domain of the nodal test function. Ωs∩Γw̄

and Ωs∩Γθ represent the intersection of the sub-domain of the nodal test function
with the boundary, where deflection and slope are prescribed.

4 Radial basis function interpolation for meshless method

For shape function formulation, we assume the transverse displacement as [Raju,
Phillips and Krishnamurthy (2004)]

w̄(x) = R1(x)a1 +S1(x)b1 +R2(x)a2 +S2(x)b2 + · · ·+RN(x)aN +SN(x)bN (8)

where, N is the number of nodes, and a1, b1, a2, b2, · · · , aN , bN are arbitrary
constants.

Equations (9a) and (9b) show the two approximations used for interpolation, one
function and summation of two functions, respectively.

R j(x) = e
−c

(|x−x j |)2

s2
t (9a)

R j(x) = e
−c (|x−xi |)2

s2
t + e

−c
(|x−x j |)2

( st
2 )

2
(9b)

S j(x) =
dR j(x)

dx
(10)

Here, R j(x) is the radial basis function and S j(x) is the derivative of the radial basis
function. Values of c and st are user defined. Approximation with summation of
two functions increases the node carrying capacity in one sub-domain of the trial
function.
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We write slope by differentiating equation (8) with respect to x as

θ(x) =
dR1(x)

dx
a1+

dS1(x)
dx

b1+
dR2(x)

dx
a2+

dS2(x)
dx

b2+· · ·+
dRN(x)

dx
aN+

dSN(x)
dx

bN

(11)

We can rewrite the transverse displacement as

w̄(x) = [Q(x)](1,2N) [c]
T
(2N,1) (12)

where,

[Q(x)](1,2N) = [R1 (x) S1(x) R2(x) S2(x) · · ·RN(x) SN(x)] (13)

and

[c](1,2N) = [a1 b1 a2 b2 · · ·aN bN ] (14)

We can rewrite slope as

θ(x) =
[

dQ(x)
dx

]
(1,2N)

[c]T(2N,1) (15)

Where,[
dQ(x)

dx

]
(1,2N)

=

[
dR1(x)

dx
dS1(x)

dx
dR2(x)

dx
dS2(x)

dx
· · · dRN(x)

dx
dSN(x)

dx

]
(16)

Substituting displacement and slope values at the nodal points in equation (12) and
(15), we get

[QM](2N,2N) [c]
T
(2N,1) = [d](2N,1) (17)

where,

[d](1,2N) = [w1 θ1 w2 θ2 · · ·wN θN ] (18)

and

[QM] =



R1(x1) S1(x1) R2(x1) S2(x1) . . . RN(x1) SN(x1)
dR1(x1)

dx
dS1(x1)

dx
dR2(x1)

dx
dS2(x1)

dx . . .
dRN(x1)

dx
dSN(x1)

dx
R1(x2) S1(x2) R2(x2) S2(x2) . . . RN(x2) SN(x2)
dR1(x2)

dx
dS1(x2)

dx
dR2(x2)

dx
dS2(x2)

dx . . . dRN(x2)
dx

dSN(x2)
dx

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
R1(xN) S1(xN) R2(xN) S2(xN) . . . RN(xN) SN(xN)
dR1(xN)

dx
dS1(xN)

dx
dR2(xN)

dx
dS2(xN)

dx . . . dRN(xN)
dx

dSN(xN)
dx

.


(19)
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Here, w1, θ1, w2, θ2, · · ·wN and θN are nodal degrees of freedom.

We can rewrite equation (17) as

[c]T(2N,1) = [QM]−1
(2N,2N) [d](2N,1) (20)

From equation (12) and equation (20), we get

w̄(x) = [Q(x)](1,2N) [QM]−1
(2N,2N) [d](2N,1) (21)

w̄(x) = [H(x)](1,2N) [d](2N,1) (22)

where, [H(x)] is shape function vector.

[H(x)](1,2N) = [Q(x)](1,2N) [QM]−1
(2N,2N) (23)

[H(x)](1,2N) =
[
φ
(w)
1 (x) φ

(θ)
1 (x) φ

(w)
2 (x) φ

(θ)
2 (x) · · ·φ (w)

N (x) φ
(θ)
N (x)

]
(24)

Where, φ
(w)
i (x) and φ

(θ)
i (x) are the shape functions associated with node i.

Approximate trial function can be written as

w̄(x) =
N

∑
j=1

(φ
(w̄)
j (x)w̄ j +φ

(θ)
j (x)θ j) (25)

Figures 3a and 3b show the variation of the shape function and its derivative.

Figure 3a: Variation of shape function.
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Figure 3b: Variation of shape function derivative.

5 Test function for a meshless local Petrov-Galerkin method.

Basis function for the test function can be chosen arbitrarily such that it is zero
outside the sub-domain of the nodal test function and it is given by [Raju, Phillips
and Krishnamurthy (2004)]

ζ
(w̄)
i (x) =


[

1−
(
|x−xi|

sv

)2
]4

0

0≤ |x− xi| ≤ sv

|x− xi|> sv

(26)

ζ
(θ)
i (x) =

dζ
(w̄)
i (x)
dx

(27)

where, ζ
(w̄)
i (x) and ζ

(θ)
i (x) are the basis functions for node i, xi is the spatial loca-

tion of the node and 2sv is the sub-domain length of the test function given by

v(x) = δ w̄iζ
(w̄)
i (x)+δθiζ

(θ)
i (x) (28)

Figure 4 shows the variation of basis function for two sub-domain lengths of the
test function 2d and 4d, where, d is the distance between two consecutive nodes.
Figure 5 shows the overlapping of the sub-domains of the test function.
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Figure 4: Variation of test function within the Figure 5.

Figure 5: Overlapping of the sub-domain sub-domain.
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6 Formulation for the meshless local Petrov-Galerkin method

For each sub-domain of the nodal test functions, we can write algebraic equations
and get the global stiffness matrix and the global mass matrix. Stiffness matrix
is constructed using two terms. First term contains nodes contributing within the
domain and the second term contains nodes contributing to the boundary. Equations
can be written based on the nodal test function and spatial location of the node is
required. Using approximate trial and test function we can write equation (7) for
each nodal test function as

N
∑
j=1

∫
Ω

(i)
S

EI(x)(δ w̄i
d2ζ

(w̄)
i

dx2 +δθi
d2ζ

(θ)
i

dx2 )(
d2φ

(w̄)
j

dx2 w̄ j +
d2φ

(θ)
j

dx2 θ j)dx

+
N
∑
j=1

∫
Ω

(i)
S

G(x)(δ w̄i
dζ

(w̄)
i

dx +δθi
dζ

(θ)
i

dx )(
dφ

(θ)
j

dx w̄ j +
dφ

(θ)
j

dx θ j)dx

−
N
∑
j=1

ω2 ∫
Ω

(i)
s

m(x)(δ w̄iζ
(w̄)
i +δθiζ

(θ)
i )(φ

(w̄)
j w̄ j +φ

(θ)
j θ j)dx

+
N
∑
j=1

η


EI(x j)(δ w̄iζ

(w̄)
i +δθiζ

(θ)
i )(

d3φ
(w̄)
j

dx3 w̄ j +
d3φ

(θ)
j

dx3 θ j)+

dEI(x j)
dx (δ w̄iζ

(w̄)
i +δθiζ

(θ)
i )(

d2φ
(w̄)
j

dx2 w̄ j +
d2φ

(θ)
j

dx2 θ j)−

G(x j)(δ w̄iζ
(w̄)
i +δθiζ

(θ)
i )(

dφ
(w̄)
j

dx w̄ j +
dφ

(θ)
j

dx θ j)


Ω

(i)
s ∩Γw̄

−
N
∑
j=1

η

[
EI(x j)(δ w̄i

dζ
(w̄)
i

dx +δθi
dζ

(θ)
i

dx )(
d2φ

(w̄)
j

dx2 w̄ j +
d2φ

(θ)
j

dx2 θ j)

]
Ω

(i)
s ∩Γθ

+
N
∑
j=1

αw̄

[
(δ w̄iζ

(w̄)
i +δθζ

(θ)
i )(φ

(w̄)
j w̄ j +φ

(θ)
j θ j− w̃)

]
Ω

(i)
s ∩Γw̄

+
N
∑
j=1

αθ

[
(δ w̄i

dζ
(w̄)
i

dx +δθi
dζ

(θ)
i

dx )(
dφ

(w̄)
j

dx w̄ j +
dφ

(θ)
j

dx θ j− θ̃)

]
Ω

(i)
s ∩Γθ

= 0

(29)

Stiffness matrix for the nodes within the domain is given by

[Ki j]
(node) =


∫

Ω
(i)
s

EI(x)d2ζ
(w̄)
i

dx2
d2φ

(w̄)
j

dx2 dx
∫

Ω
(i)
s

EI(x)d2ζ
(w̄)
i

dx2
d2φ

(θ)
j

dx2 dx

∫
Ω

(i)
s

EI(x)d2ζ
(θ)
i

dx2
d2φ

(w̄)
j

dx2 dx
∫

Ω
(i)
s

EI(x)d2ζ
(θ)
i

dx2
d2φ

(θ)
j

dx2 dx



+


∫

Ω
(i)
s

G(x)dζ
(w̄)
i

dx
dφ

(w̄)
j

dx dx
∫

Ω
(i)
s

G(x)dζ
(w̄)
i

dx
dφ

(θ)
j

dx dx

∫
Ω

(i)
s

G(x)dζ
(θ)
i

dx
dφ

(w̄)
j

dx dx
∫

Ω
(i)
s

G(x)dζ
(θ)
i

dx
dφ

(θ)
j

dx dx


(30)

The second matrix on the right hand side of the above equation represents the cen-
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trifugal stiffening term. Stiffness matrix for the nodes contributing to the boundary
is given by

[Ki j]
(bound) = αw̄

[
ζ
(w̄)
i φ

(w̄)
j ζ

(w̄)
i φ

(θ)
j

ζ
(θ)
i φ

(w̄)
j ζ

(θ)
i φ

(θ)
j

]
Ω

(i)
s ∩Γē

+αθ

 dζ
(w̄)
i

dx
dφ

(w̄)
j

dx
dζ

(w̄)
i

dx
dφ

(θ)
j

dx
dζ

(θ)
i

dx
dφ

(w̄)
j

dx
dζ

(θ)
i

dx
dφ

(θ)
j

dx


Ω

(i)
s ∩Γθ

+η

[
a11 a12
a21 a22

]
Ω

(i)
s ∩Γw̄

−η

 EI(x j)
dζ

(w̄)
i

dx
d2φ

(w̄)
j

dx2 EI(x j)
dζ

(w̄)
i

dx
d2φ

(θ)
j

dx2

EI(x j)
dζ

(θ)
i

dx
d2φ

(w̄)
j

dx2 EI(x j)
dζ

(θ)
i

dx
d2φ

(θ)
j

dx2


Ω

(i)
s ∩Γθ

(31)

where,

a11 = EI(x j)ζ
(w̄)
i

d3φ
(w̄)
j

dx3 +
dEI(x j)

dx
ζ
(w̄)
i

d2φ
(w̄)
j

dx2 −G(x j)ζ
(w̄)
i

dφ
(w̄)
j

dx

a12 = EI(x j)ζ
(w̄)
i

d3φ
(θ)
j

dx3 +
dEI(x j)

dx
ζ
(w̄)
i

d2φ
(θ)
j

dx2 −G(x j)ζ
(w̄)
i

dφ
(θ)
j

dx

a21 = EI(x j)ζ
(θ)
i

d3φ
(w̄)
j

dx3 +
dEI(x j)

dx
ζ
(θ)
i

d2φ
(w̄)
j

dx2 −G(x j)ζ
(θ)
i

dφ
(w̄)
j

dx

a22 = EI(x j)ζ
(θ)
i

d3φ
(θ)
j

dx3 +
dEI(x j)

dx
ζ
(θ)
i

d2φ
(θ)
j

dx2 −G(x j)ζ
(θ)
i

dφ
(θ)
j

dx
Mass matrix is given by

[Mi j]
(node) =


∫

Ω
(i)
s

m(x)ζ (w̄)
i φ

(w̄)
j

∫
Ω

(i)
s

m(x)ζ (w̄)
i φ

(θ)
j∫

Ω
(i)
s

m(x)ζ (θ)
i φ

(w̄)
j

∫
Ω

(i)
s

m(x)ζ (θ)
i φ

(θ)
j

 (32)

For free vibration problem we can write

ω
2[Mi j]

(node)[φ ] = ([Ki j]
(node)+[Ki j]

(bound))[φ ] (33)

We get the natural frequencies and the mode shapes using equation (31).

In this work, essential boundary conditions can be applied using the penalty pa-
rameters. Radial basis function satisfies the Kronecker delta property and boundary
conditions can be applied directly as well. First two terms of equation (31) can be
removed with direct application of the essential boundary conditions.
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7 Results and Discussion

In this section, we compare our results with existing literature. Two types of re-
sults are discussed. First with fixed-free boundary condition, which is generally
compared in the literature and second with hinged-free boundary condition which
is also shown in the classical text book of aeroelasticity [Bisplinghoff, Ashley, and
Halfman (1996)]. Fixed-free boundary condition represents a hingeless helicopter
rotor blade and hinged-free boundary condition represent an articulated rotor blade.

7.1 Fixed-Free Boundary Conditions

A rotating fixed-free beam is used. Inputs for the results are, m0 = 6.4636kg/m,
Ω = 40.12rad/sec, R = 4.9378m, and EI0

mΩ2R4 = 0.008345, [Zhang (2001)]. Here,
non-dimensional rotating frequency η and non-dimensional rotating speed sis given

by η = ω

√
m0R4

EI0
, s = Ω

√
m0R4

EI0
. Here n is the number of sub-domains of the trial

function, which is set to n = 1 for all the results and p is the number of nodes in
the sub-domain of the trial function. n ≥ 2 can be achieved by overlapping of the
sub-domain of the trial function.

Tables 1 and 2 show the results of a uniform non-rotating and uniform rotating
beam, respectively. Figures 6(a) and 6(b) show the mode shapes of a uniform non-
rotating and uniform rotating beam, respectively.

Note that with c = 1 and 2st = R, we can get 7 and 10 number of nodes in one
sub-domain of the trial function with one function and summation of two functions
approximation, respectively.

Table 1: Natural frequencies of a uniform beam for non-dimensional rotating speed
s = 0.

Baseline [Wang and
Wereley (2004)]

MPLG (One
function) p = 7

MLPG (Summation of
two functions) p = 10

η1 3.5160 3.5364 3.4986
η2 22.0345 22.0329 22.0153
η3 61.6972 61.6966 61.7142
η4 120.902 120.9660 120.9082
η5 199.860 199.8373 199.8675

For a non-uniform rotating Euler-Bernoulli beam mass and stiffness distribution
are given by [Wright et al. (1982)]

m(x) = m0(1−0.8
x
R
) (34)
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Table 2: Natural frequencies of a uniform beam for non-dimensional rotating speed
s = 12.

Baseline [Wang and
Wereley (2004)]

MLPG (One
function) p = 7

MLPG (Summation of
two functions) p = 10

η1 13.1702 13.1571 13.1636
η2 37.6031 37.6087 37.6039
η3 79.6145 79.6172 79.6278
η4 140.534 140.6146 140.5327
η5 220.536 220.5239 220.5470

(a) (b)

Figure 6: Mode shapes of a uniform beam for rotating speed s = 0 (left) and s = 12
(right).

EI(x) = EI0(1−0.95
x
R
) (35)

This mass and stiffness distribution generally represents a wind turbine blade. Ta-
bles 3 and 4 show the results of a non-uniform non-rotating and non-uniform ro-
tating beam, respectively. Figures 7(a) and 7(b) show the mode shapes of a non-
uniform non-rotating and non-uniform rotating beam, respectively.

A non-uniform beam with cubic stiffness distribution is given by [Wright et al.
(1982)]

m(x) = m0(1−0.5
x
R
) (36)

EI(x) = EI0

[
1−0.5

x
R

]3
(37)
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Table 3: Natural frequencies of a non-uniform beam for non-dimensional rotating
speed s = 0.

Baseline [Wang and
Wereley (2004)]

MLPG (One
function) p = 7

MLPG (Summation of
two functions) p = 10

η1 5.2378 5.2383 5.2523
η2 24.0041 24.0024 23.9981
η3 59.9708 59.9777 59.9820
η4 112.892 112.9302 112.9147
η5 183.473 183.1129 183.0533

Table 4: Natural frequencies of a non-uniform beam for non-dimensional rotating
speed s = 12.

Baseline [Wang and
Wereley (2004)]

MLPG (One
function) p = 7

MLPG (Summation of
two functions) p = 10

η1 14.0313 14.0185 14.0340
η2 35.9060 35.9001 35.9021
η3 72.8604 72.8632 72.8656
η4 126.336 126.4260 126.4071
η5 198.243 196.9792 196.9100

(a) (b)

Figure 7: Mode shapes of a non-uniform beam for rotating speed s = 0 (left) and
s = 12 (right).
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This type of stiffness and mass distribution is suitable for helicopter rotor blades.
Tables 5 and 6 show the results of a non-uniform non-rotating (cubic stiffness distri-
bution) and non-uniform rotating (cubic stiffness distribution) beam, respectively.
Figures 8(a) and 8(b) show the mode shapes of a non-uniform non-rotating (cubic
stiffness distribution) and non-uniform rotating (cubic stiffness distribution) beam,
respectively.

Table 5: Natural frequencies of a non-uniform (cubic stiffness distribution) beam
for non-dimensional rotating speed s = 0.

Baseline [Wang and
Wereley (2004)]

MLPG (One
function) p = 7

MLPG (Summation of
two functions) p = 10

η1 3.8238 3.7932 3.8038
η2 18.3173 18.3165 18.3136
η3 47.2648 47.2672 47.2721
η4 N/A 90.4509 90.4501
η5 N/A 148.0149 148.0131

Table 6: Natural frequencies of a non-uniform (cubic stiffness distribution) beam
for non-dimensional rotating speed s = 12.

Baseline [Wang and
Wereley (2004)]

MLPG (One
function) p = 7

MLPG (Summation of
two functions) p = 10

η1 13.4711 13.4620 13.4775
η2 34.0877 34.0822 34.0837
η3 65.5237 65.5275 65.5271
η4 N/A 110.2276 110.2274
η5 N/A 168.7512 168.7119

7.2 Hinged-Free Boundary Conditions

In references [Bisplinghoff, Ashley, and Halfman (1996)] and [Nagaraj and Shan-
thakumar (1975)] the problem of hinged-free beam is solved using traditional Galerkin
method and Galerkin finite element method, respectively. In traditional Galerkin
method, Duncan polynomials are used. In Galerkin finite element method, Hermite
polynomial of order 7 is used and only two elements are considered within the do-
main. In both the cases hinged-free boundary condition with input EI = mΩ2R4

250 is
used. Table 7 shows the results of a rotating beam.
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(a) (b)

Figure 8: Mode shapes of a non-uniform beam for rotating speed s = 0 (left) and
s = 12 (right).

Table 7: Natural frequencies of a uniform beam for EI = mΩ2R4

250 .

Baseline [Nagaraj
and Shanthakumar

(1975)]

MLPG (One
function) p = 7

MLPG (Summation of
two functions) p = 10

ω1/Ω 1.00000 0.99864 0.99933
ω2/Ω 2.67728 2.67779 2.67772
ω3/Ω 5.22279 5.22220 5.22314
ω4/Ω 8.87128 8.87163 8.87071

Figure (9) shows the first four mode shapes for the hinged-free boundary condi-
tion. Mode shapes show very accurate match with existing literature [Bisplinghoff,
Ashley, and Halfman (1996); Nagaraj and Shanthakumar (1975)].

8 Conclusion

A meshless local Petrov-Galerkin method is successfully used to obtain the free
vibration results for a rotating Euler-Bernoulli beam. Radial basis function makes
it simpler to apply the essential boundary conditions and computational efforts can
be reduced. Summation of two radial basis function is used as well, which shows
notable improvements over the radial basis function approximation for one dimen-
sional case: (1) Number of nodes within the sub-domain of the trial function can be
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Figure 9: Mode shapes of a uniform rotating beam.

increased and (2) higher natural frequencies can be computed with one sub-domain
of the trial function. For overlapping domains, the approximation function can be
improved further. Results are found to be quite accurate with both approximations.
Several cases of polynomial mass and stiffness distribution which can model he-
licopter and wind turbine blades are explored. It is found that the MLPG method
performs very well for these problems. This paper will motivate the application of
MLPG method for rotating beam problems which are important in engineering.
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