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On the Numerical Study of Capillary-driven Flow in a 3-D
Microchannel Model
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Abstract: In this article, we demonstrate a numerical 3-D chip, and studied the
capillary dynamics inside the microchannel. We applied the level set method on
the Navier-Stokes equation which incorporates the surface tension and two-phase
flow characteristics. We analyzed the capillary dynamics near the junction of two
microchannels. Such a highlighting point is important that it not only can provide
the information of interface behavior when fluids are made into a head-on collision,
but also emphasize the idea for the design of the chip. In addition, we study the
pressure distribution of the fluids at the junction. It is shown that the model can
produce nearly 2000 Pa pressure difference to help push the water through the
microchannel against the air. The nonlinear interaction between capillary flows
is recorded. Such a nonlinear phenomenon, to our knowledge, occurs due to the
surface tension takes action with the wetted wall boundaries in the channel and the
nonlinear governing equations for capillary flow.

Keywords: Microchannel, Navier-Stokes equation, Capillary flow, Finite ele-
ment analysis, two-phase flow.

1 Introduction

Microfluidics system saw the importance of development of the bio-chip, which
essentially is a miniaturized laboratory that can perform hundreds or thousands of
simultaneous biochemical reactions. However, it is almost impossible to find any
instrument to measure or detect the model, in particular, to comprehend the internal
flow dynamics for the microchannel model, due to the model has been downsizing
to a micro/nano- meter scale. No field of mathematics or physics seems to have
had a greater influence and more obstacles to success than the numerical study of
the micro-chip.

1 Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG.
2 Department of Chemistry, Simon Fraser University, British Columbia, BC, Canada.



376 Copyright © 2015 Tech Science Press CMES, vol.104, no.4, pp.375-403, 2015

This article is mainly inspired by a an engineering application of microfluidic
devices using capillary mechanism (see Fig. 1, Fig. 2). Microfluidics system
with capillary action has shown a wide application across many disciplines such
as chemistry, biology, bio-medicine, sensing and materials Beebe, Mensing, and
Walker (2002). In manufacturing process, engineers often use photoresist JSR thin
film, Poly-dimethylsiloxane (PDMS), or Poly-methyl methacrylate (PMMA) poly-
mer as a substrate, then using coating, plasma treatment, lithograph method and
CO2 machining to carve the channel and cool down the heat of the material Gior-
dano and Cheng (2001); Bubendorfer, Lui, and Ellis (2007); Lee and Lee (2012).
Fig. 2 illustrates the pattern structure of a capillary microchip model drawn by
AUTOCAD and Fig. 1 demonstrate the finished laboratory work using PDMS and
lithography.

Figure 1: Engineering model of capillary-driven model chip. The experimental
equipment and finished work was carried out using coating, plasma treatmen, laser
machinning and CO2 cooling technique.

Figure 2: Schematic diagram of capillary microchannel model. The pattern design
usually is the first stage of fabrication procedure in engineering application using
AUTOCAD.
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It is important to note that authough the issue of reducing the size of microflu-
idic chip to a scale of micro-meters is in progress in Engineering development, the
analysis of flow dynamics such as pressure variation, stream field distribution and
advancement of meniscus water front also is faced with the difficulty of the task.
In general, the engineers have to set up the high resolution Charge Coupled De-
vice (CCD) and high-speed camera to visualize the capillary flow in microfluidics
devices, but often finds difficult getting into the capillary dynamics such as stream
field, driving velocity of flow and pressure gradient in microchannel. As far as we
know, capillary is naturally influenced by the surface tension force against the liquid
and wall of the channel in which the liquid will be soaked up according to adhe-
sion and cohesion forces between molecules Washburn (1921). Hence, to study the
capillary action and flows inside the microchannel, it is important to pay attention
to the surface tension and wall adhesive forces which are often used to transport
fluids through microchannels in Micro-Electro-Mechanical-System (MEMS) de-
vices or to transport a small amounts of fluid using micropipettes Beebe, Mensing,
and Walker (2002). Cases of multiphase flow phenomena in a porous medium
such as oil, and droplets on solid walls are typical examples where wall adhesion
and surface tension strongly influence the dynamics of the flow Tornberg and En-
hquist (2000). A numerical study of multi-phase granular materials based upon
micro-mechanical modelling is proposed. Discrete element simulations are used to
investigate capillary induced effects on the friction properties of a granular assem-
bly in the pendular regime Scholtes, Chareyre, Nicot, and Darve (2009). Since in
recent years, the technology of fabricating channels at the length of micron scale
has made huge progress, it not only makes a fruitful development in MEMS but
also finds wide applications in other engineering applications, e.g., the diagnostic
testing and DNA analysis and as micro-reactors. In practice, when a surface of
substrate undergoes some engineering modifications such as coating, and plasma
treatment, it can easily gain specific properties such as zeta potential, hydrophilic-
ity, contact angle, and adhesion on the substrates. For a surface that has primarily
polar groups on it, such as hydroxyl groups, it will have a good affinity for water
and build up strong adhesive forces with low contact angle on the substrate. Such
a surface is called a hydrophilic surface. For a surface that is made up of non-polar
groups, such as polymer materials or surface that are covered by organic layers, it
is often referred to as a hydrophobic surface, and the contact angle with water will
be large. The relationship of surface and molecule adhesion force is shown in Fig.
3.

In the design abd fabrication of microchannels on hydrophilic surface, there are
many ways to create the capillary flow on the substrates, for example, there have
been a number of studies on capillary flows in micro-fabricated channels for micro-
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Figure 3: Diagram of the forces on molecules of a liquid. Surface tension forces
acting on a droplet with solid/air/liquid interfaces indicates the physics mechanism
of water bending over and being balanced on substrate. Balancing the tension
forces with pressure will lead to the Young Laplace equation.

fluidic devices Kim, Xia, and Whitesides (1995); Kim and Whitesides (1997);
Zhao, Moore, and Beebe (2001); Lin and Burs (2005); Lim, Kim, Yang, and Kim
(2006). However, the numerical studies of capillary flow behavior in microchannels
are still relatively scarce. Mason and Morrow Mason and Morrow (1994) examined
the effects of lengthwise geometry on the mean interfacial curvature. Turian and
Kessler Turian and Kessler (2000) studied a 1-dimensional (1-D) capillary-driven
flow in a uniform but non-circular capillary tube. Erickson and Park Ericson, Li,
and Park (2002) numerically studied the surface-tension driven, dynamic wetting
flows in 2-dimensional (2-D) converging-diverging capillary tubes using finite ele-
ment method. In a later work, Young Young (2004) constructed a formula of cap-
illary meniscus interface movement along a horizontal 2-D pipe in a non-uniform
capillary tube. The classical analysis of capillary phenomenon can be dated back
to Washburn Washburn (1921). The capillary action in a sufficiently narrow tube
of circular cross-section is described in Batchelor (1967). Theoretically, capillary
flow can be understood via surface tension force which makes the surface to act
as an elastic sheath to attach the liquid. This will minimize the surface area of
liquid on it as well as minimize the energy of the fluid droplet on the channel.
The surface tension is responsible for the pressure drop in the channel which not
only produces driving forces, called capillary force, to push the liquid into the non-
wetting surface, but also create a space to separate the two phases of liquid and air.
The relationship between surface tension and pressure drop can be expressed by
Laplace-Young equation which is a nonlinear differential equation that addresses
the capillary pressure difference being sustained across the interface between two
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static fluids, e.g., water and air, due to the action of surface tension or wall adhe-
sion Batchelor (1967). Moreover, the Laplace-Young equation addresses that the
pressure difference makes the shape of the surface of liquid and connects to wall
boundary which is important in the study of static capillary surfaces.

In the present article, we propse a 3-dimensional (3-D) numerical model in micro-
meter scale and perform the numerical method on the model using finite element
method. The Navier-Stokes equation incorporating with surface tension is adopted
and finite element analysis and level set method are applied on the governing equa-
tions with characteristics of two-phase flow mechanism. In addition, the compu-
tational procedures for calculating the capillary-driven flow in a 3-D model are
presented. The idea of emphasizing the flow dynamics in microchannels is that
it is not only useful for important application regarding the design of biochip but
also valuable for improvement on the weak point of the pattern structure during the
fabrication of microchip.

The present model we studied is of micro-meter scale and rectangular. It is 3-D
and the connecting channel is of T-shaped. The numerical 3-D microchip model
comprises a shallow rectangular horizontal channel joining another vertical mi-
crochannel which are placed and attached to two reservoirs (inlets) that filled with
water. The surface tension-driven, dynamic wetting phenomenon in microfluidic
channels will be examined via finite-element method based on computational flow
simulations. Because of the wall adhesion and surface tension at the air/water inter-
face, water will freely and continuously flow through the designed microchannels
and capillary action will take effect during the computation. In addition, we show
the velocity fields, the pressure field and the shape and position of the water surface
and across the channel model.

Our results show that capillary fluids will meet up and collide each other at the
center of the interconnecting channel at the beginning and the interface will be
bounced off at the bottom of the channel and make right-angled toward the hori-
zontal microchannel. The molecules bounce off each other like colliding billiard
balls, which is caused by both the action of gravity and surface tension that force
the fluids to hold up onto the channel wall and being dragged along the boundary.
The pressure distribution across the channel model shows that there is a pressure
jump which accounts for 500-2000 Pa and is generated across the meniscus inter-
face and the channel. Such a valuable information of pressure variation, caused by
the surface tension, shows that liquids force the meniscus interace front to move
through the microchannel by overcomming the gravity and flow resistance.

Finally, we compute the position of the interface/wall contact point by integrating
the level set function along the microchannel length and find that there are two im-
portant phases on the curve needed to pay attention to. The first phase on the curve
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(t<500 µs) suggests that capillary water front was encountered with a strong resis-
tance, which not only being receded from its previous position, but also was made
sticky to the surface. After experiencing the first phase, the flow is able to overcome
the surface tension and gravity and set off on a journey in microchannel. Such a
phenomenon indicates that there is a strong nonlinear effect between the surface
tension and wetted wall boundaries during the flow simulation. There is another
phase shown on the curve which located between time t=3.5e-3 and 3.75e-3, shows
that meniscus interface movement is again receding from its previous position, sur-
face tension fails to push the fluid forward, and such a nonlinear phenomenon has
never been detected by any laboratory instrument, nor have we reach a reasonable
explanation. At the final time of the calculation, we observe the most higheset pres-
sure variation that is generated is located at the downstream channel of the T-shape
crossing microchannel model which accounts for about 2000 Pa. Such a pressure
jump is reasonable and will break the realistic model in pratical laboratory chip
Stroock, Dertinger, Ajdari, Mezic, Stone, and Whitesides (2002). In addition, to
our surprise, there is a area of relatively high pressure difference generated on the
center intersection of both the vertical and horizontal channel needs to pay attention
which highlights a singularity point for numerical computation.

2 Chip model and definition

This paper demonstrates how to model the filling of capillary flow in a 3-D bio-
chip. The present model consists of a horizontal rectangular channel of length of
5500 µm and width of 500 µm, connecting a vertical channel of length of 2500
µm and width of 500 µm. The vertical channel is attached to two water reservoirs
(inlets) on both ends. All the channels and reservoirs are designed to have the same
depth as 40 µm. The plane geometry of the chip is illustrated in Fig. 4. At the
beginning, the thin channels are filled with air and water is filled up that flow freely
and continuously into the reservoirs. Wall adhesion causes water to creep along the
channel boundaries. The deformation of the water surface induces surface tension
at the air/water interface, which create a pressure difference across the air/liquid
interface. The pressure variations cause water and air to move along the channel
and rightward in the downstream. The fluids continue to move straightforward
due to the capillary force that overcomes the gravity force which becomes a major
driving force in the capillary microchannel at the flow-front interface and builds up
the water meniscus movement in the channel. In the present example, the capillary
force has to dominate over the gravity throughout the simulation so that the fluids
can flow without difficulty. Consequently, the interface moves along the designated
channels during the entire simulations.
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Figure 4: The geometry of 2-D planar scheme for numerical model chip.

3 Mathematical concept of capillary fluids

In the study of macro-scale flows, the interesting physics is often associated with
high Reynolds number (Re) for the advancement of water front. However for flows
in miniaturized channels, it is recognized to have low Reynolds number Purcell
(1997). In microfluidic systems, inertia, which results in linear momentum trans-
port equations as the governing equation for the flow motions, rarely plays an im-
portant role. In this regard, microchannel flows are taken as laminar, diffusion-
dominated and simple. From the viewpoint of capillary flow in microchannels, it
involves a “two-phase” behavior where the two phases, air and liquid, are sepa-
rated by a meniscus interface. To model the capillary flow in microchannels, one
usually considers the liquids to be laminar, incompressible and two-phase. We also
take into account of the surface tension for the liquids and set up the governing
equation of convection of air/liquid interface by a level set function. Therefore the
incompressible Navier-Stokes equations for two-phase flow which incorporate the
surface tension should be given as Sussman, Smereka, and Osher (1994)

ρ
∂u
∂ t

+ρ (u ·∇)u = ∇ ·
(

pI+η

(
(∇u)+(∇u)T

))
+Fst +ρg, (1)

∇ ·u = 0, (2)

φt +∇ · (φu) = 0. (3)

Here ρ denotes the density (kg/m3), η is the dynamic viscosity (Ns/m2), represents
the velocity (m/s), p denotes the pressure (Pa), and is the gravity vector (m/s2).
Eq. (3) is called the advection equation, which is used to describe the transport of
the fluid interface separating the two phases, air and liquid. Here φ is an implicit
function which represents the interface between air and liquid. Eq. (3) is often
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coined as the level set equation and φ is the level set function. Here Fst is the
surface tension force acting on the air/liquid interface, which is represented as

Fst = ∇ ·T, (4)

T = σ
(
I−nnT )

δ , (5)

where I is the identity matrix, n is the interface normal vector, σ represents the
surface tension coefficient (N/m), and δ is a Dirac delta function that is nonzero
everywhere except at the fluid interface. In numerical computation, the delta func-
tion is often approximated by the following equation

δ = 6 |φ (1−φ)| |∇φ | , (6)

and the interface normal is related to the set function φ as

n =
∇φ

|∇φ |
. (7)

The calculation of density and viscosity across the air/liquid interface is followed
by

ρ = ρair +(ρwater−ρair)φ , (8)

µ = µair +(µwater−µair)φ , (9)

where ρair, ρwater, µair and µwater are dimensionless parameters representing the
densities and viscosities of the water and air respectively. These are used to smooth
the density and velocity function across the meniscus interface and the numerical
computation of the model.

Notice that we are particularly interested in flow of divergent-free velocity u in (3),
i.e., ∇ ·u =0, since the equation is written in conservation law. For one-dimensional
problem, the divergent-free condition implies that the velocity is constant. In nu-
merical approach, any small perturbation will cause the problem and be advected
with the velocity. Most of the numerical methods will introduce some artificial
diffusion that will smear the profile during the computations. It means we have to
stabilize the solution profile across the air/liquid interface in the direction normal
to the interface. The stabilized advection can be expressed as follows Sussman,
Fatemi, Smereka, and Osher (2005)

φt +u ·∇φ = γ∇ ·
(

ε∇φ −φ (1−φ)
∇φ

|∇φ |

)
, (10)

where ε is a parameter that determines the thickness of the interface, γ is the re-
initialization parameter, u is the velocity vector of the liquid flow.
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Eq. (10) is called the level set equation which is a nonlinear advection equation.
In several space dimensions, the divergent-free velocity condition does not imply a
constant velocity. The variations in the velocity will distort the shape of φ across
the air/liquid interface. This implies that one might have to carefully choose γ in or-
der to keep the profile of φ across the air/liquid interface in shape. Standard finite
element method usually introduces the spatial stabilization technique to suppress
spurious oscillations during the numerical computation. Therefore, in order to han-
dle (10) numerically, we split the advection and stabilization procedures into a set
of two partial differential equations (PDEs), namely, the advection of meniscus
interface,

φt +∇ · (φu) = 0, (11)

and the adjusted equation

φt + γ∇ ·
(

φ (1−φ)
∇φ

|∇φ |

)
= γε∇ ·∇φ , (12)

for a steady state solution of φ . Here ε is a parameter that determines the thickness
of the interface and γ is the re-initialization parameter. A suitable value for γ is the
choice of maximum velocity magnitude for the model. In addition, one can also
use an interface thickness of ε = hc/2 in the numerical computation where hc is
the characteristic mesh size in the region passed by the interface. Notice that the
parameter γ determines the amount of reinitialization. The process of solving (12)
to obtain a steady state solution of φ is referred to as the reinitialization procedure.
Both the Eqs. (11) and (12) have to be solved initially for obtaining the convection
of the profile φ , and then the time-dependent Navier-Stokes equations with surface
tension (1), (2) will be followed to solve the computation of flow velocity u in the
microchannel.

4 Surface tension analysis

Surface tension is a contractive tendency of the surface of a liquid that allows it
to resist an external force. At liquid-air interfaces, surface tension results from
the greater attraction of water molecules to each other (due to cohesion) than to
the molecules in the air (due to adhesion). The net effect is an inward force at its
surface that causes water to behave as if its surface were covered with a stretched
elastic membrane. Because of the relatively high attraction of water molecules
for each other, water has a high surface tension (72.8 milli-newtons per meter at
20 degree Celsius) compared to that of most other liquids. Surface tension is an
important factor in the phenomenon of capillarity.
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Surface tension has the dimension of force per unit length, or of energy per unit
area. The two are equivalent—but when referring to energy per unit of area, peo-
ple use the term surface energy—which is a more general term in the sense that it
applies also to solids and not just liquids. For the study of force, surface tension of
a liquid is one-half the force per unit length required to keep still a movable side
of a frame over which the liquid is stretched. The cohesive forces among liquid
molecules are responsible for the phenomenon of surface tension. In Fig. 3, we see
from the drop of a liquid, the molecules are being pulled equally in every direction
by neighboring liquid molecules, resulting in a net force of zero. The molecules at
the surface are being pulled inwards and do not have other molecules on all sides of
them. This creates some internal pressure and forces that make the liquid surfaces
to contract to the minimal area. In other words, surface tension is responsible for
the shape of liquid droplet. In the absence of other forces, including gravity, drops
of virtually all liquids would be approximately spherical. The spherical shape min-
imizes the necessary wall tension of the surface layer according to Laplace’s law.
Another way of studying the surface tension is in terms of energy. A molecule
in contact with neighboring molecules is in a lower state of energy than if it were
alone (not in contact with a neighbor). For the liquid to minimize its energy state,
the number of higher energy boundary molecules must be minimized. The mini-
mized quantity of boundary molecules results in a minimal surface area. As a result
of surface area minimization, a surface will assume the smoothest shape it can.

The capillary droplet in Fig. 3 shows an analysis of surface tension on a solid
surface at steady state. There are three surface forces, namely σla, σsl , and σsa,
that act at the liquid/solid/air interfaces respectively and satisfy the Young’s law as
Young (1805)

σsa = σsl +σla cosθ ,

where θ is the contact angle. Fig. 5 is the configuration of a capillary microchannel.
The total surface energy of the capillary channel is composed of four parts. The first
is the vacant area (AL−AX ) multiplied by σsa. The second part is the wetting area
AX multiplied by σsl . The third part is the surface energy E0 stored in the filling
reservoir. E0 hardly changes due to the infinitesimal amount of liquid filling into
the capillary. The fourth part is the complex surface of capillary meniscus front
multiplied by σla. We neglect the fourth term because of the very small area of
meniscus front compared to other surfaces.

Then the total energy in the capillary channel in Fig. 5 is expressed as

Es = E0 +[ALσsa +AX (σsl−σsa)] . (13)

If the cross-section of the capillary channel in Fig. 5 is rectangular with a width of
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Figure 5: The mechanism of capillary-driven flow in microchannel model. The
surface tension will pull the liquid in for a shpae of meniscus on all boundaies.

w and height of h, the total energy can be expressed as

Es = E0 +2(h+w) [l ·σsa− x(σsa−σsl)] . (14)

Taking the derivative of equation (14) with respect to x, we obtain the equivalent
capillary force Fs applied on the fluid column along the x-direction as

Fs =−
dEs

dx
= 2(h+w) · (σsa−σsl) = ∆pla ·w ·h. (15)

The pressure drop ∆pla across the liquid–air interface is therefore deduced under
the assumption that channel height h is much smaller than channel width w Young
(2004):

∆pla =
2(h+w)(σsa−σsl)

wh
' 2(σsa−σsl)

h
. (16)

Eq. (16) can be rewritten as the so-called “Laplace pressure drop” for the capillary
tube by replacing the hydraulic radius rh (= Dh/2 = wh/(w+h)) of the rectangular
microchannel with the inner radius symbol r of capillary tube as

∆pla =
2(σsa−σsl)

r
' 2 ·σla · cosθ

r
. (17)

where σ is the liquid-air surface tension (force/unit length), θ is the contact angle,
and r is radius of micro-channel.
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Eq. (16) or Laplace pressure (17) both demonstrate that the smaller the chan-
nel/capillary tube dimension, namely the larger the pressure drop across the liquid-
air capillary interface. For a water-filled glass microchannel in air at standard lab-
oratory conditions, the surface tension is σla = 0.0728 N/m, ρ = 1000 kg/m3, and
θ = 67.50 in our numerical setting.

5 Finite element analysis

The finite elements to discretize the Navier-Stokes equations with surface tension
(1) and (2). The convection equations of the capillary meniscus interface (10) and
(11) play a key role in the numerical computation. Accordingly, we need to set up
the weak form of the problem in our finite element analysis which means there is a
basis for constructing the finite element solutions. The weak form of the problem is
constructed by multiplying the differential equations with test functions which are
fixed at boundaries with zero and the governing equations are integrated over the
domain of consideration. For the problem with complex geometries, the adaptive
grids in space and finite difference method in time are introduced.

For finite element analysis, we first define the finite-dimensional function space as
follows

Vh = { f (x) : f (x) is piecewise linear in Ω and f (x) = 0, ∀x ∈ Λ⊂ ∂Ω} , (18)

where Ω is the computational domain, ∂Ω represents the boundary of Ω, and Λ is
part of the boundary ∂Ω where Dirichlet boundary conditions apply.

There is also a vector-valued function space defined as

Wh =

{
f(x) = [ f1 (x) , . . . , fn (x)]

T : fi (x) is : piecewise : linear : in : Ω,
fi (x) = 0, ∀x ∈ Λi ⊂ ∂Ω, i = 1, . . . ,n.

}
. (19)

The spatial finite element discretization of Eq. (3) is now formulated to find φ ∈Vh,
such that∫

Ω

vφt dx−
∫

Ω

∇v · (φu) dx+
∫

∂Ω

vφu · v̌ dS = 0, ∀v ∈Vh, (20)

where v̌ is the normal vector on the boundary walls. Notice that if the boundaries
are wetted walls, then u · v̌ = 0 and the last term in (20) vanishes.

The spatial discretization of the reinitialization (10) is to find φ ∈Vh, such that[ ∫
Ω

vφt dx−
∫

Ω
∇v · (− f + γε∇ · (∇φ)) dx

+
∫

∂Ω
v( f − γε∇ · (∇φ)) · v̌ dS = 0

]
, ∀v ∈Vh, (21)



On the Numerical Study of Capillary-driven Flow in a 3-D Microchannel Model 387

where f = γφ (1−φ) . To avoid any unwanted flow crossing through the bound-
aries, we always set the boundary conditions to be zero.

The temporal discretization of the advection equation (20) is discretized using for-
ward Euler method. Suppose φ n = φ (tn) at time step tn, then an intermediate value
φ n+1

c ∈Vh has to be calculated first as follows:

∫
Ω

v
φ n+1

c −φ n

dt
dx−

∫
Ω

∇v · (φ nun) dx = 0, ∀v ∈Vh. (22)

In addition, an intermediate value of the normal vector of the interface n̂n+1
c ∈Wh

has to be approximated at the same time by using the following equation

∫
Ω

v · ∇φ n+1
c∣∣∇φ
n+1
c
∣∣ dx =

∫
Ω

v · n̂n+1
c dx = 0, ∀v ∈Wh. (23)

By considering (22) and (23), we use a second-order accurate discretization in time
for (10) and start by choosing m = 0 and φ 0

l = φ n+1
c , so that for m = 1, 2, . . ., we

can determine φ
m+1
l ∈Vh according to the following equation

∫
Ω

v φ
m+1
l −φ m

l
dt dx

+
∫

Ω
γ

(
φ

m+1
l +φ m

l
2 −φ

m+1
l φ m

l

)
∇v · n̂n+1

c dx

−εγ
∫

Ω
∇

(
φ

m+1
l +φ m

l
2

)
· n̂n+1

c
(
∇v · n̂n+1

c
)

dx

= 0, ∀v ∈Vh. (24)

The iteration stops when∥∥φ
m+1
l −φ m

l

∥∥
dt

< ζ , (25)

for some ζ . In this paper we set ζ = 0.001 to be as a tolerance error in our numerical
approach so that we can finally set φ

m+1
l = φ n+1 for an updated value in (21).

Note that ε in (24) has to be carefully chosen. A very small ε compared to the
grid size h will create over- or under-shoots for the steady state solution of (10). A
suitable value of ε will result in a better conservation of bounded area by the 0.5
contour of the level set function in (10) and (11). In our numerical computation,
we set ε = hc/2 where hc is the characteristic mesh size in the region across the
interface.

After updating the advection of φ from (24), we perform the finite element method
on the incompressible Navier-Stokes equations with surface tension in (1) and (2).
The spatial discretization of Navier-Stokes equations is proposed to find u ∈Wh
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and p ∈Vh such that∫
Ω

(ρu)t ·v dx−
∫

Ω

(u ·∇v) ·ρu dx (26)

=

[ ∫
Ω
(∇ ·v) p dx−

∫
Ω

η ∑i ∇vi · (∇ui +uxi) dx
+
∫

Ω
v · (ρg+Fst) dx

]
, ∀v ∈Wh,

and∫
Ω

q(∇ ·u) dx = 0, ∀q ∈Vh. (27)

Next, we need to pay attention to the approximation of the curvature and the gra-
dient of φ in our computation. The first step is the approximation of (∇φ)n+1

determined by the following equation∫
Ω

(∇φ)n+1 ·v dx =
∫

Ω

∇
(
φ

n+1) ·v dx, ∀v ∈Wh. (28)

The mean curvature κn+1 is then calculated by the following equation:∫
Ω

vκ
n+1 dx =

∫
Ω

∇v· (∇φ)n+1∣∣∣(∇φ)n+1
∣∣∣ dx, ∀v ∈Wh. (29)

An intermediate velocity, un+1
c , can be calculated by considering the pressure p

explicitly, i.e., we find un+1
c ∈Wh, such that

1
dt

∫
Ω

(
ρ

n+1un+1
c −ρ

nun
c
)
·v dx−

∫
Ω

(un ·∇v) ·ρun+1
c dx (30)

=

[ ∫
Ω
(∇ ·v) · pn dx−

∫
Ω

ηn+1
∑i ∇vi ·

(
∇un+1

ci +un
xi

)
dx

+
∫

Ω
v ·
(
ρn+1g+Fn+1

st
)

dx

]
, ∀v ∈Wh,

with

Fn+1
st = κ

n+1 (∇φ)n+1 . (31)

For next step, we define a pseudo un+1 but with the pressure term implicitly, i.e.,
we find un+1 ∈Wh, such that

1
dt

∫
Ω

(
ρ

n+1un+1−ρ
nun) ·v dx−

∫
Ω

(un ·∇v) ·ρun+1 dx (32)

=

[ ∫
Ω
(∇ ·v) · pn+1 dx−

∫
Ω

ηn+1
∑i ∇vi ·

(
∇un+1

ci +un
xi

)
dx

+
∫

Ω
v ·
(
ρn+1g+Fn+1

st
)

dx

]
, ∀v ∈Wh,
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In order to solve for an accurate un, the updated pressure pn+1 is required, i.e., we
find pn+1 ∈Vh, such that

− 1
dt

∫
Ω

q∇ ·un+1
c : dx =

∫
Ω

∇q ·∇
(

pn+1− pn
)

ρn+1 : dx, ∀q ∈Vh. (33)

Finally, an updated un+1 can be obtained to find un+1 ∈Wh, such that∫
Ω

v · u
n+1−un+1

c

dt
dx =−

∫
Ω

v ·
∇
(

pn+1− pn
)

ρn+1 dx, ∀v ∈Wh. (34)

The finite element method, which had established above, is relying heavily on pro-
cedures of solving the incompressible Navier-Stokes equations with surface tension
and level set equation and can be summarized as follows:

1. Calculate the intermediate level set function φ n+1
c using (22).

2. Calculate normal vector n̂c from φ n+1
c using (23).

3. Using φ n+1
c as an initial condition, solve (24) to obtain a steady-state solution.

This also gives φ n+1.

4. Calculate (∇φ)n+1 from φ n+1 using (11).

5. Calculate κn+1 using (29).

6. Calculate un+1
c from (30).

7. Calculate pn+1 from (33).

8. Calculate un+1 using (34).

6 Mesh generations

The computational subdomains for the chip model consist of two inlets, a vertical
channel and a horizontal channel with depth of 40 µm. The mesh divides subdo-
mains into elements, and also divides boundaries into boundary elements. For the
plannar 2-D geometry, the chip is divided into 6 subdomains, namely 2 inlet, 2
short vertical channels, 1 intersection region of crossing channels, and 1 long hor-
izontal channel. We choose a mapped mesh consisting of quadrilateral elements.
For each subdomain, the mapping algorithm defines a regular grid on a logical unit
square and then maps it onto the real geometry using transfinite interpolation. We
partition the subdomains into quadrilateral mesh elements. The schematic descrip-
tion of grids used in the 2-D geometry is illustrated in Fig. 6. The boundaries are
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made up of straight lines. The sides of the quadrilaterals are called mesh edges,
and their corners are mesh vertices. A mesh edge must not contain mesh vertices
in its interior. The boundaries defined in the geometry are partitioned into mesh
edges, referred to as boundary elements. The indications for all subdomains on the
mesh statistics are shown in Table 1-4. The value in the minimum element quality
specifies the minimum allowed element size, which by default is less than 1/10th
of the maximum distance in the geometry. The element area ratio is defined as the
minimal element area defined by the maximal element area. We note that the total
number of mesh points is 700. The whole number of elements and boundary ele-
ments are 595 and 231 respectively. The total number of vertex elements is made
up of 18.

Figure 6: Mapped mesh structure for the chip in 2-D plan geometry. For each
subdomain, the mapping algorithm defines a regular grid on a logical unit square
and then maps it onto the real geometry using transfinite interpolation.

In mapped mesh technique, we need to control the mesh density on some flow
channels by specifying a constrained edge element distribution on subdomains 3,
5 and 6. This is when we want to force a specific edge-element distribution on a
boundary segment. In subdomains 3 & 5, the number of edge element is 4 on the
short edge of the rectangular channel. The element ratio is 3, which dictates the
ratio in size between the last element and first element along the edge. The element
distribution method is linear and we apply the reverse direction technique to let the
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distribution be defined in the opposite edge direction. In subdomain 6, the number
of edge element is 7 on the short edge of the rectangular channel. The element ratio
is 3, together with the distribution method being linear and the reverse direction is
also applied to let the distribution be defined in the opposite edge direction.

It is our goal to create a 3-D mesh by extruding a 2-D mesh to create a hexahedral
mesh. The corresponding 3-D mesh generations for the geometry of numerical
chip is shown in Fig. 7. On the geometry extrusion, the element layer distribution
is linear, we specify an element layer by a vertical distance of 40e-6 (40 µm), which
is a resulting mesh extrusion for 3-D.

Figure 7: Mapped grids of 3-D meshes of the capillary chip. This is created by
extruding the 2-D mesh using 40 µm in the z-direction.

Table 1: Mesh statistics for subdomains 1 & 2.

Name Numerical settings
Quadrilateral elements 90
Minimum element quality 0.7339
Element area ratio 0.3585
No.of edge elements {9, 10}
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Table 2: Mesh statistics for subdomains 3 & 5.

Name Numerical settings
Quadrilateral elements 36
Minimum element quality 0.7241
Element area ratio 0.3333
No.of edge elements {4, 9}

Table 3: Mesh statistics for subdomain 4.

Name Numerical settings
Quadrilateral elements 28
Minimum element quality 0.6148
Element area ratio 0.1619
No.of edge elements {4, 7}

Table 4: Global mesh statistics for subdomain 6.

Name Numerical settings
Quadrilateral elements 315
Minimum element quality 0.4660
Element area ratio 0.3333
No.of edge elements {7, 45}

7 Initial and boundary conditions

Navier-Stokes equations with surface tension (1), (2) describe the transport of the
mass and momentum for fluids in microchannels. In addition, Eq. (3) describes
a time-dependent equation for an implicit profile function φ which represents the
interface and its evolution with time.

In our numerical approach, φ has to be initiated at t = 0. One way to set the initial
condition for φ is by a signed distance function which represents the density and
viscosity discontinuities over the interface Olsson and Kreiss (2005). In numeri-
cal computations, we assign the interface between the air and liquid to as the 0.5
contour of φ where in air φ = 0 and in liquid, φ = 1. As a result, a smeared-out
Heaviside step function is used to describe φ as 0 ≤ φ ≤ 0.5 in one phase and
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0.5 < φ ≤ 1 for another phase so as to smooth the transition across the interface. It
is represented as

Hev(φ) =


0,
1
2 +

φ

2λ
+ 1

2π
sin
(

πφ

λ

)
,

1,

φ < λ

−λ ≤ φ ≤ λ

φ > λ .
(35)

Initially, the reservoirs are continuously filled up with water while the capillary
channels are filled with air. The initial velocity is set to zero.

8 Inlet

The hydrostatic pressure, p = ρgH, gives the pressure at the inflow boundary. Here
H represents the depth of the chip model. In addition, we assume water enters
through the inlet continuously to fill up the reservoir so that the level set function
in this area is always set as φ = 1.

9 Outlet

At the outlet, the pressure is set equal to zero, that is, equal to the pressure at the
top of the inflow boundary. Because it is an outflow boundary, one does not have
to set any condition on the level set function φ .

10 Channel walls

The wetted wall boundary condition is required for the microchannel. It means the
solid walls are in contact with the fluid interface. We set the velocity component
normal to the wall to be zero, that is

u ·nwall = 0, (36)

and add a frictional boundary force as

F f r =−
η

β
u, (37)

where β is the slip length. The boundary condition also allows us to specify the
contact angle θ , that is, the angle between the wall and the fluid interface (see Fig.
10. In our example, we set the contact angle as 67.50 and the slip length equals the
mesh element size.

11 Physics settings

The settings of physics constants used for the capillary model are shown in Table
5.
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Table 5: The physics constants and variables for the capillary microchannel model.

Variable Expression Unit Description
θ (3*pi/8) [rad] Contact angle
p 1e5 [Pa] Reference pressure
T 293 [K] Temperature
g 9.81 [m/s2] Acceleration due to gravity
ρwater 1000 [kg/m3] Density of water
ρair 1.293 [kg/m3] Density of air
µwater 8.90e-4 [Pa·s] Viscosity of water
µair 1.85e-6 [Pa·s] Viscosity of air
σ 7.2e-2 [N/m] Surface tension

12 Results and discussions

The planar structure for the chip model is illustrated in Fig. 4. The angle between
the wall and the fluid interface is called the contact angle and is shown in Fig.
5. The geometric 2D meshes are depicted in Fig. 6 where we have noted that
we use the mapped mesh technique and a special setting on the constrained edge
element. The detailed information for the 2-D mesh is described as follows. First,
the mapping algorithm that we use defines a regular grid on a logical unit square and
then maps it onto the real geometry using transfinite interpolation. We also apply
a linear element distribution method on the grids and let the distribution be defined
in the opposite edge direction afterwards to obtain a reverse, linearly distributed
mapped mesh structure in the computational domains. In the two vertical channels,
the number of edge element is set equal to 4, and the element ratio distribution is
fixed at 3, while in the long horizontal channel, the element ratio of the distribution
of constrained edge element is being set as 3 and the use of linear distribution in
reverse direction is also applied as well. The detailed 2-D mesh settings for the
chip are recorded in Table 1-4.

The establishment of 3-D meshes can be done by extruding the 2-D meshes up
to 40 µm in z-direction (see Fig. 7). Such an extrusion method consists of a total
number of 595 hexahedra elements, 1400 mesh points, 1421 boundary elements for
quadrilateral elements, together with a number of 480 edge elements. The initial
development of the fluid interface in the numerical computations is shown in Fig. 8.
Here we point out that the capillary flow starts filling up the two inlets and a steady-
state numerical solution has been obtained during this stage. The liquid surface was
changed drastically in order to achieve a curvature with a contact angle as required.
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(Fig. 9. The shape of the meniscus then is seen to attach the reservoirs and channel
wall at the beginning of the calculation, then after being completely fulfilled with
water in the reservoirs, the surface effect will come to effect to drive the liquids into
the connecting microchannel (Fig. 10). Note that due to the instantaneous start and
action of capillary force, the surface tension effect of the channels and walls may
oscillate and retrieve slightly during the capillary action (see Fig. 17, t=0 - 7.5e-4
sec).

Figure 8: The initial development of fluid interface in the numerical computation.
The water fulfills the inlet and air is stuffed in both the vertical and horizontal
channels. The form of meniscus is formed and landed on the liquid/air interface.

The time evolution of the fluid interface is shown in Fig. 11 where the two-phase
flow in microchannel is recorded. Notice that when the initial state of the liquid
is activated in inlets, this is a two-phase flow and surface tension will impose on
the boundaries to make a curvature for flow and drag the water front through the
microchannels. After the inlet was filled with liquid, the fluid front reaches the
form of meniscus shape due to surface tension force in the channel. It is necessary
to characterize the effect on the surface energetics and wettability during our nu-
merical computation and the dynamic contact angle plays a key role in this case.
The contact angle not only can be used to feature the forces on liquids but also can
provide valuable information about surface adhesion as well as numerical compu-
tation. From the observation of Fig. 11, the dynamic contact angle was present
and in progress where the water front was seen dragged long and along the chan-
nel boundary, showing the driving force with surface tension is strong. Finally, the
flows are managed to capture a designated contact angle of 67.50 instantaneously
during the numerical simulation. The contact line of the advancing meniscus in-
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Figure 9: The advancing capillary flow at time t=2.5e-4, showing the shape of
meniscus is form in the channel (a) flow volume (b) isosurface of the flow. The
designated contact angle is formed showing the reliability of numerical computa-
tion.

Figure 10: (a). The diagram of 2-D microchannel, showing the surface tension
force comes to effect to drive the liquids; (b). The diagram of 3-D microchannel
model for surface tension force and flow direction to drive the liquids.

terface has been maintained a curvature indicating the numerical calculation along
microchannel is correct and reliable.

We are particularly interested in the interface and dynamics of flow at the intersec-
tion of two microchannels when two fluids make a head-on collision. Flow depicted
in Fig. 12 at t=8e-4 sec shows the volume fraction of two-phase flow approaching
the intersection of both the connecting vertical and horizontal channels. The form
of water/air interface at the junction point of the channels has been squeezed into
an U shape and occurred at the center of the model channel. This is due to the pres-
sure difference produced between the air and water inside the channel and strong
reaction of surface tension for two phase flows. The corresponding streamlines at
t=8e-4 sec are plotted in Fig. 13. These are stream lines resulting from the vector
field due to the surface tension and capillary effect of the flow. These are also lines
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Figure 11: Capillary flow in the chip at time (a) t=2.5e-4 (b) t=6e-4 sec. (c) t=8e-4
sec. (d) t=0.002 sec. (e) t=0.0036 sec. (f) t=0.005 sec.

that instantaneously tangent to the velocity vector of the flow. It is seen from the
intersection of the T-shape channels, the streamlines gather symmetrically in the
center of the channel and make turns to the right to continuously move forward. It
is also observed that part of the flows will emerge from side the walls of the hori-
zontal channel that merges with the other flows and bounces off the boundaries. In
addition, we can see that when two fluids collide each other and make the drastic
turn in the channel, the interface will be changed drastically, being squeezed up
into a U-form and generating a high pressure difference around the center of two
crossing channels (Fig. 14). Such numerical results for capillary flow and interface
dynamics are new and are reported here for the first time.

The vibrant red-colored velocity stream fields in Fig. 15 highlighted the velocity
field at time t=8e-4 sec. at the intersection of T-shaped crossing channels, where
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Figure 12: The depicted picture of water/air interface of two flows at the junction
of channels at time t=8e-4 sec, showing the capillary flow behaviour across the
intersection and is bended to make the turn along the channels.

Figure 13: The streamline analysis for the flows at time t=8e-4 sec around the
intersection of microchannels.

two flows from inlet are making a head-on collision and righ-angled turns. The
results indicate that the maximum velocity is occurred and located at the center of
the horizontal channel, featuring the largest velocity of advancing water front along
the channel. This is mainly generated by surface tension and due to the symmetric
geometry of numerical model where wave collisions are positioned near the corner
of channels.

Fig. 16 shows the surface plots of the pressure distribution across the numerical
model at the final time of calculation. It is observed that there is a pressure vari-
ation of around 2000 Pa across the meniscus interface. The pressure jump in the
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Figure 14: The iso-surface analysis of pressure distribution at time t=8e-4 at the
junction of interconnecting microchannels of the chip.

Figure 15: The velocity field at the time t=8e-4 sec, showing the colliding fluids
under capillary action.

Figure 16: The pressure difference generated at time t=0.005 sec across the mi-
crochannel. The highest pressure drop generated in the model is accounted for
2000 Pa.
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Figure 17: The positions of advancing meniscus interface as a function of time. It
is integrated by the level set function with the wall contact point.

channel is caused by the surface tension which also help force the water to over-
come resistance and move along the channel against the air. It shows that the high
pressure difference dominate the flow behaviour in the end in capillary channels.

In addition, we calculate the position of the interface/wall contact point by integrat-
ing the level set function along the horizontal channel. Fig. 17 shows the position
of the meniscus contacting point as a function of time. The slight oscillations of
the water front at time t=3.6e-3s should be highlighted the phenomenon that the
meniscus interface will recede from its previous position before the surface action
completely activated and taken control. This phenomenon also shows the nonlinear
interaction between the surface tension and wetted wall boundaries.

13 Conclusions

We propose a 3-D numerical model for capillary flow and study the flow dynamics
of meniscus interface including vector field, stream line distribution and pressure
difference in channels. The dynamics and velocities of two colliding fluids collide
near the junction of channels are studied. Both the pressure and positions of the
capillary flow are examined through numerical computation. The streamlines and
interface velocities are also illustrated.

The basic idea of designing the microfluidic chip is to provide more detailed infor-
mation regarding the capillary flow dynamics in 3-D bio-chip. The capillary flow
in a microchip is laminar, incompressible, and diffusion-dominated. In particular, it
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is two-phase, and surface-induced. We applied the level set method on the Navier-
Stokes equations incorporating the surface tension with the aim of investigating the
capillary dynamics. It is seen from the simulated results that the flow can produce
nearly 2000 Pa in pressure difference across the model which help push the water
through the designed channels through surface tension force. The whole model
is solved by nonlinear Navier-Stokes equation incorporating with surface tension.
The stream flow near the intersection of microchannels is first reported here for the
first time. To our knowledge, this occurs because the governing equations of the
capillary flow are highly nonlinear partial differential equations.

In numerical approach, the initial development of the fluid interface is obtained by
solving nonlinear Navier-Stokes equations. The capillary flow starts filling upon
the inlets and the surface tension make the water front to change drastically in or-
der to obtain a contact angle against the wall. It is observed the capillary flow has
the largest velocity value at the center line of the horizontal channel near the inter-
sections. We also see two fluids make a head-on collision at the junction of two flow
channels, creating a toppled U-shape interface form and generating a high pressure
difference in the channels to drive the flow moving forward. Moreover the dynamic
contact angle between liquids and walls has been observed and maintained during
the computation, which characterizes the effect on the surface energy and wetta-
bility of the boundary condition. We also calculate the position of the meniscus
interface/wall contact point by integrating the level set function along thin horizon-
tal channel. The curve shows a slight oscillations indicating that the water front in
microchannel will fall back a little bit with a short distance before it can kick off.
Such a phenomenon shows the nonlinear interaction between the surface tension
and wetted wall boundaries. From our viewpoints, Microfluidics system saw the
development of the bio-chip, which essentially is a miniaturized laboratory that can
perform hundreds or thousands of simultaneous biochemical reactions. However,
no field of mathematics or physics seems to have had a greater influence and more
obstacles to success than the numerical study of the microchip. It is understandable
since the fabricated lab device has been downsized to a micro/nano- meter scale
with no available instruments to measure or detect for the model itself, and an in-
triguing numerical computation will help emphasize the weak point of the chip and
improve the fabrication procedure in the applications.
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