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Experimental and Numerical Investigation for Membrane
Deployment using SPH and ALE Formulations
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Abstract: Simulation of airbag and membrane deployment under pressurized
gas problems becomes more and more the focus of computational engineering,
where FEM (Finite element Methods) for structural mechanics and Finite Volume
for CFD are dominant. New formulations have been developed for FSI applica-
tions using mesh free methods as SPH method, (Smooth Particle Hydrodynamic).
Up to these days very little has been done to compare different methods and assess
which one would be more suitable. For small deformation, FEM Lagrangian for-
mulation can solve structure interface and material boundary accurately, the main
limitation of the formulation is high mesh distortion for large deformation and mov-
ing structure. One of the commonly used approach to solve these problems is the
ALE formulation which has been used with success in the simulation of FSI (Fluid
Structure Interaction) with large structure motion such as sloshing fuel tank in au-
tomotive industry and bird impact in aeronautic industry. For some applications,
including bird impact and high velocity impact problems, engineers have switched
from ALE to SPH method to reduce CPU time and save memory allocation.
In this paper the mathematical and numerical implementation of the ALE and SPH
formulations are described. From different simulation, it has been observed that for
the SPH method to provide similar results as ALE or Lagrangian formulations, the
SPH meshing, or SPH spacing particles needs to be finer than the ALE mesh.
To validate the statement, we perform a simulation of membrane deployment gener-
ated by high pressurized gas. For this simple problem, the particle spacing of SPH
method needs to be at least two times finer than ALE mesh. A contact algorithm is
performed at the FSI for both SPH and ALE formulations.
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1 Introduction

Theoretical and experimental analysis of fluid structure interaction for airbag and
membrane deployment have been considered by several researchers over the past
decades, using uniform pressure methods. The uniform pressure formulation does
not consider the gas simulation, and no CFD modeling is involved. Experiments
have shown, that the resulting flow is quite complex, involving several physical
phenomena as damping effects. Numerical simulation using appropriate hydrody-
namic equations for the gas, helps to describe these phenomena, and also minimize
the number of tests required that are very costly. Once simulations are validated by
test results, it can be used as design tool for the improvement of the system structure
involved. Initially FEM Lagrangian were used to simulate these problems, unfortu-
nately classical Lagrangian methods cannot resolve large mesh distortion, runs are
stopped before reaching termination time, due to negative Jacobian in highly dis-
torted element. ALE multi-material description of motion developed in Aquelet,
Souli and Olovson (2005) can be used as an alternative for the simulation of high
explosive phenomena. The ALE formulations have been developed to overcome
the difficulties due to large mesh distortion. For some applications, including un-
derwater explosions and their impact on the surrounding structure, engineers have
switched from ALE to SPH method to reduce CPU time and save memory alloca-
tion.

It is well known from previous papers, see Ozdemir, Souli and Fahjan (2010) that
the classical FEM Lagrangian method is not suitable for most of the FSI problems
due to high mesh distortion in the fluid domain. In many applications the ALE
formulation has been the only alternative to solve fluid structure interaction for en-
gineering problems. For the last decade, SPH method has been usefully used for
engineering problems to simulate high velocity impact problems, high explosive
detonation in soil, underwater explosion phenomena, and bird strike in aerospace
industry. SPH is a mesh free Lagrangian description of motion, that can provide
many advantages in fluid mechanics and also for modeling large deformation in
solid mechanics. Unlike ALE method, and because of the absence of the mesh,
SPH method suffers from a lack of consistency than can lead to poor accuracy.
In the literature there are different formulations of meshless methods, the Mesh-
less Local Petrov-Galerkin Method for solving the bending problem of a thin, see
Han and Atluri (2014) and Shuyao and Atluri (2002) and also Meshless Finite
Volume Method developed for solving elasto-static, see Alturi, Han, and Rajen-
dran (2004). In Meshless Local Petrov-Galerkin Method mixed approach, both the
strains as well as displacements are interpolated, at randomly distributed points in
the domain, through local meshless interpolation schemes such as the moving least
squares or radial basis functions.
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In this paper, devoted to ALE and SPH formulations for fluid structure interaction
problems, the mathematical and numerical implementation of the ALE and SPH
formulations are described. From different simulation, it has been observed that
for the SPH method to provide similar results as ALE formulation, the SPH mesh-
ing, or SPH spacing particles needs to be finer than the ALE mesh. To validate
the statement„ we perform a simulation of a membrane deployment generated by
pressurized gas. For this problem, the particle spacing of SPH method needs to be
at least two times finer than ALE mesh. A contact algorithm is performed at the
fluid structure interface for both SPH and ALE formulations.

In Section 2, the governing equations of the ALE formulation are described. In
this section, we discuss the advection algorithms used to solve mass, momentum
and energy conservation in the multi-material formulation. Section 3 describes the
SPH formulation, unlike ALE formulation which based of the Galerkin approach,
SPH is a collocation method. The last section is devoted to numerical simulation
of a membrane deployment under high pressurized gas, using both ALE and SPH
methods. The numerical results will be compared to experimental data.

2 ALE Formulation

Fluid problems, in which interfaces between different materials (gas and ambient
air) are present, are more easily modeled by using a Lagrangian mesh. However, if
an analysis for complex tank geometry is required, the distortion of the Lagrangian
mesh makes such a method difficult to use many re-meshing steps are necessary
for the calculation to continue. Another method to use is the Eulerian formulation.
This change from a Lagrangian to an Eulerian formulation, however, introduces
two problems. The first problem is the interface tracking [Hallquist (1998)] and the
second problem is the advection phase or advection of fluid material across element
boundaries.

To solve these problems, an explicit finite element method for the Lagrangian phase
and a finite volume method (flux method) for the advection phase are used. We can
refer to several explicit codes such as Pronto, Dyna3D and LS-DYNA; see Von
Neumann and Richtmeyer (1950) for a full description of the explicit finite ele-
ment method. The advection phase has been developed for extending the range of
applications that cannot be used with the Lagrangian formulation. Current applica-
tions include sloshing involving a ‘free surface’, and high velocity impact problems
where the target is modeled as a fluid material, thus providing a more realistic rep-
resentation of the impact event by capturing large deformations.

An ALE formulation contains both pure Lagrangian and pure Eulerian formula-
tions. The pure Lagrangian description is the approach that: the mesh moves with
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the material, making it easy to track interfaces and to apply boundary conditions.
Using an Eulerian description, the mesh remains fixed while the material passes
through it. Interfaces and boundary conditions are difficult to track using this ap-
proach; however, mesh distortion is not a problem because the mesh never changes.
In solid mechanics a pure Eulerian formulation it is not useful because it can handle
only a single material in an element, while an ALE formulation is assumed to be
capable of handling more than one material in an element.

In the ALE description, an arbitrary referential coordinate is introduced in addition
to the Lagrangian and Eulerian coordinates. The material derivative with respect
to the reference coordinate can be described in Eq. (1). Thus substituting the
relationship between the material time derivative and the reference configuration
time derivative derives the ALE equations.

∂ f (Xi, t)
∂ t

=
∂ f (xi, t)

∂ t
+wi

∂ f (xi, t)
∂xi

(1)

where Xi is the Lagrangian coordinate, xi the Eulerian coordinate, wi is the relative
velocity. Let denote by v the velocity of the material and by u the velocity of
the mesh. In order to simplify the equations we introduce the relative velocity
w = v−u. Thus the governing equations for the ALE formulation are given by the
following conservation Eqs. (2) to (4):

(i) Mass equation.

∂ρ

∂ t
=−ρ

∂vi

∂xi
−wi

∂ρ

∂xi
(2)

(ii) Momentum equation.

The strong form of the problem governing Newtonian fluid flow in a fixed domain
consists of the governing equations and suitable initial and boundary conditions.
The equations governing the fluid problem are the ALE description of the Navier-
Stokes equations:

ρ
∂vi

∂ t
= σi j, j +ρbi−ρwi

∂vi

∂x j
(3)

Boundary and initial conditions need to be imposed for the problem to be well
posed.

The superscript means prescribed value, ni is the outward unit normal vector on the
boundary, and δi j is Kronecker’s delta function.

(iii) Energy equation.

ρ
∂e
∂ t

= σi jvi, j +ρbivi−ρw j
∂e
∂x j

(4)
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Note that the Eulerian equations commonly used in fluid mechanics by the CFD
community, are derived by assuming that the velocity of the reference configura-
tion is zero and that the relative velocity between the material and the reference
configuration is therefore the material velocity. The term in the relative velocity in
Eqs. (3) and (4) is usually referred to as the advective term, and accounts for the
transport of the material past the mesh. It is the additional term in the equations
that makes solving the ALE equations much more difficult numerically than the
Lagrangian equations, where the relative velocity is zero.

In the second phase, the advection phase, transport of mass, internal energy and
momentum across cell boundaries are computed; this may be thought of as remap-
ping the displaced mesh at the Lagrangian phase back to its original or arbitrary
position.

From a discretization point of view of Eqs. (2), (3) and (4), one point integration is
used for efficiency and to eliminate locking,. The zero energy modes are controlled
with an hourglass viscosity Benson, see Libersky, Petschek, Carney, Hipp, and
Allahdadi (1993). A shock viscosity, with linear and quadratic terms, is used to
resolve the shock wave, see Lucy (1977); a pressure term is added to the pressure
in the energy Eq. (4). The resolution is advanced in time with the central difference
method, which provides a second order accuracy in time using an explicit method
in time. For each node, the velocity and displacement are updated as follows:

un+1/2 = un−1/2 +∆t.M−1.(Fexl +Fint) (5)

The multi-material formulation is attractive for solving a broad range of non-linear
problems in fluid and solid mechanics, because it allows arbitrary large deforma-
tions and enables free surfaces to evolve. The Lagrangian phase of the VOF method
is easily implemented in an explicit ALE finite element method. Before advection,
special treatment for the partially voided element is needed. For an element that
is partially filled, the volume fraction satisfies Vf ≤ 1, and the total stress by σ is
weighed by volume fraction σ f = σ .Vf .

In the second phase, the transport of mass, momentum and internal energy across
the element boundaries is computed. This phase may be considered as a ‘re-
mapping’ phase. The displaced mesh from the Lagrangian phase is remapped into
the initial mesh for an Eulerian formulation, or an arbitrary undistorted mesh for an
ALE formulation.

In this advection phase, we solve a hyperbolic problem, or a transport problem,
where the variables are density, momentum and internal energy per unit volume,
where the Donor Cell algorithm, a first order advection method and the Van Leer
algorithm, a second order advection method, see Von Neumann and Richtmeyer
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(1950), are used. As an example, the equation for mass conservation is:

∂ρ

∂ t
+∇.(ρu) = 0 (6)

It is not the goal of this paper to describe the different algorithms used to solve Eq.
(7). Fig. 1 describes the two phases for a one step explicit calculation.
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Figure 1: Lagrangian and Advection phases in multi-material ALE formulation 
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Figure 1: Lagrangian and Advection phases in multi-material ALE formulation.

3 SPH Formulation

The SPH method developed originally for solving astrophysics problem has been
extended to solid mechanics by Libersky, Petschek, Carney, Hipp, and Allahdadi
(1993) to model problems involving large deformation including high velocity im-
pact. SPH method provides many advantages in modeling severe deformation as
compared to classical FEM formulation which suffers from high mesh distortion,
Fig. 2. The method was first introduced by Lucy (1977) and Gingold and Mon-
aghan (1977) for gas dynamic problems and for problems where the main concern
is a set of discrete physical particles than the continuum media. The method was
extended to solve high velocity impact in solid mechanics, CFD applications gov-
erned by Navier-Stokes equations and fluid structure interaction problems.

It is well known from previous papers, that SPH method suffers from lack of con-
sistency, that can lead to poor accuracy of motion approximation. Unlike Finite
Element, interpolation in SPH method cannot reproduce constant and linear func-
tions.

A detailed overview of the SPH method is developed by Liu and Liu (2010), where
the two steps for representing of function f, an integral interpolation and a kernel
approximation are given by:

u(xi) =
∫

u(y).δ (xi− y)dy (7)
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Figure 2: FEM model, mesh and nodes (left) and SPH model, particles (right) 
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that represents support domain of the kernel function, see Fig. 3. 

 

 

Figure 3: Kernel Function and its support domain for a 2D function 
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Figure 2: FEM model, mesh and nodes (left) and SPH model, particles (right)

where the Dirac function satisfies:

δ (xi− y) = 1, if xi = y

δ (xi− y) = 0, if xi 6= y
(8)

The approximation of the integral function Eq. (7) is based on the kernel approx-
imation W, which approximates the Dirac function based on the smoothing length
h.

W (d,h) =
1

hα
.θ

(
d
h

)
, (9)

that represents support domain of the kernel function, see Fig. 3.

Figure 3: Kernel Function and its support domain for a 2D function.

So that Eq. (7) becomes,

< u(xi)>=
∫

u(y).W (‖x− y‖ ,h)dy (10)
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Taking in consideration de support domain of the kernel function, the SPH approx-
imation of a particle xi is obtained discretizing the integral into a sum over the
particles that are within the kernel support domain as it is shown in Fig. 3.

usph(xi) = ∑ j∈Di
ω j.u j.W

(∥∥xi− x j
∥∥ ,h) , (11)

where the weight ω j =
m j
ρ j

is the volume of the particle.

Integrating by part Eq. 3.4 and considering the properties of the SPH interpolation
and that ∇(u) = u.∇(1)−1.∇(u), the SPH approximation for the gradient operator
of a function is given by,

∇usph(xi) = ∑ j∈Di
ω j.(ui−u j).∇W

(∥∥xi− x j
∥∥ ,h) , (12)

Considering that ∇(P)
ρ

= P
ρ2 ∇(ρ)+∇

(
P
ρ

)
, applying the SPH interpolation on Navier-

Stokes equations, one can derive a symmetric SPH formulation for Navier-Stokes
equations such that the principle of action and reaction is respected and that the
accuracy is improved. Finally, we have the following discretized set of equations:

(i) Mass equation.

Dρi

Dt
= ρi ∑ j∈Di

ω j.
(

vβ

i − vβ

j

)
.
∂W

(∥∥xi− x j
∥∥ ,h)

∂xβ

i

(13)

(ii) Momentum equation.

Dvα
i

Dt
= ∑ j∈Di

m j.

(
σ

αβ

i

ρ2
i

+
σ

αβ

j

ρ2
j

)
.
∂W

(∥∥xi− x j
∥∥ ,h)

∂xβ

i

+ fext (14)

(iii) Energy equation.

Dei

Dt
=

1
2 ∑ j∈Di

m j.

(
Pi

ρ2
i
+

Pj

ρ2
j

)
.
(

vβ

i − vβ

j

)
∂W

(∥∥xi− x j
∥∥ ,h)

∂xβ

i

+
µi

ρi
ε

αβ

i ε
αβ

i (15)

4 ALE Penalty Coupling Algorithm

Penalty coupling behaves like a spring system and penalty forces are calculated
proportionally to the penetration depth and spring stiffness. The head of the spring
is attached to the structure or slave node and the tail of the spring is attached to the
master node within a fluid element that is intercepted by the structure, as illustrated
in Fig. 4.
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Similarly to penalty contact algorithm, the coupling force is described by (16):

F = k.d (16)

where k represents the spring stiffness, and d the penetration. The force F in Fig.
4 is applied to both master and slave nodes in opposite directions to satisfy force
equilibrium at the interface coupling, and thus the coupling is consistent with the
fluid-structure interface conditions namely the action-reaction principle.

The main difficulty in the coupling problem comes from the evaluation of the stiff-
ness coefficient k in Eq. (16). The stiffness value is problem dependent, a good
value for the stiffness should reduce energy interface in order to satisfy total en-
ergy conservation, and prevent fluid leakage through the structure. The value of the
stiffness k is still a research topic for explicit contact-impact algorithms in struc-
tural mechanics. In this paper, the stiffness value is similar to the one used in
Lagrangian explicit contact algorithms, described in Benson (1992). The value of
k is given in term of the bulk modulus K of the fluid element in the coupling con-
taining the slave structure node, the volume V of the fluid element that contains the
master fluid node, and the average area A of the structure element connected to the
structure node.

k = p f .
K.A2

V
(17)

Figure 4: Description of Penalty Coupling Algorithm.
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5 SPH Contact Algorithm

Several contact methods have been published in litterarture between different struc-
ture material parts. Classical implicit and explicit coupling are described in detail in
Longatte, Bendjeddou, and Souli M. (2003) and Longatte, Verreman, and Souli M.
(2009), where hydrodynamic forces from the fluid solver are passed to the structure
solver for stress and displacement computation. In this paper, a coupling method
based on contact algorithm is used. Since the coupling method described in this
chapter is based on the penalty method for contact algorithms, the contact approach
is a good introduction to this method. In contact algorithms, a contact force is com-
puted proportional to the penetration vector, the amount the constraint is violated.
In contact algorithms, one surface is designated as a slave surface, and the second
as a master surface. The nodes lying on both surfaces are also called slave and
master nodes respectively. In an explicit FEM method, contact algorithms compute
interface forces due to impact of the slave node on the master node, these forces
are applied to the slave and master nodes in contact in order to prevent a node from
passing through contact interface. The penalty method imposes a resisting force
to the slave node, proportional to its penetration through the master segment, as
shown in Fig. 5 describing the contact process. This force is applied to both the
slave node and the nodes of the master segment in opposite directions to satisfy
equilibrium.
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Figure 5:  Description of Penalty Contact algorithm  
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Figure 5: Description of Penalty Contact algorithm between slave particle and mas-
ter structure.
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6 Description of the Experimental Setup

Erchiqui, Derdouri, Gakwaya, and Verron (2001) experimentally investigated the
inflation behavior in a thermoplastic membrane under the combined effects of ap-
plied stress and temperature using bubble inflation tests. The results were used to
identify the material constants embedded in the constitutive models of the poly-
meric materials in this work. The polymeric material, acrylonitrile-butadiene-
styrene (ABS), was tested under biaxial deformation using the bubble inflation
technique. The initial ABS sheet thickness was 1.57 mm. The experimental setup
is shown in Fig. 6.

The circular membranes were mounted between two metal disks containing a cir-
cular aperture and subsequently clamped onto a support. The exposed circular area
of diameter D = 6.35 cm was heated in an infrared heating chamber to the soften-
ing point. When the temperature became uniform over the flat sheet, the circular
area was inflated using compressed air under a controlled flow rate. The applied
inflation pressure, which was uniform over the membrane, was measured with a
pressure sensor during the testing. The height at the hemispheric pole (or the cen-
ter of the membrane) and the time were recorded simultaneously using a video
camera and a data acquisition system. For most inflation tests, testing ends when
the bubble bursts.
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Figure 6: Test rig used in the experiment 
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Figure 6: Test rig used in the experiment.
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7 Numerical Simulation using SPH Method

The next subsections describe the model set up including all simulation approaches
used as well as the boundary conditions applied to the model.

7.1 Meshing and Material Modeling

The model, as shown in Fig. 7, consists of four parts, a membrane, fluid domain,
sidewall, and a rigid plate acts as a piston. The fluid domain in this case has the
property of air. Table 1 denotes the details of the property values.
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Figure 7: Model used for membrane inflation simulation 

 

 

Table 1: Properties of air used in this paper 

Material Behaviors Value, SI units 

Density, ρ 1.2047  kg/m3 

Viscosity, μ 1.8205E-5  N/m2 . s 

EOS C0 = 343.210  m/s, (Us – Up) 

         

The membrane is modeled using acrylonitrile-butadiene-styrene (ABS). The material constants 
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thickness of 0.00157 m. Fitting curves for various values for α of isotropic hyperelastic model at 

143
○
C shows that the value of α=10 is the best fit for the experimental data.  

The membrane is meshed with shell elements. For the air, to ensure uniform distribution for the 

air particles using SPH method, it initially meshed with solid elements, and then conversion 

functionality is used to convert the solid element into SPH particles, Fig. 8.  

Figure 7: Model used for membrane inflation simulation.

Table 1: Properties of air used in this paper.

Material Behaviors Value, SI units
Density, ρ 1.2047 kg/m3

Viscosity, µ 1.8205E-5 N/m2. s
EOS C = 343.210 m/s, (Us – Up)

The membrane is modeled using acrylonitrile-butadiene-styrene (ABS). The mate-
rial constants for Moony-Rivlin model are C10= 105000 Pa and C01 = 10500 Pa, see
Souli and Zolesio (1993), corresponding to α= 0.1 (α = C01/ C10). The theoretical
material constants are obtained by fitting pressure deformation experimental data
with a membrane radius of 0.03175 m and a sheet thickness of 0.00157 m. Fitting
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curves for various values for α of isotropic hyperelastic model at 143˚C shows that
the value of α=10 is the best fit for the experimental data.

The membrane is meshed with shell elements. For the air, to ensure uniform dis-
tribution for the air particles using SPH method, it initially meshed with solid ele-
ments, and then conversion functionality is used to convert the solid element into
SPH particles, Fig. 8.

 

 

 

Figure 8: Element conversion from FEM mesh to SPH particles 

 

 

We can also specify the time when the conversion of all the elements in the affected element set 

is to take place. In our case, the conversion time is specified as zero, then the conversion takes 
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The rigid plate which is acts as a piston is modeled as a rigid body as there is no need to 

introduce it in the solution. It just acts as inflator’s piston. So, no material assigned to it. 
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A dynamic explicit step with a total duration time equal to 0.6 seconds is trigged to simulate the 
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process at the beginning of the simulation. 

Figure 8: Element conversion from FEM mesh to SPH particles.

We can also specify the time when the conversion of all the elements in the affected
element set is to take place. In our case, the conversion time is specified as zero,
then the conversion takes place at the beginning of the analysis.

The rigid plate which is acts as a piston is modeled as a rigid body as there is no
need to introduce it in the solution. It just acts as inflator’s piston. So, no material
assigned to it.

Table 2: Mesh Detailed Report.

Part Name Element Type No of Elements
Membrane Linear quadrialateral shell element 1104

Air Linear hexahedral solid element
(converted into 1-node element)

34960

7.2 Boundary conditions and initial conditions

For the membrane, the boundary conditions of its circumferential is fixed in all
degree of freedom as well as the side wall. The rigid plate is fixed in all its degree
of freedom expect the sliding direction.
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A displacement boundary condition is applied to the rigid plate in the sliding direc-
tion for a distance equal to 0.027 m, which is sufficient to deliver the volume flow
rate necessary to inflate the membrane to the desired height.

When more than one part involved in a simulation, interaction properties need to
be defined. In this case, the interaction property has been defined as frictionless
tangential behavior. This property has been applied to all surfaces on the model.

8 Numerical Results and Observations

A dynamic explicit step with a total duration time equal to 0.6 seconds is trigged
to simulate the inflation process. Fig. 9 shows the initial air particles distribution
after the element conversion process at the beginning of the simulation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  Initial air particles distribution at t = 0 sec. 

 

 

Fig. 10 and Fig. 11 shows the membrane inflation at 0.3 seconds and at the end of simulation (t = 

0.6 seconds) respectively. 

 

  

 

 

 

 

 

 

 

 

 

Figure 10:  Fluid material and structure displacement at t = 0.3 sec 

 

 

 

 

Figure 9: Initial air particles distribution at t = 0 sec.

Fig. 10 and Fig. 11 shows the membrane inflation at 0.3 seconds and at the end of
simulation (t = 0.6 seconds) respectively.
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Figure 9:  Initial air particles distribution at t = 0 sec. 

 

 

Fig. 10 and Fig. 11 shows the membrane inflation at 0.3 seconds and at the end of simulation (t = 

0.6 seconds) respectively. 

 

  

 

 

 

 

 

 

 

 

 

Figure 10:  Fluid material and structure displacement at t = 0.3 sec 
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Figure 11:  Fluid material and structure displacement at t = 0.6 sec. 

 

The equation of state (EOS) used to define the air material behavior is Us-Up with the parameter 

shown in Table 1. As shown in Fig. 12, the numerical results obtained using higher number of 

elements are closer to the experimental data than the numerical results obtained with lower 

number of elements. 

 

 

Fig. 12  Bubble height time evolution with different mesh resolution comparing with 

experimental data 

 

In the case of SPH method the pressure of the fluid is represented by the equivalent pressure on 

the particles. Fig. 13 shows the equivalent pressure curves for a sample of particles represent the 

air fluid. Good Correlation has been obtained between experimental and numerical displacement 

of the center of the structure as shown in Fig. 14. Consequently, the trend of all curves are 

relatively coincident with experimental pressure data.  

Figure 11: Fluid material and structure displacement at t = 0.6 sec.



420 Copyright © 2015 Tech Science Press CMES, vol.104, no.5, pp.405-424, 2015

The equation of state (EOS) used to define the air material behavior is Us-Up with
the parameter shown in Table 1. As shown in Fig. 12, the numerical results ob-
tained using higher number of elements are closer to the experimental data than the
numerical results obtained with lower number of elements.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Fluid material and structure displacement at t = 0.6 sec. 

 

The equation of state (EOS) used to define the air material behavior is Us-Up with the parameter 

shown in Table 1. As shown in Fig. 12, the numerical results obtained using higher number of 

elements are closer to the experimental data than the numerical results obtained with lower 

number of elements. 
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In the case of SPH method the pressure of the fluid is represented by the equivalent pressure on 

the particles. Fig. 13 shows the equivalent pressure curves for a sample of particles represent the 

air fluid. Good Correlation has been obtained between experimental and numerical displacement 

of the center of the structure as shown in Fig. 14. Consequently, the trend of all curves are 

relatively coincident with experimental pressure data.  

Figure 12: Bubble height time evolution with different mesh resolution comparing
with experimental data.

 

 

 

Figure 13:   Equivalent pressure stress for a sample of elements represent the air 

 

 

 

 

Figure 14:  Bubble height time evolution for C01=115590 Pa obtained with ALE method 

 

 

 

Figure 13: Equivalent pressure stress for a sample of elements represent the air.
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Figure 13:   Equivalent pressure stress for a sample of elements represent the air 

 

 

 

 

Figure 14:  Bubble height time evolution for C01=115590 Pa obtained with ALE method 

 

 

 

Figure 14: Bubble height time evolution for C01=115590 Pa obtained with ALE
method.

In the case of SPH method the pressure of the fluid is represented by the equivalent
pressure on the particles. Fig. 13 shows the equivalent pressure curves for a sample
of particles represent the air fluid. Good Correlation has been obtained between
experimental and numerical displacement of the center of the structure as shown
in Fig. 14. Consequently, the trend of all curves are relatively coincident with
experimental pressure data.

9 Conclusions

The paper presents the ALE and SPH methods as well as their limitations for spe-
cific problems lime airbag inflation and membrane deployment. Mine explosion,
underwater explosion, and bird impact on structures are commonly solved using
ALE formulation, in defense industry; some of these problems are solved using
SPH method. For the last decade, SPH methods are gaining in accuracy numer-
ical stability, and the use of SPH method is becoming more common in industry
for solving fluid structure coupling problems. For instance, in aerospace, where
bird impacts on aircraft are very common and cause significant safety threats to
commercial and military aircraft. According to FAA (Federal American Aviation)
regulations, aircraft should be able to land safely. These applications require a
large ALE domain for the coupling between the bird material and the surrounding
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structure, mainly when the bird is spread all over the space. According to technical
reports from engineers in aerospace, ALE formulation is more CPU time consum-
ing and requires more memory allocation that SPH method. In this paper, first,
we describe both ALE and SPH methods, and we compare numerical results be-
tween the two methods using similar mesh size, each ALE element is replaced by
an SPH particle at the element center. Using a simple fluid structure interaction
problem, it has been observed that using same mesh size for methods, numerical
results, displacement and gas pressure using SPH method, provide good correla-
tion with experimental data. For this particular application, without refining the
SPH particles, using same number and elements for SPH and ALE, results from
SPH method are in good correlation with those from ALE simulation; in terms of
displacement, velocity and Von Mises stress on the structure. Since the ultimate ob-
jective is the design of structure resisting to load blast, numerical simulations from
ALE and SPH methods can be included in shape design optimization with shape
optimal design techniques, see Souli and Zolesio (1993), and material optimiza-
tion, see Erchiqui, Souli, and Ben Yedder (2007). Once simulations are validated
by test results, they can be used as design tool for the improvement of the system
structure being involved.
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