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A New Minimax Probabilistic Approach and Its
Application in Recognition the Purity of Hybrid Seeds

Liming Yang1, Yongping Gao2 and Qun Sun3

Abstract: Minimax probability machine (MPM) has been recently proposed and
shown its advantage in pattern recognition. In this paper, we present a new minimax
probabilistic approach (MPA),which can provide an explicit lower bound on pre-
diction accuracy. Applying the Chebyshev-Cantelli inequality, the MPA is posed
as a second order cone program formulation and solved effectively. Following
that, this method is exploited directly to recognize the purity of hybrid seeds using
near-infrared spectroscopic data. Experimental results in different spectral regions
show that the proposed MPA is competitive with the existing minimax probability
machine and support vector machine in generalization, while requires less compu-
tational time than them. These results illustrate the feasibility and effectiveness of
the proposed approach in recognition the purity of hybrid seeds.

Keywords: Sample moments, Minimax probability machine, Second order cone
programming, Maize seeds classification.

1 Introduction

The recognition of the purity of hybrid seeds is a challenging task in agricultural
science. Applying machine learning techniques to discriminate the purity of hy-
brid seeds has the advantages of saving time and reducing cost. The challenge is
to construct a recognition rule (called the classifier), which is trained by using a
number of samples with known class labels. This approach is also known as su-
pervised learning method such as minimax probability machine (MPM) [Lanck-
riet,Ghaoui, Bhattacharyya and Jordan (2002); Yoshiyama and Sakurai (2014);
Lanckriet,Ghaoui, Bhattacharyya and Jordan (2002)] and support vector machine
(SVM) [Vapnik (1998)]. Usually, the purity of seeds are determined by seedling
identification method and field experiment technology , but these methods can not
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directly provide probability outputs [Bai and Huang (2007)].

The MPM has several advantages over other methods in machine learning. Without
making no assumption about the data distribution, the MPM utilizes the mean and
covariance of each class of data to find a classification hyperplane. Compared
with the popular SVM where separation hyperplane is determined by a few sample
points (or the support vectors), the MPM has the advantage of using information
from the dataset and can provide an explicit lower bound on prediction accuracy
for each class of data.

When constructing a classifier, the probability of correct classification of data should
be maximized. Be inspired by the MPM, we present a novel minimax probabilis-
tic approach (called the MPA) for binary classification problems where the mean
vector and covariance matrix of each class are assumed to be known. The main
contributions of this work are as follows:

• By applying the moments of samples, a new minimax probabilistic approach
is presented and directly applied to distinguish ”NongDa108” hybrid seeds
from ”mother178” seeds using near-infrared spectroscopic data [Yang and
Sun (2012)].

• Applying a multivariate generalization of the Chebyshev-Cantelli inequality
[ Marshall and Olkin (1960)], the proposed MPA is posed as a second order
cone program [Lobo, Vandenberghe, Boyd and Lebret (1998)] and solved
efficiently.

• Compared with the SVM and MPM, experimental results show that the MPA
maintains generalization and reduces computational time.

2 Minimax Probability Machine (MPM)

The MPM with maximal probability separates two classes of data using the first
two moments . The following is a simplified explanation of MPM. A more detailed
description can be found in [Lanckriet, Ghaoui, Bhattacharyya and Jordan (2002)].
Specifically, suppose X1 and X2 represent two random n-dimensional vectors, with
mean vectors and covariance matrices given by X1 ∼ (µ1,Σ1) and X2 ∼ (µ2,Σ2)
respectively.Where µ1,µ2 ∈ Rn and Σ1,Σ2 ∈ Rn×n. The MPM attempts to deter-
mine the hyperplane H(w,b) = {x|wT x = b} (w,x ∈ Rn,b ∈ R), which places class
X1 in the half space H1(w,b) = {x|wT x > b} and class X2 in the other half space
H2(w,b) = {x|wT x < b}, with maximal probability with respect to all distributions
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that have these mean and covariance matrices. This is expressed as

max θ (1)

s.t. infP{X1 ∈ H1} ≥ θ (2)

infP{(X2 ∈ H2} ≥ θ (3)

where θ represents the lower bounds of the accuracy for future data, namely, the
worst-case accuracy. Applying the Chebychev Cantelli inequality [ Marshall and
Olkin (1960)], the MPM is reformulated as a second order cone program (SOCP)
formulation [Lobo, Vandenberghe, Boyd and Lebret (1998)]

min
w,b

√
wT Σ1w+

√
wT Σ2w (4)

s.t. wT (µ1−µ2) = 1 (5)

with global optimal solutions. This SOCP problem is solved using the efficient
interior point algorithm [Lobo, Vandenberghe, Boyd and Lebret (1998)].

3 A new minimax probabilistic approach (MPA)

We here use the notation in Sec.2. We separate two-class samples X1 and X2 when
they are summarized by their the first second-order moments. Let X = X1−X2
define the difference between the class random vectors X1 and X2. Then the vector
X lies in the halfspace H(w) = {z|wT z > 0}. Motivated by the formula of the
MPM, we construct a new minimax probabilistic approach (called the MPA ) such
that the random variable X with maximum probability lies in the halfspace H. We
formulate this objective as follows

max
α

α (6)

s.t. in f P{X ∈ H} ≥ α (7)

where α denotes the lower bound of classification accuracy. In other words, 1-α
represents the the maximum misclassification probability and the MPA is to min-
imize this maximum probability. The higher the value α is, more stringent is the
requirement that all samples belong to the correct half space.

Assume that two random vectors X1 and X2 are independent, and then the mean and
covariance of X can be expressed as: µ = µ1− µ2 and Σ = Σ1 +Σ2 respectively.
The following multivariate generalization of the Chebychev-Cantelli inequality is
used to derive a lower bound on the probability of a random vector taking values in
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a given half space.

Lemma 1. Let X be a n dimensional random vector. The mean and covariance of
X are µ ∈ Rn and Σ ∈ Rn×n respectively. Let H(w,b) = {z|wT z < b,w ∈ Rn,w 6=
0,b ∈ R} be a given half space. Then the following inequality holds [ Marshall and
Olkin (1960)]:

P{X ∈ H} ≥
(b−wT µ)2

+

(b−wT µ)2
++wT Σw

(8)

where (x)+ = max(x,0).
Applying Lemma 1, the constraint (7) in the MPA formulation can be handled by
setting

P{X ∈ H} ≥ (wT µ)2

(wT µ)2 +wT Σw
≥ α,wT

µ ≥ 0 (9)

which results in the following nonlinear constraints:

wT
µ ≥

√
α

1−α

√
wT Σw,wT

µ ≥ 0 (10)

Let k(α) =
√

α

1−α
. Because k(α) is a monotone increasing function of α , we

reformulate the MPA as:

max
k,w

k(α) (11)

s.t. wT (µ1−µ2)≥ k(α)
√

wT (Σ1 +Σ2)w (12)

wT (µ1−µ2)≥ 0 (13)

X ∼ (µ1−µ2,Σ1 +Σ2) (14)

Note that the constraint (12) is positively homogenous. That is, if w satisfies the
constraints, then cw also satisfies the constraints (12)-(13), where c is any positive
number. To deal with this extra degree of freedom, we require that the proposed
MPA can separate µ1 and µ2 even if α = 0. One way to impose this requirement
is via the constraint wT (µ1− µ2) = 1, which leads to the following optimization
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problem

max
k,w

k(α) (15)

s.t.
1√

wT (Σ1 +Σ2)w
≥ k(α) (16)

wT (µ1−µ2) = 1,X ∼ (µ1−µ2,Σ1 +Σ2) (17)

By eliminating the variable k, the problem (15)-(17) becomes

min
w

√
wT (Σ1 +Σ2)w (18)

s.t. wT (µ1−µ2) = 1 (19)

Let Σ = Σ1 + Σ2. Note that Σ is a positive semi-definite matrix since both the
matrices Σ1 and Σ2 are positive semi-definite. For simplicity, we assume that Σ is
positive definite. Our results can be extended to general positive semi-definite cases
by adding a small positive amount to its diagonal elements and make it positive
definite. Then there exists matrix C ∈Rn×n such that Σ=CCT , and the optimization
(18)-(19) takes the form:

min
w

‖CT w‖2 (20)

s.t. wT (µ1−µ2) = 1 (21)

This is also a second order cone program that can be solved in polynomial time
using the popular SeDuMi software [Sturm: 1999]. The optimal vector w∗ for the
MPA is estimated by solving problem (20)-(21), and the worst-case (maximum)
misclassification probability 1−α∗ is obtained by

1−α∗ =
wT
∗ (Σ1 +Σ2)w∗

1+wT
∗ (Σ1 +Σ2)w∗

(22)

Furthermore, let y∗ be a weighted average of class means:

y∗ =
wT (m1µ1 +m2µ2)

2(m1 +m2)
(23)

where m1 and m2 represent the number of samples for class X1 and X2 respectively.
For a new sample point xnew, the decision rule for the MPA is described as follows:
the sample xnew is classified as belonging to the positive class if wT xnew > y∗; the
xnew is said to belong to the negative class if wT xnew < y∗.



498 Copyright © 2015 Tech Science Press CMES, vol.104, no.6, pp.493-506, 2015

Comments on the proposed MPA

• Without making no specific assumption on data distribution, the MPA can
provide an explicit upper bound on the misclassification error.

• Applying the Chebyshev-Cantelli inequality, the MPA is posed as a second
order cone program and solved efficiently.

• Compared with the original MPM, the objective function of the MPA is sim-
pler than that of the MPM. Thus it is convenient to apply the MPA in practical
applications.

• To gain more insight into the nature of the MPA, we reformulate the MPA
formulation (11)-(14) as

max
k,w

k(α) (24)

s.t.
wT (µ1−µ2)√
wT (Σ1 +Σ2)w

≥ k(α) (25)

wT (µ1−µ2)≥ 0 (26)

which is equivalent to the following optimization by eliminating k

max
w

(wT (µ1−µ2))
2
+

wT (Σ1 +Σ2)w
(27)

This is similar to the traditional Fisher discriminant analysis (FDA) [Yu and
Ren:1999; Wang, Li, Song, Wei and Li:2011], the main idea from which can
be briefly described as follows. Suppose that there are two-class samples.
The FDA is to find an optimal hyperplane with direction vector w which gives
good separation between the two projected sets wT X1 and wT X2 with small
projected variances. Moreover, the formulation (27) shows that the bigger the
square of the difference between the means of two classes projected samples
is and at the same time the smaller the within-class scatter is, the better the
expected hyperplane is.

Therefore, the MPA involves seeking an optimal direction that separates the
two-class data and yields small projected variances, while the FDA can be
understood as finding a discriminant hyperplane whose generalization error
is less than 1-α∗. However the traditional FDA is not known whether this
optimal hyperplane can be used to compute a bound on the generalization
error.
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4 Experimental Design and Results

Maize is the main agricultural crop in China, and its yield is significantly related
to the seed purity [Williams, Geladi,Fox and Manley (2009)]. The ”NongDa108”
maize hybrid seeds and ”mother178” seeds used in the experiments were harvested
in Beijing, China, in 2008. A total of 240 seeds samples were selected in this
experiment.

Figure 1: The near-infrared spectra of maize seed samples.

4.1 Experimental design

In this investigation, near-infrared (NIR) spectra for the maize seeds were acquired
using a spectrometer fitted with a diffuse reflectance fiber probe [Han, Mao and
Wang: 2008]. The NIR spectral range of 800-2500 nm was recorded with a resolu-
tion of 4cm−1. Each sample spectrum was the average of 32 scans. This procedure
was repeated four times for each sample: twice from the front at different loca-
tions and twice from the rear at different locations. A final spectrum was taken
as the mean spectrum of these four spectra. Moreover, we selected 240 spectra
comprising spectral dataset, 120 from hybrid seeds and 120 from mother seeds.
Consequently, the spectral data set contains 240 samples measured at 2100 wave-
length points. The NIR spectra of seed samples including the hybrid seeds and
mother seeds are illustrated in Figure. 1.

It can be observed from Fig.1 that the noise level is relatively high in the spectral
range of 800-1000nm. Thus numerical experiments were done in spectral range of
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1000-2500nm. The initial spectra were digitized by OPUS 5.5 software. To validate
the performance of the proposed MPA, numerical experiments were carried out in
nine different spectral ranges: 1666-2500nm, 1666-2000nm, 1666-1250nm, 1250-
2500nm, 1250-2000nm, 1000-1250nm, 1000-2500nm, 1666-1428nm and 1250-
1428nm . The corresponding sample regions are denoted regions A−I respectively.
Information on them is summarized in Table 1.

Table 1: The near-infrared spectral sample regions of maize seeds.

Regions Spectral range(nm) Number of samples Number of wavelengths

region A 1666-2500 240 520
region B 1666-2000 240 260
region K 1250-1666 240 520
region D 1250-2500 240 1037
region E 1250-2000 240 780
region F 1000-1250 240 520
region G 1000-2500 240 1555
region H 1428-1666 240 260
region I 1250-1428 240 260

The evaluation criteria are specified before presenting the experimental results. Let
TP and TN denote true positives and true negatives, respectively; FN and FP denote
false negatives and false positives, respectively. We use the following criteria for
algorithm evaluation.

• The classification accuracy of all samples from two classes (ACC), Matthews
correlation coefficient (MCC) and F1 measure. The above values can be
obtained from the decision function and are defined as [Fawcett:2006]

ACC =
T P+T N

T P+FN +T N +FP
,F1 =

2×T P
2×T P+FP+FN

(28)

MCC =
T P ·T N−FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(29)

The MCC and F1 measure are two comprehensive evaluation criteria of the
quality of classification models. The higher the values above, the better the
models are.

• Time: total training and testing time.

• The worst-case bound on the probability of misclassification error.
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In addition, we chose the popular MPM and SVM as the baseline methods, and the
performance of these two methods on the same spectral regions is also reported.
Ten-fold cross-validation is used in this experiments. That is to say, each spectral
sample set is split randomly into ten subsets, and one of those sets is reserved as a
test set. This process is repeated ten times, and the average testing results is used as
the performance measure. Experiments use Matlab 7.0 as a solver. The following
toolboxes were used in this investigation:
MATLAB Statistics Toolbox.
MATLAB optimization Toolbox.
MATLAB SeDuMi Toolbox [Sturm (1999)].

The SeDuMi software is employed to solve the SOCP problems of the MPM and
MPA. The ”quad prog” function in Matlab is used to solve the related optimization
problem of the SVM.

Figure 2: The relationship between the accuracy and parameter C of the SVM in
the spectral region 1000-2500nm.

The accuracy of the SVM depends on its parameter C. In this work the parameter
C was tuned from the set of values {10i|i = −1, · · · ,4} to maximize the accuracy
in the spectral region 1000-2500nm. We present a map (Fig. 2) to illustrate the
relationship between the parameter C and accuracy. We find from Fig.2 that the
SVM increases when C is between 1 and 1000, and that the SVM produces greater
accuracy when parameter C is set to a larger value; while ACC decreases when
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parameter C ranges from 1000 to 5000. These findings were helpful in the choice
of parameter in this experiments. Finally, the SVM parameter C=1000 was selected
in this work.

4.2 Experimental results

We compare the MPA against the MPM and SVM in nine different spectral regions.
The average experimental results by ten-fold cross-validation are summarized in
Table 2.

4.2.1 Comparison of the MPA with MPM in terms of ACC, MCC and F1

We find that from Tables 2 the MPA has equivalent performance to the MPM with
respect to ACC, MCC and F1 comparisons in all nine spectral regions. The running
speed of the MPA is faster than that of the MPM in all cases, and the computation
time of the MPA is a half of that of the MPM at most.

4.2.2 Comparison of the MPA with MPM in terms of the the worst-case misclas-
sification probability

The 1-θ and 1-α are the worst-case (maximum) misclassification probability of the
MPM and MPA respectively. In this section, the optimal values of the 1-θ and 1-α
are checked in five regions A,K,D,F and G, respectively. The results are illustrated
in Fig.3, where the y-axis denotes the values of the maximum misclassification
probability and the x-axis denotes the spectral regions. The values of the 1-θ and
1-α vary from 0.2 to 0.4. The performance of the MPM is slightly better than that
of the MPA in three of five spectral regions; while in the other two spectral regions,
the MPA is slightly superior to the MPM.These results suggest that there is no
significant difference between the MPM and MPA with respect to the maximum
misclassification probability.

4.2.3 Comparison of the MPA with SVM

Compared with the SVM, one important feature of the MPA is that the MPA can
provide an explicit upper bound on the misclassification probability. In terms of
ACC, MCC and F1, the SVM is slightly better than the MPA in regions E and
H; the MPA is superior to the SVM in regions F and I. There is no significant
difference between the MPA and MPM in other five regions. However, the MPA
reduces significantly computation time with a training speed over ten times faster
in all considered nine spectral regions.

According to the above analysis, we find that the MPA, without loss of generaliza-
tion, always reduces computational time compared with the MPM and SVM. This
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Table 2: Comparisons of the MPM, SVM and MPA according to generalization and
runtime in different spectral regions.

Regions Methods ACC (%) MCC (%) F1 (%) Time (S)
MPA 83.33 67.78 82.96 21.06

region A MPM 82.29 64.70 81.71 46.44
SVM 83.75 68.03 82.67 832.172
MPA 83.96 58.42 86.00 4.28

region B MPM 85.00 61.13 87.36 10.28
SVM 82.08 64.19 81.86 185.27
MPA 83.96 59.23 86.64 21.32

region K MPM 82.91 56.87 85.48 39.50
SVM 83.75 67.60 83.12 804.75
MPA 85.02 60.00 85.00 102.85

region D MPM 86.39 65.57 89.10 260.52
SVM 82.08 64.35 81.39 1.61e+003
MPA 78.92 54.34 80.38 56.52

region E MPM 78.96 54.23 83.48 117.74
SVM 82.92 67.84 80.57 1.24e+003
MPA 74.17 48.34 74.38 17.35

region F MPM 75.23 50.40 74.38 39.85
SVM 66.25 32.56 67.21 808.55
MPA 77.08 54.17 77.09 319.29

region G MPM 78.13 56.86 79.61 808.56
SVM 79.17 61.87 75.06 2.33e+003
MPA 72.68 45.45 75.28 4.98

region H MPM 70.79 41.66 73.90 10.70
SVM 81.67 64.87 79.44 171.86
MPA 72.91 46.86 75.47 4.98

region I MPM 75.18 51.12 77.36 7.69
SVM 65.42 30.86 64.68 174.57
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Figure 3: Comparison of the upper bound on misclassification probalility of the
MPM and MPA in five different spectral regions.

means that the training speed of the MPA is the fastest in these three methods, a
possible reason for which is that, with equivalent time complexity to the MPM and
SVM, the MPA formulation contains fewer variables than the MPM and SVM.

5 Conclusions and future directions

We propose a new minimax probabilistic approach (MPA) for binary classification
problem in which data are summarized by their moments of class-conditional den-
sities. Moreover, the proposed MPA can be solved effectively, only needing to solve
a second order cone program. Furthermore, the MPA is directly used to to recog-
nize the purity of hybrid seeds using the proposed MPA and NIR spectroscopy data.
We rigorously validate the MPA method in different spectral regions for maize seed
samples in terms of different measures. The investigation is summarized as follows.

• Without making no assumption about the data distribution, the MPA can pro-
vide an explicit lower bound on prediction accuracy.

• Applying the Chebyshev-Cantelli inequality, the proposed MPA is posed as
a second order cone program and solved efficiently.
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• The MPA has the similar form to the traditional FDA formulation via a proper
mathematical transformation, but it is superior to the FDA by providing an
explicit upper-bound on generalization error.

• We illustrate how to distinguish "NongDa108" hybrid seeds from "mother178"
seeds using near-infrared spectroscopic technology.

Compared to the MPM and SVM, experimental results show that the MPA does
not lose generalization, and reduces the computation time in all considered nine
spectral regions.
Recognizing the purity of hybrid seeds is an important part of seed testing. Exper-
imental results show that it is possible to identify the purity of hybrid seeds using
the proposed minimax probabilistic method and NIR spectroscopic data.
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