
Copyright © 2015 Tech Science Press CMES, vol.105, no.3, pp.183-207, 2015

DRBEM Solution of MHD Flow with Magnetic Induction
and Heat Transfer

B. Pekmen1,2 and M. Tezer-Sezgin2,3

Abstract: This study proposes the dual reciprocity boundary element (DRBEM)
solution for full magnetohydrodynamics (MHD) equations in a lid-driven square
cavity. MHD equations are coupled with the heat transfer equation by means of
the Boussinesq approximation. Induced magnetic field is also taken into consider-
ation. The governing equations in terms of stream function, temperature, induced
magnetic field components, and vorticity are solved employing DRBEM in space
together with the implicit backward Euler formula for the time derivatives. The
use of DRBEM with linear boundary elements which is a boundary discretiza-
tion method enables one to obtain small sized linear systems. This makes the
whole procedure computationally efficient and cheap. The results are depicted
with respect to varying physical parameters such as Prandtl (0.005 ≤ Pr ≤ 1),
Reynolds (100 ≤ Re ≤ 2500), magnetic Reynolds (1 ≤ Rem ≤ 100), Hartmann
(10≤ Ha≤ 100) and Rayleigh (10≤ Ra≤ 106) numbers for discussing the effect
of each parameter on the flow and temperature behaviors of the fluid. It is found
that an increase in Ha slows down the fluid motion and heat transfer becomes con-
ductive. Centered square blockage causes secondary flows on its left and right even
for small Re. Strong temperature gradients occur around the blockage and near the
moving lid for increasing values of Ra.
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1 Introduction

MHD is a branch of science dealing with the interaction between electromagnetic
fields and conducting fluids. It has many applications such as design of cooling
systems in nuclear reactors, electromagnetic pumps, MHD generators, etc. MHD
flows with buoyancy is also arisen in magnetic field control of nuclear engineering
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thermo-hydraulics processes, MHD energy systems, and magneto-plasma dynam-
ics.

Analytically, an exact solution for the hydromagnetic natural convection boundary
layer flow is presented past an infinite vertical flat plate in the presence of mag-
netic field including magnetic induction effects by Ghosh, Bég, and Zueco (2010).
Numerical modeling is usually carried on incompressible MHD flows to reduce
the complexity of physical problem. In order to simulate the 2D incompressible
MHD flow, Peaceman and Rachford alternating-direction implicit (ADI) scheme is
performed at low magnetic Reynolds number by Navarro, Cabezas-Gómez, Silva,
and Montagnoli (2007). In their study, the solution is obtained in terms of stream
function-vorticity-electric current density and magnetic potential. Finite element
method (FEM) with some new stabilization techniques is used for solving incom-
pressible MHD equations in Aydin, Neslitürk, and Tezer-Sezgin (2010); Codina
and Silva (2006); Gerbeau (2000). The flow of liquid metals in strong magnetic
field is analyzed by Sterl (1990). Time integration algorithms which are long-
term dissipative and unconditionally stable are examined by Armero and Simo
(1996), and they applied the Galerkin mixed FEM to the incompressible MHD
equations. Bozkaya and Tezer-Sezgin (2011) have taken into account the current
density formulation, and used DRBEM to solve the full MHD problem. Kang
and Keyes (2008) compares the two different formulations using FEM with an
implicit time integration scheme for incompressible MHD problem in terms of
stream function, and a hybrid approach using velocity and magnetic fields to sat-
isfy the divergence-free conditions. FEM is also used for solving 3D MHD flows
by Salah, Soulaimani, and Habashi (2001), and with a stabilization technique in
Salah, Soulaimani, Habashi, and Fortin (1999). Pekmen and Tezer-Sezgin (2013)
applied the DRBEM to solve the incompressible MHD flow in a lid-driven cavity,
and in a channel with a square cylinder. A steady, laminar, incompressible, viscous
flow of an electrically conducting liquid-metal fluid chosen as Gallium-Indium-Tin
under the effect of a transverse magnetic field is also investigated in a circular pipe
by Gedik, Kurt, and Recebli (2013) using a commercial software.

MHD flow with heat transfer is also an important problem from the physical point
of view. Lima and Rêgo (2013) used the generalized integral transform tech-
nique (GITT) to solve a MHD channel flow with heat transfer in the entrance re-
gion. Alchaar, Vasseur, and Bilgen (1995) presented the combination of a second
order finite difference method and ADI method for solving MHD free convection
in a shallow cavity heated from below. Al-Najem, Khanafer, and El-Refaee (1998)
also studied the laminar natural convection under the effect of an applied magnetic
field employing ADI method. In a linearly heated lid-driven cavity, Al-Salem, Oz-
top, Pop, and Varol (2012) investigated the importance of the moving lid direc-
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tion on MHD mixed convection using finite volume method (FVM). They found
that heat is transferred much more in the +x-direction than the −x-direction for
both forced and mixed convection cases. Colaço, Dulikravich, and Orlande (2009)
carried out the radial basis function (RBF) approximation for solving the stream
function (fourth order)-temperature form of the governing equations of MHD ther-
mal buoyancy flow. It is found that RBF method gives good accuracy with small
number of computational grids which makes the procedure computationally cheap.
Liquid metal free convection under the influence of a magnetic field in a heated
cubic enclosure is solved by a finite volume method (FVM) in Ciofalo and Cric-
chio (2002). Sentürk, Tessarotto, and Aslan (2009) presented a Lax-Wendroff type
matrix distribution scheme combining a dual-time stepping technique with multi-
stage Runge-Kutta algorithm to solve the steady/unsteady magnetized/neutral con-
vection problems with the effect of heat transfer. Liquid metal flow in a channel is
subjected to external and internal electric and magnetic fields. Abbassi and Nasral-
lah (2007) investigated the MHD flow with heat transfer in a backward-facing step
using a modified control volume FEM using standard staggered grid. The SIM-
PLER algorithm has been used in terms of velocity-pressure unknowns, and ADI
scheme is performed for the time evolution. Mramor, Vertnik, and Sarler (2013)
formulated the natural convection flow under a magnetic field neglecting induced
magnetic field by meshless local radial basis function collocation method. Mejri,
Mahmoud, Abbassi, and Omri (2014) also studied the MHD natural convection
performing Lattice Boltzmann method in an enclosure filled with a nano-fluid in
which spatially varying sinusoidal temperature boundary conditions on side walls
are considered.

The fluid flow and heat transfer characteristics with obstacles inside the cavity are
also investigated by some researchers. This configuration has important industrial
applications as in geo-physical systems, and convection in buildings with natural
cooling flow. Studies are mostly concentrated on obstacles as a circular cylinder in-
side the enclosure. Some of the numerical studies are as follows. Kim, Lee, Ha, and
Yoon (2008) analyzed the importance of the location of a hot circular cylinder on
natural convection in a cold square enclosure filled with air using immersed bound-
ary method (IBM). The same problem is also investigated using the finite volume
method by Hussain and Hussein (2010) with a uniformly heated circular cylinder
immersed in a square enclosure. Using a commercial code FLUENT, mixed con-
vection in a lid-driven enclosure with a circular body is examined also taking into
account the conduction equation inside the cylinder in Oztop, Zhao, and Yu (2009).
Adding joule heating and magnetic field effects to the system, Rahman, Alim, and
Sarker (2010) have shown the significant effect of the cylinder obstacle on the fluid
flow using Galerkin finite element method. The energy equation in the solid region
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is coupled to momentum and energy equations for the fluid in the cavity.

Some of the numerical schemes for natural and/or mixed convection flows are car-
ried in enclosures containing obstacles of square shape. Ha, Kim, Yoon, Yoon, Lee,
Balachandar, and Chun (2002) used the Chebyshev spectral collocation method
to observe the natural convection with a square body located at the center of the
computational domain for a range of Rayleigh numbers. They have also taken into
consideration varying thermal boundary conditions on the square body as cold, neu-
tral, hot isothermal, and adiabatic body conditions. Bhave, Narasimhan, and Rees
(2006) analyzed the optimal square body size and the corresponding maximum heat
transfer as a function of Rayleigh and Prandtl numbers. Finite volume method has
been used for solving mass, momentum and energy equations inside the enclosure
when the square blockage was adiabatic. Laminar mixed convection is studied in a
square cavity with a heated square blockage immersed using finite volume method
in Islam, Sharif, and Carlson (2012). A CFD code ANSYS FLUENT is used for
calculations.

In this study, full MHD equations are investigated first in a unit square cavity, and
in a cavity with a heated square blockage located at the center. The fluid inside
the cavity is viscous, incompressible and electrically, thermally conducting. An
external magnetic field with intensity B0 is applied in +y-direction. The induced
magnetic field equations which are coupled to stream function, vorticity and en-
ergy equations are also solved in the fluid region. Numerical results are obtained
by using DRBEM which is a boundary-only discretization numerical method. Un-
conditionally stable backward implicit Euler scheme is used for time integration.
It is found that the increase in Ha slows down the fluid velocity and suppresses
the heat transfer inside the cavity. Magnetic Reynolds number does not affect the
heat transfer much. Furthermore, the presence of a heated square blockage inside a
cold wall square enclosure has a strong effect on isotherms, and induced magnetic
field lines are perturbed as Ra increases. The square solid blockage at the center
causes to develop secondary flows through left and right walls of the cavity even
for moderate Re.

2 Mathematical Basis

The two-dimensional, unsteady, laminar, incompressible MHD flow and the heat
transfer in lid-driven cavities are considered. Joule heating, viscous dissipation,
displacement current, convection current and Hall effects are neglected. The prob-
lem configurations may be given as in Figures 1(a) and 1(b). The cold wall enclo-
sure containing a heated square blockage located at the center is also examined.

Jagged walls show the adiabatic walls (∂T/∂n = 0). No-slip condition is imposed
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Figure 1: Problem configurations.

on the walls while the top wall moves with a constant velocity u = 1. Thus, the
stream function is set to zero on outer boundaries in both configurations, and it
is unknown but a constant on the inner square cylinder (Le-Cao, Mai-Duy, Tran,
and Tran-Cong (2011)). This constant value of boundary streamline on the square
cylinder is determined considering the streamline values when the square blockage
is absent. The vorticity boundary conditions are not known. They are going to
be obtained during the solution procedure by using the definition of vorticity and
DRBEM coordinate matrix. Th and Tc represent hot and cold walls, respectively,
and Ts is the temperature on the square solid blockage. The externally applied mag-
netic field with an intensity B0 is in +y-direction in both configurations. Induced
magnetic field in the fluid is taken into account due to the electrical conductivity of
the fluid, however the blockage is assumed to be non-conducting producing neg-
ligible induced magnetic field (Rem is assumed to be very small in the blockage).
On both cavity and solid blockage walls x−component of magnetic field is taken as
zero, y−component as one since external magnetic field is applied in y−direction.

MHD equations are a combination of Navier-Stokes and Maxwell’s equations through
Ohm’s law. In the presence of temperature, the density of the fluid varies according
to Boussinesq approximation which is

ρ = ρ0 (1−β (T −Tc)) , (1)

where ρ is the density of the fluid, ρ0 is the reference density, T is the temperature,
Tc is the reference temperature, and β is the thermal expansion coefficient with
β =−[∂ρ/∂T ]/ρ .
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Pre-Maxwell form of the equations in MHD may be given as (Davidson (2001))

∇×B = µmJ, Ampere’s Law, (2)

∇×E =−∂B
∂ t
, Faraday’s Law, (3)

J = σ (E+u×B) , Ohm’s Law, (4)

where B = (Bx,By) is the total magnetic field, µm is the magnetic permeability, J is
the current density, E is the electric field, σ is the electrical conductivity.

Once the curl of both sides of Eq.(2) and Eq.(4) is taken, using the identity

∇× (∇×B) = ∇(∇.B)−∇
2B, (5)

and ∇.B = 0, which is the solenoidal nature of magnetic field, the magnetic field
relation

− 1
µm

∇
2B = σ(∇×E+∇× (u×B)), (6)

is obtained. Substituting Faraday’s law (3) into this relation, the magnetic induction
equations may be written as

1
µmσ

∇
2B =

∂B
∂ t
−∇× (u×B). (7)

Continuity and momentum equations for an incompressible and electrically con-
ducting fluid are

∇.u = 0 (8)

ν∇
2u =

∂u
∂ t

+u(∇.u)+
1
ρ0

∇P+β (T −Tc)g−J×B, (9)

where u is the velocity field, ν is the kinematic viscosity, P is the pressure. The last
two terms are buoyancy body term and Lorentz force due to the externally applied
magnetic field, respectively.

The energy equation which gives the temperature variation of the fluid (heat trans-
fer) is

α∇
2T =

∂T
∂ t

+u.∇T, (10)

where α is the thermal diffusivity of the fluid.
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The explicit form of full MHD heat transfer equations in 2-D then, are

∂u
∂x

+
∂v
∂y

= 0 (11)

ν∇
2u =

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+
1
ρ0

∂P
∂x

+
By

ρ0µm

(
∂By

∂x
− ∂Bx

∂y

)
(12)

ν∇
2v=

∂v
∂ t

+u
∂v
∂x

+v
∂v
∂y

+
1
ρ0

∂P
∂y
− Bx

ρ0µm

(
∂By

∂x
−∂Bx

∂y

)
−gβ (T −Tc) (13)

1
σ µm

∇
2Bx =

∂Bx

∂ t
+u

∂Bx

∂x
+ v

∂Bx

∂y
−Bx

∂u
∂x
−By

∂u
∂y

(14)

1
σ µm

∇
2By =

∂By

∂ t
+u

∂By

∂x
+ v

∂By

∂y
−Bx

∂v
∂x
−By

∂v
∂y

(15)

α∇
2T =

∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y
. (16)

Differentiating Eq.(13) with respect to x, and Eq.(12) with respect to y, and sub-
tracting from each other, pressure term is eliminated and vorticity equation is ob-
tained using the continuity condition ∇.u = 0. Further, stream function ψ is used
to satisfy continuity equation defining u = ∂ψ/∂y, and v =−∂ψ/∂x. B = (0,B0)
is applied on the cavity and blockage walls.

For non-dimensionalization, the following dimensionless variables are defined

x′ =
x
L
, y′ =

y
L
, u′ =

u
U0
, v′ =

v
U0
, t ′ =

tU0

L
, T ′ =

T −Tc

∆T

p′ =
P

ρU2
0
, w′ =

wL
U0
, ψ

′ =
ψ

U0L
, B′x =

Bx

B0
, B′y =

By

B0
,

where L is the characteristic length, U0 is the characteristic velocity, B0 is the mag-
nitude of the externally applied magnetic field, ∆T is the temperature difference
between hot and cold walls.

Dropping the prime notation, the governing non-dimensional equations in terms of
stream function ψ , temperature T , induced magnetic field components Bx, By, and
vorticity w are

∇
2
ψ =−w (17a)

1
PrRe

∇
2T =

∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y

(17b)

1
Rem

∇
2Bx =

∂Bx

∂ t
+u

∂Bx

∂x
+ v

∂Bx

∂y
−Bx

∂u
∂x
−By

∂u
∂y

(17c)
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1
Rem

∇
2By =

∂By

∂ t
+u

∂By

∂x
+ v

∂By

∂y
−Bx

∂v
∂x
−By

∂v
∂y

(17d)

1
Re

∇
2w =

∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y
− Ra

PrRe2
∂T
∂x

− Ha2

ReRem

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]
,

(17e)

where the Reynolds number Re, Prandtl number Pr, magnetic Reynolds number
Rem, Rayleigh number Ra, and Hartmann number Ha are defined as

Re =
U0L

ν
, Pr =

ν

α
, Rem = µmσU0L, Ra =

gβ∆T L3

αν
, Ha2 =

B2
0L2σ

µ
,

where µ is the dynamic viscosity. (Bx,By)=(0,1) is the corresponding non-dimensional
induced magnetic field boundary conditions on all of the walls.

3 Application of DRBEM to the Problem

The dual reciprocity boundary element method treats the equations (17) as Poisson
equations assuming the right hand sides as inhomogeneity in each equation. Then,
these inhomogeneous terms are approximated by using radial basis functions, usu-
ally polynomials f = 1+ r+ . . .+ rn which are related to Laplacian with particular
solutions û as ∇2û = f . Thus, fundamental solution of Laplace equation is used
obtaining boundary integral equations corresponding to each differential equation
in (17).

Concerning only the diffusion terms on the left hand side of Eqs.(17), the right hand
side terms are approximated by a series of radial basis functions f j as (Partridge,
Brebbia, and Wrobel (1992))

∇
2
ϕ = b =

N+L

∑
j=1

α j f j, (18)

where ϕ denotes either ψ,T,Bx,By or w, α j’s are sets of initially unknown coeffi-
cients, N is the number of boundary nodes, and L is the number of arbitrarily taken
interior points. The radial basis functions f j’s are usually chosen as polynomials
of radial distance ri j as fi j = 1+ ri j + r2

i j + . . .+ rn
i j where i and j correspond to the

source(fixed) and the field(variable) points, respectively.

Multiplying both sides of this relation (18) by the fundamental solution u∗= 1
2π

ln
(1

r

)
of Laplace equation, and then integrating over the domain, a domain integral equa-
tion is obtained. With the help of Green’s identities, all the domain integrals are
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transformed to the boundary integrals as

ciϕi+
∫

Γ

ϕ
∂u∗

∂n
dΓ−

∫
Γ

∂ϕ

∂n
u∗dΓ=

N+L

∑
j=1

α j

(
ciûi j+

∫
Γ

û j
∂u∗

∂n
dΓ−

∫
Γ

q̂ ju∗dΓ

)
(19)

where ϕ again denotes either ψ,T,Bx,By or w, ci = 1/2 on the boundary Γ when it
is a straight line, and ci = 1 when the node i is inside. ∂/∂n indicates the normal
derivative.

These boundary integrals are discretized using linear boundary elements which re-
sult in matrix-vector equations corresponding to each Eqs.(17) as

Hϕ−Gϕq =
(
HÛ−GQ̂

)
α, (20)

where H and G are BEM matrices containing the boundary integrals of u∗ and
q∗ = ∂u∗/∂n evaluated at the nodes, respectively. The vectors ϕ and ϕq = ∂ϕ/∂n
represent the known and unknown information at the nodes of ψ,T,Bx,By or w. Û
and Q̂ are constructed from û j and then q̂ j = ∂ û j/∂n columnwise, and are matrices
of size (N + L)× (N + L). The vector α may be deduced from the Eq.(18) as
α = F−1b. Here, F is the coordinate matrix of size (N+L)×(N+L), and contains
radial basis functions f j’s as columns evaluated at N + L points. b is the vector
containing collocated values of the inhomogeneity b in each equation of (17).

The space derivatives in vector b are employed by using the coordinate matrix F
while the time derivatives are discretized with Backward-Euler finite difference
formula. Thus, the iteration with respect to time for ψ,T,Bx,By, and w may be
given as

Hψ
m+1−Gψ

m+1
q =−Swm (21)

um+1 = Dyψ
m+1, vm+1 =−Dxψ

m+1 (22)(
H− PrRe

∆t
S−PrReSM

)
T m+1−GT m+1

q =−PrRe
∆t

ST m (23)(
H− Rem

∆t
S−RemSM+RemSDx[u]m+1

d

)
Bm+1

x −GBm+1
xq

=−Rem
∆t

SBm
x −RemS[By]

m
d Dyum+1

(24)

(
H− Rem

∆t
S−RemSM+RemSDy[v]m+1

d

)
Bm+1

y −GBm+1
yq

=−Rem
∆t

SBm
y −RemS[Bx]

m
d Dxvm+1

(25)
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H− Re

∆t
S−ReSM

)
wm+1−Gwm+1

q

=−Re
∆t

Swm− Ha2S
Rem

(
[Bx]

m+1
d Dx{ζ}+[By]

m+1
d Dy{ζ}

)
− Ra

PrRe
SDxT m+1

(26)

where

S =
(

HÛ−GQ̂
)

F−1, Dx =
∂F
∂x

F−1, Dy =
∂F
∂y

F−1

M = [u]m+1
d Dx +[v]m+1

d Dy, {ζ}= DxBm+1
y −DyBm+1

x ,

[Bx]
m+1
d , [By]

m+1
d , [u]m+1

d , [v]m+1
d enter into the system as diagonal matrices of size

(N +L)× (N +L), and m shows the iteration step. The resulting systems of equa-
tions in the form Ax = b, which are obtained by shuffling the known and unknown
information of ψ,T,Bx,By, and w on the boundary, are solved by Gaussian elimi-
nation with partial pivoting.

Initially, w0,B0
x ,B

0
y ,T

0 are taken as zero everywhere (except on the boundary).
Once the stream function is computed from Eq.(21), velocity components are de-
termined by Eq.(22) inserting the boundary conditions. Then, temperature equation
(23) and induction equations (24)-(25) are solved with the insertion of their bound-
ary conditions. Vorticity boundary conditions are computed by using the definition
w = ∂v/∂x−∂u/∂y with the help of coordinate matrix F as

wb =
∂F
∂x

F−1v− ∂F
∂y

F−1u. (27)

Then, the vorticity transport equation (26) is solved by using these vorticity bound-
ary conditions. The solution process continues in this way until the criterion

5

∑
k=1

∥∥ϕ
m+1
k −ϕm

k

∥∥
∞∥∥ϕ

m+1
k

∥∥
∞

< ε = 1e−4 (28)

is satisfied where ϕk stands for ψ,T,Bx,By and w values at the boundary and interior
points, respectively, and m indicates the iteration step.

4 Numerical Results

The radial basis function f = 1+r is used in the construction of coordinate matrix F
and Û , Q̂ matrices. 16−point Gaussian quadrature is made use of for the integrals
in the BEM matrices H and G. In general, N = 120 boundary elements, L = 840
interior points in the ‘lid-driven square cavity problem’, and N = 208, L = 880 in
the problem of the ‘cavity with a centered square blockage’ are used, respectively.
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Naturally, one needs to take more elements (or interior points) or smaller time incre-
ment ∆t for increasing large values of physical parameters. The depicted contours
(in Figs.3-7, Figs.9-10, Figs.12-13) from left to right are streamlines, isotherms,
vorticity lines, and induced magnetic field vector (Bx,By) at steady-state.

Once the vorticity equation Eq.(26) is solved, in order to accelerate the convergence
of vorticity which is rather difficult to converge than the other unknowns, a relax-
ation parameter 0 < γ < 1 is used as wm+1← γwm+1 +(1− γ)wm for large values
of parameters in reaction terms.

The presented numerical procedure is validated in terms of both the graphs of
the flow and quantitative results on average Nusselt number on the heated wall.
For this, the governing equations are solved neglecting the induced magnetic field
as in the case of Colaço, Dulikravich, and Orlande (2009). Figure 2 shows the
good agreement in terms of streamlines and isotherms with the results given in Co-
laço, Dulikravich, and Orlande (2009). Also, the average Nusselt numbers (Nu =
−∫ 1

0 (∂T/∂x)dy) are in good agreement with the ones computed in Colaço, Du-
likravich, and Orlande (2009). The computational cost (CPU time in seconds) of
the present study is naturally less than the domain discretization methods due to
the use of boundary elements only as can be seen in Table 1 (e.g. 15×15 grid, 56
boundary elements only).

Table 1: CPU times and Nu on the heated wall with Re = 1, Pr = 0.71, Gr =
104, ∆t = 0.01.

Present Study Colaço, Dulikravich, and Orlande (2009)
15×15 25×25 15×15

Ha Nu CPU Nu CPU Nu CPU
0 2.17 2.59 2.08 37.92 2.02 50.60
10 1.82 3.15 1.74 95.43 1.70 34.03
25 1.20 4.52 1.18 61.51 1.17 42.59
50 1.01 4.76 1.01 59.55 0.97 25.53

Firstly, the problem of MHD flow and heat transfer is solved in a square enclosure
(Figure 1(a)). Then, the same problem in a square enclosure with a square blockage
is considered (Figure 1(b)). Since the laminar flow is taken into account, Reynolds
number value is taken up to 2500. And, the ranges for the other non-dimensional
parameters are 1≤ Rem≤ 100, Ha≤ 100, 10≤ Ra≤ 106, 0.005≤ Pr ≤ 1.

As Re increases (Figure 3), the center of the streamlines in the direction of moving
lid shifts through the center of the cavity forming new secondary eddies at the
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Figure 2: Streamlines and Isotherms with Ha variation, Pr = 0.71, Re = 1, Gr =
104.

bottom corners. The dominance of convection is observed in isotherms forming
the strong temperature gradients clustered at the top left and bottom right corners.
Vorticity is transported inside the cavity forming boundary layers on the top moving
lid and right wall close to the upper corner. This shows the concentration of flow
through upper right corner. Induced magnetic field is not affected much with the
increase in Re.

With an increase in Ha (Figure 4), fluid flows slowly due to the retarding effect
of Lorentz force. Two new cells on the right and left parts of cavity are observed
in streamlines. Heat is transferred by conduction as can be seen from isotherms.
Induced magnetic field lines become perpendicular to horizontal walls due to the
decrease in the dominance of convection terms in the induction equations. Also,
this points to the dominance of external magnetic field which is in the +y-direction.
Vorticity concentrates completely near on the wall with the moving lid being stag-
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Figure 3: Rem = 100, Ra = Ha = 10, Pr = 0.1, ∆t = 0.25.
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Figure 4: Rem = 40, Re = 400, Ra = 1000, Pr = 0.1, ∆t = 0.5 (Ha = 5), ∆t =
0.2 (Ha = 50), ∆t = 0.1 with γ = 0.1 (Ha = 100).
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nant at the center as the intensity of magnetic field increases (i.e. Ha increases).

An increase in magnetic Reynolds number Rem has a great influence on the induced
magnetic field only. It shows circulation at the center of the cavity due to the
dominance of convection terms in the induction equations, and the effect of external
magnetic field diminishes (Figure 5).

As Ra increases (Figure 6), the isotherms indicate the conduction dominated ef-
fect due to the dominance of the buoyancy force. Small counter-clockwise eddy
in streamlines with Ra = 103 occupies the mid-part of the cavity with Ra = 104,
and one more clockwise cell emerges through the bottom part of the cavity as Ra
reaches to the value Ra = 105.

Isotherms circulate inside the cavity pointing to the convective heat transfer with
the increase in dominance of convective terms in energy equation as Pr increases
(Figure 7). Not much of a variation in streamlines, vorticity, and induced magnetic
field lines is observed.

Secondly, MHD mixed convection flow is solved in a cavity with a square block-
age at the center. The centered square cylinder is of size Ls = 0.25. Inside the solid
blockage induced magnetic field is neglected due to the small values of Rem (small
magnetic permeability of the solid). Heat transfer inside the blockage is also ne-
glected due to the small value of thermal diffusivity of the solid and its isothermal
structure. ψ = −0.05 is taken on the blockage walls by looking at the average ψ

value at the center of the cavity in the absence of blockage and heat transfer.

Figure 8 shows that our results using DRBEM in solving the mixed convection in
a lid-driven cavity with a square blockage, are consistent with the results in Islam,
Sharif, and Carlson (2012) (in terms of Richardson number Ri = Ra/(PrRe2)).
Blockage causes the secondary flow to develop at a lower value of Re compared
to cavity without blockage. With the increase in Re, the center of the streamlines
which is close to the moving lid again moves to the center of the cavity but to the
right of the blockage (Figure 9). Meantime, secondary flow becomes prominent
close to the left wall of the cavity. Isotherms are not altered much. But, for large
values of Re, a boundary layer is pronounced on the left and bottom walls of the
square blockage due to the secondary flow on the left wall of the cavity. Vorticity is
transported inside the cavity as Re increases. Induced magnetic field vector tending
to the direction of moving lid is not affected much.

As Ha increases (Figure 10), due to the +y−directed applied magnetic field, the
center of the primary cell in streamlines shift through the center of the cavity nearly
conflicting with the square blockage. Further, the secondary flow at the left wall of
the cavity becomes smaller, and a tertiary flow emerges at the top wall. Not much
effect of Ha on isotherms is observed. This may be due to the small number of Pr.
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Figure 5: Re = 400, Ha = 10, Ra = 1000, Pr = 0.1, ∆t = 0.25.
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Figure 6: Re = 400, Rem = Ha = 10, Pr = 0.1, ∆t = 0.25.
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Figure 9: Rem = 100, Ha = 10, Pr = 0.1, Ra = 103, ∆t = 0.25 (Re =
100, 400, 1000), ∆t = 0.1 (Re = 2500).

Strongly applied magnetic field (large Ha) directs the induced magnetic field lines
in its direction. This is why Rem = 100 has been taken to start with a turbulence at
the right upper corner with small Ha.

The aim of the second example (MHD convection in a square cavity with a block-
age at the center) is to examine the effects of both external magnetic field and the
blockage in the cavity. Thus, the streamline value on the blockage walls is exposed
to the change as Ha increases. This is depicted in Figure 11. As can be seen in Fig-
ure 11(a), clockwise directed primary cell is divided into two parts and squeezed
through the left and right walls, and a counter-rotating cell is intensified covering
the center of the cavity as Ha increases. Thus, the value of stream function changes,
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Figure 10: Re = Rem = 100, Ra = 103, Pr = 0.1, ∆t = 0.25 (Ha = 5, Ha =
25), ∆t = 0.25 with γ = 0.5 (Ha = 50), ∆t = 0.1 with γ = 0.1 (Ha = 100).

especially at the center of the cavity. Due to this change in the flow, the stream func-
tion value which is denoted by ψc on the square obstacle is taken accordingly with
the values shown in Figure 11(a). Then, the effects of both applied magnetic field
and blockage placed in the center of the cavity, on the flow are shown in Figure
11(b). It is observed that secondary flow developed with Ha = 5 through the left
wall becomes larger, and the center of the primary cell shifts through the right wall.
Further, the primary cell is pronounced between the right wall of the obstacle and
the right wall of the cavity while a counter-rotating cell emerges from top wall of
the cavity to the top wall of the square blockage. Retarding effect of Lorentz force
starts much earlier (even with Ha = 5) and gives symmetric secondary flow cells
on the left and right of the blockage when Ha = 50. Further, the increase in Ha
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Figure 11: Observation on Streamlines, Re = Rem = 100, Ra = 103, Pr = 0.1.
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Figure 12: Re = 100, Rem = 1, Ha = 10, Pr = 0.1, ∆t = 0.25 (Ra = 103, Ra =
104), ∆t = 0.1 (Ra = 105), ∆t = 0.01 with γ = 0.1 (Ra = 106).

(Ha = 100) squeezes all the flow cells to the boundaries of the cavity. This is the
well known boundary layer formation in the flow for large Ha.

For Ra = 103, the center of the primary cell is seen through the moving lid and a
secondary flow is observed at the left bottom corner of the cavity. With Ra = 104,
the primary cell is shrunk through the right mid part while the secondary flow
occupies the left part of the cavity. A symmetric behavior in streamlines starts to
be pronounced vanishing the effect of moving lid with Ra = 105 and 106. Vorticity
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Figure 13: Re = 100, Ha = 10, Pr = 0.1, Ra = 103, ∆t = 0.25.

shows a similar behavior to streamlines as Ra increases. This is the common effect
of large Ra values on the flow. Furthermore, isotherms also start to be circulated
from hot blockage to the cold walls forming strong temperature gradient through
the top wall due to the increase in natural convection (buoyancy). Induced magnetic
field lines are also affected with the increase in Ra, and perturbation in opposite
directions from square blockage to the top wall is observed. Here, Rem = 1 is
purposely taken to observe the effect of the solid blockage for large Ra (Figure 12).

As expected, the variation of Rem has the influence only on the induced magnetic
field lines as can also be seen in Figure 13. Induced magnetic field lines obey
the direction of moving lid with the increase in Rem while the square blockage
squeezes them between the blockage and the right wall of the cavity.



204 Copyright © 2015 Tech Science Press CMES, vol.105, no.3, pp.183-207, 2015

5 Conclusion

In this article, MHD flow with heat transfer is studied numerically in a square
cavity, and a cavity with a centered square blockage. Without square blockage,
isotherms form strong temperature gradient through the top and bottom walls point-
ing to the dominance of convective heat transfer as Re increases. As expected, the
counter-rotating cells emerge and the dominance of conduction is pronounced with
the increase in Ra. The convective heat transfer is revealed as Pr increases. When
Ha is increased, the conductive heat transfer is seen on isotherms. With centered
square blockage, secondary flow becomes prominent close to the left wall of the
cavity and right to the blockage. Rising of heat from hot blockage to the cold walls
of cavity increases formation of the strong temperature gradients around the block-
age and near the moving lid for large values of Ra. Even with small values of Ha,
secondary flows start and locate through the right and left of the blockage. In both
cases, increasing Ha slows down the fluid motion due to the restraining effect of
Lorentz force, and make the induced magnetic field lines perpendicular to the verti-
cal walls since the external magnetic field is applied in +y-direction. Furthermore,
the increase in magnetic Reynolds number Rem causes the induced magnetic field
lines to circulate inside the cavity. Not much effect of Rem on the heat transfer is
observed.

The utilized numerical method DRBEM has the advantage of using small num-
ber of boundary nodes which result in small systems. Furthermore, all the space
derivatives are easily computed with the BEM coordinate matrix. Thus, the com-
putational cost is much more reasonable than the other domain discretization meth-
ods. However, physical problems which need very fine discretisation according to
the domain of interest (e.g.domains containing narrow passages, curved pipes) will
result in very large sized full systems.
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