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A New Coupled Fractional Reduced Differential
Transform Method for the Numerical Solution of

Fractional Predator-Prey System

S. Saha Ray1

Abstract: In the present article, a relatively very new technique viz. Coupled
Fractional Reduced Differential Transform, has been executed to attain the approx-
imate numerical solution of the predator-prey dynamical system. The fractional
derivatives are defined in the Caputo sense. Utilizing the present method we can
solve many linear and nonlinear coupled fractional differential equations. The re-
sults thus obtained are compared with those of other available methods. Numerical
solutions are presented graphically to show the simplicity and authenticity of the
method.
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1 Introduction

In the field of engineering, physics, chemistry, and other sciences, many phenom-
ena can be modelled very successfully by using mathematical tools in the form
of fractional calculus, e.g. anomalous transport in disordered systems, some per-
colations in porous media and the diffusion of biological populations [Podlubny
(1999); Hilfer (2000); Saha Ray and Bera (2006); Saha Ray (2007, 2008)]. Frac-
tional calculus has been used to model physical and engineering systems that are
found to be more accurately described by fractional differential equations. Thus,
we need a reliable and competent technique for the solution of fractional differen-
tial equations. In this paper, the predator-prey system [Petrovskii et al. (2005)] has
been discussed in the form of fractional coupled reaction-diffusion equation. In
the present analysis, a new approximate numerical technique, Coupled Fractional
Reduced Differential transform method (CFRDTM), has been presented which is
appropriate for coupled fractional differential equations. The proposed method is
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an impressive solver for linear and non-linear coupled fractional differential equa-
tions. It is comparatively a new approach to provide the solution very effectively
and competently.

The significant advantage of the proposed method is the fact that it provides its
user with an analytical approximation, in many instances an exact solution, in a
rapidly convergent sequence with elegantly computed terms. This technique does
not involve any linearization, discretization or small perturbations and therefore it
reduces significantly the numerical computation. This method provides extraordi-
nary accuracy for the approximate solutions when compared to the exact solutions,
particularly in large scale domain. It is not affected by computation round off er-
rors and hence one does not face the need of large computer memory and time. The
results reveal that the CFRDTM is very effective, convenient and quite accurate to
the system of nonlinear equations.

In the present analysis, we consider a system of two species competitive model
with prey population A and predator population B. For prey population A→ 2A, at
the rate a(a > 0) express the natural birth rate. Similarly, for predator population
B→ 2B , at the rate c(c > 0) represents the natural death rate. The interactive
term between predator and prey population is A+B→ 2B, at rate b(b > 0) where
b denotes the competitive rate. According to the knowledge of fractional calculus
and biological population, the time fractional dynamics of a predator-prey system
can be described as

∂ αu
∂ tα

=
∂ 2u
∂x2 +

∂ 2u
∂y2 +au−buv, u(x,y,0) = ϕ(x,y) (1)

∂ β v
∂ tβ

=
∂ 2v
∂x2 +

∂ 2v
∂y2 +buv− cv, v(x,y,0) = φ(x,y) (2)

where t > 0, x,y ∈ R, a,b,c > 0, u(x,y, t) denotes the prey population density and
v(x,y, t) represents the predator population density. Here ϕ(x,y) and φ(x,y) rep-
resent the initial conditions of population system. The fractional derivatives are
considered in Caputo sense. Caputo fractional derivative is used because of its
advantage that it permits the initial and boundary conditions included in the for-
mulation of the problem. Here, u(x,y, t) and v(x,y, t) are analytic functions. The
physical interpretations of eqns. (1) and (2) indicate that the prey-predator popula-
tion system is analogous to the behaviour of fractional order model of anomalous
biological diffusion.

Several analytical as well as numerical methods have been implemented by various
authors to solve fractional differential equations. Wei et al. (2014) applied homo-
topy method to determine the unknown parameters of solute transport with spatial
fractional derivative advection-dispersion equation. Saha Ray and Gupta proposed
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numerical schemes based on the Haar wavelet method for finding numerical solu-
tions of Burger-Huxley, Huxley, modified Burgers and mKdV equations [Saha Ray
and Gupta (2013, 2014)]. An approximate analytical solution of the time-fractional
Cauchy-reaction diffusion equation by using fractional-order reduced differential
transform method (FRDTM) has been proposed by Shukla et al. (2014).

In this paper, the fractional nonlinear predator-prey population model has been con-
sidered. The paper is systematized as follows: in Section 2, a brief review of the
theory of fractional calculus has been presented for the specific purpose of this pa-
per. In Section 3, the Coupled Fractional Reduced Differential Transform method
has been analyzed in details. In Section 4, CFRDTM has been applied to determine
the approximate solution for the nonlinear coupled fractional predator-prey equa-
tion. In Section 5, three examples have been examined to demonstrate the simplic-
ity and competence of the proposed method. Finally, conclusions are presented in
Section 6.

2 Mathematical Preliminaries of Fractional Calculus

The fractional calculus was first anticipated by Leibnitz, was one of the founders
of standard calculus, in a letter written in 1695. This calculus comprises different
definitions of the fractional operators along with the Riemann–Liouville fractional
derivative, Caputo derivative, Riesz derivative and Grunwald–Letnikov fractional
derivative [Podlubny (1999)]. The fractional calculus has gained substantial im-
portance during the past decades mostly due to its applications in various fields of
science and engineering. For the purpose of this paper the Caputo’s definition of
fractional derivative will be used, taking the advantage of Caputo’s approach that
the initial conditions for fractional differential equations with Caputo’s derivatives
take on the traditional form as for integer-order differential equations.

2.1 Definition-Riemann-Liouville integral

The most frequently encountered definition of an integral of fractional order is the
Riemann-Liouville integral [Podlubny (1999)], in which the fractional integral of
order α (>0) is defined as

Jα f (t) =
1

Γ(α)

t∫
0

(t− τ)α−1 f (τ) dτ, t > 0, α ∈ RRR+ (3)

where R+ is the set of positive real numbers.
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2.2 Definition-Caputo Fractional Derivative

The fractional derivative, introduced by Caputo [Caputo (1967, 1969)] in the late
sixties, is called Caputo Fractional Derivative. The fractional derivative of f (t) in
the Caputo sense is defined by

Dα
t f (t) = Jm−αDm f (t) =


1

Γ(m−α)

t∫
0
(t− τ)(m−α−1) dm f (τ)

d τm dτ,

if m−1 < α < m , m ∈ NNN
dm f (t)

dtm ,
if α = m , m ∈ NNN

(4)

where the parameter α is the order of the derivative and is allowed to be real or
even complex. In this paper only real and positive α will be considered.

For the Caputo’s derivative we have

DαC = 0,(C is a constant) (5)

Dαtβ =

{
0, β ≤ α−1
Γ(β+1)tβ−α

Γ(β−α+1) , β > α−1
(6)

Similar to integer order differentiation Caputo’s derivative is linear.

Dα(γ f (t) +δ g(t)) = γ Dα f (t) +δ Dαg(t) (7)

where γ and δ are constants, and satisfies so called Leibnitz’s rule.

Dα(g(t) f (t)) =
∞

∑
k=0

(
α

k

)
g(k)(t)Dα−k f (t) (8)

If f (τ) is continuous in [0, t] and g(τ) has n+1 continuous derivatives in [0, t].

2.3 Lemma

If m−1 < α < m, m ∈ NNN, then

DαJα f (t) = f (t) (9)

and

JαDα f (t) = f (t)−
m−1

∑
k=0

tk

k!
f (k)(0+), t > 0 (10)
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2.4 Theorem

(Generalized Taylor’s formula) [Odibat and Shawagfeh (2007)] Suppose that Dkα
a f (t)∈

C(a,b] for k = 0,1, ...,n+1, where 0 < α ≤ 1, we have

f (t) =
n

∑
i=0

(t−a)iα

Γ(iα +1)

[
Dkα

a f (t)
]

t=a
+ℜ

α
n (t ;a) (11)

with ℜα
n (t ;a) = (t−a)(n+1)α

Γ((n+1)α+1)

[
D(n+1)α

a f (t)
]

t=ξ

, a≤ ξ ≤ t,∀t ∈ (a,b],

where Dkα
a = Dα

a .D
α
a .Dα

a ...D
α
a (k times)

2.5 Coupled Fractional Reduced Differential Transform Method (CFRDTM)

In order to introduce coupled fractional reduced differential transform, U(h,k−h)
is considered as the coupled fractional reduced differential transform of u(x,y, t). If
function u(x,y, t) is analytic and differentiated continuously with respect to time t,
then we define the fractional coupled reduced differential transform of u(x,y, t) as

U(h,k−h) =
1

Γ(hα +(k−h)β +1)

[
D(hα+(k−h)β )

t u(x,y, t)
]

t=0
(12)

whereas the inverse transform of U(h,k−h)is

u(x,y, t) =
∞

∑
k=0

k

∑
h=0

U(h,k−h)thα+(k−h)β (13)

which is one of the solution of coupled fractional differential equations.

Theorem 1 Suppose that U(h,k−h), V (h,k−h) and W (h,k−h) are the Coupled
Fractional Reduced Differential Transform of the functions u(x,y, t), v(x,y, t) and
w(x,y, t) respectively.

1. If u(x,y, t) = f (x,y, t)±g(x,y, t) then U(h,k−h) = F(h,k−h)±G(h,k−h).

2. If u(x,y, t) = a f (x,y, t), where a ∈ R, then U(h,k−h) = aF(h,k−h).

3. If f (x,y, t) = u(x,y, t)v(x,y, t), then

F(h,k−h) =
h

∑
l=0

k−h

∑
s=0

U(h− l,s)V (l,k−h− s).

4. If f (x,y, t) = Dα
t u(x,y, t), then

F(h,k−h) =
Γ((h+1)α +(k−h)β +1)

Γ(hα +(k−h)β +1)
U(h+1,k−h).
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5. If f (x,y, t) = Dβ

t v(x,y, t), then

F(h,k−h) =
Γ(hα +(k−h+1)β +1)

Γ(hα +(k−h)β +1)
V (h,k−h+1).

3 Approximate Solution for Fractional Predator-Prey Equation

In order to assess the advantages and the accuracy of the CFRDTM, we consider
three cases with different initial conditions of predator-prey system [Liu and Xin
(2011)]. Firstly, we derive the recursive formula obtained from predator-prey sys-
tem of equations (1)-(2). Now, U(h,k− h) and V (h,k− h) are considered as the
coupled fractional reduced differential transform of u(x,y, t) and v(x,y, t) respec-
tively, where u(x,y, t) and v(x,y, t) are the solutions of coupled fractional differen-
tial equations. Here, U(0,0) = u(x,y,0), V (0,0) = v(x,y,0) are the given initial
conditions. Without loss of generality, the following assumptions have taken

U(0, j) = 0, j = 1,2,3, · · · and V (i,0) = 0, i = 1,2,3, · · ·

Applying CFRDTM to eq. (1), we obtain the following recursive formula

Γ((h+1)α +(k−h)β +1)
Γ(hα +(k−h)β +1)

U(h+1,k−h) =
∂ 2

∂x2U(h,k−h)+
∂ 2

∂y2U(h,k−h)

+aU(h,k−h)−b

(
h

∑
l=0

k−h

∑
s=0

U(h− l,s)V (l,k−h− s)

)
(14)

From the initial condition of eq. (1), we have

U(0,0) = u(x,y,0) (15)

In the same manner, we can obtain the following recursive formula from eq. (2)

Γ(hα +(k−h+1)β +1)
Γ(hα +(k−h)β +1)

V (h,k−h+1) =
∂ 2

∂x2V (h,k−h)+
∂ 2

∂y2V (h,k−h)

+b

(
h

∑
l=0

k−h

∑
s=0

U(l,k−h− s)V (h− l,s)

)
− cV (h,k−h)

(16)

From the initial condition of eq. (2), we have

V (0,0) = v(x,y,0) (17)
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4 Applications and Results

Now, let us consider the three cases of predator-prey system

Case 1:

Here we consider the fractional predator-prey equation with constant initial condi-
tion

u(x,y,0) = u0, v(x,y,0) = v0 (18)

According to CFRDTM, using recursive scheme eq. (14) with initial condition
eq. (15) and also using recursive scheme eq. (16) with initial condition eq. (17)
simultaneously, we obtain

U [0,0] = u(x,y,0) = u0, V [0,0] = v(x,y,0) = v0

U [1,0] =
u0(a−bv0)

Γ(1+α)
V [0,1] =

(bu0v0− cv0)

Γ(1+β )
,

U [2,0] =
u0(a−bv0)

2

Γ(1+2α)
,

V [0,2] =
v0(c−bu0)

2

Γ(1+2β )

U [1,1] =−bu0(−cv0 +bu0v0)

Γ(1+α +β )

V [1,1] =
bu0v0(a−bv0)

Γ(1+α +β )

U [1,2] =−b(c−bu0)
2u0v0

Γ(1+α +2β )

V [1,2] =
bu0(c−bu0)v0(−(a−2bv0)Γ(1+α)Γ(1+β )+(−a+bv0)Γ(1+α +β ))

Γ(1+α +2β )Γ(1+α)Γ(1+β )

U [2,1] =
bu0v0(a−bv0)((c−2bu0)Γ(1+α)Γ(1+β )+(c−bu0)Γ(1+α +β ))

Γ(1+2α +β )Γ(1+α)Γ(1+β )

V [2,1] =
bu0v0(a−bv0)

2

Γ(1+2α +β )

U [3,0] =
u0(a−bv0)

3

Γ(1+3α)
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V [0,3] =−v0(c−bu0)
3

Γ(1+3β )

The approximate solutions, obtained in the series form, are given by

u(x,y, t) =U(0,0)+
∞

∑
k=1

k

∑
h=1

U(h,k−h)t(hα+(k−h)β )

= u0 +
u0(a−bv0)tα

Γ(1+α)
+

u0(a−bv0)
2t2α

Γ(1+2α)
+

u0(a−bv0)
3t3α

Γ(1+3α)

− bu0(−cv0 +bu0v0)tα+β

Γ(1+α +β )
+ · · ·

(19)

v(x,y, t) =V (0,0)+
∞

∑
k=1

k

∑
h=0

V (h,k−h)t(hα+(k−h)β )

= v0 +
(bu0v0− cv0)tβ

Γ(1+β )
+

bu0v0(a−bv0)tα+β

Γ(1+α +β )
+

bu0v0(a−bv0)
2t2α+β

Γ(1+2α +β )
· · ·

(20)

Figure 1: Time Evolution of population of u(x,y, t) and v(x,y, t) obtained from eqs.
(19) and (20), when α = 1, β = 1.

Figure 1 cites the numerical solutions for eq. (1)-(2) obtained by the proposed
FCRDTM method for the constant initial conditions u0 = 100, v0 = 10, a= 0.05,
b= 0.03 and c= 0.01. Figure 2 shows the time evolution of population of u(x,y, t)
and v(x,y, t)obtained from eqs. (19) and (20) for different values of αand β . In
the present numerical analysis, Table-1 shows the comparison of the numerical
solutions with the proposed method with Homotopy perturbation method and Vari-
ational iteration method, when a= 0.05, b= 0.03 and c= 0.01. From the Table 1, it is
evidently clear that CFRDTM used in this paper has high accuracy. The numerical
results obtained in this proposed method coincide precisely with values obtained in
Homotopy perturbation method.
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Figure 2: Time Evolution of population of u(x,y, t) and v(x,y, t)obtained from eqs.
(19) and (20) for different values of αand β .

Table 1: Comparison of the numerical solutions of the proposed method with Ho-
motopy perturbation method and Variational iteration method.

t α = β Numerical value
(u, v) by HPM

Numerical value (u,
v) by VIM

Numerical value
(u, v) by CFRDTM

0.02 1
0.9

(99.4831, 10.6146)
(99.1865, 10.9633)

(99. 4834, 10.6323)
(99.3065, 10. 8375)

(99.4831, 10.6146)
(99.1865, 10.9633)

0.2 1
0.9

(93.0910, 17.8514)
(90.5735, 20.5567)

(93. 3908, 17.7382)
(92.4584, 18.8198)

(93.0910, 17.8514)
(90.5735, 20.5567)

0.3 1
0.9

(87.9348, 23.4430)
(83.7993, 27.7785)

(88. 9466, 22. 7237)
(87. 8005, 24.0532)

(87.9348, 23.4430)
(83.7993, 27.7785)
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Case 2:

In this case, the initial conditions of eq. (1)-(2) are given by

u(x,y,0) = ex+y, v(x,y,0) = ex+y (21)

By using eqs. (14) to (17), we can successively obtain

U [0,0] = u(x,y,0) = ex+y, V [0,0] = v(x,y,0) = ex+y

U [1,0] =
2ex+y +aex+y−be2x+2y

Γ(1+α)

V [0,1] =
2ex+y− cex+y +be2x+2y

Γ(1+β )

U [1,1] =
be2(x+y)(2− c+bex+y)

Γ(1+α +β )

V [1,1] =−be2(x+y)(−2−a+bex+y)

Γ(1+α +β )

U [2,0] =
ex+y(4+a2−10bex+y +b2e2(x+y)+a(4−2bex+y))

Γ(1+2α)

V [0,2] =
ex+y(4+ c2 +10bex+y +b2e2(x+y)−2c(2+bex+y))

Γ(1+2β )

U [1,2] =−be2(x+y)(4+ c2 +10bex+y +b2e2(x+y)−2c(2+bex+y))

Γ(1+α +β )

V [1,2] = (be2(x+y)(−(a(−8+ c−bex+y)

+2(−8+ c+9bex+y−bcex+y +b2e2(x+y)))Γ(1+α)Γ(1+β )

+(2+a−bex+y)(2− c+bex+y)Γ(1+α+β ))/(Γ(1+α)Γ(1+β )Γ(1+α+2β ))

U [3,0] = ex+y(8+a3−84bex+y +28b2e2(x+y)−b3e3(x+y)+a2(6−3bex+y)

+3a(4−10bex+y +b2e2(x+y)))/Γ(1+3α)

V [0,3] = ex+y(8− c3 +84bex+y +28b2e2(x+y)+b3e3(x+y)+3c2(2+bex+y)

−3c(4+10bex+y +b2e2(x+y)))/Γ(1+3β )

The explicit approximate solution is

u(x,y, t) = ex+y +
(2ex+y +aex+y−be2x+2y)tα

Γ(1+α)

+
ex+y(4+a2−10bex+y +b2e2(x+y)+a(4−2bex+y))t2α

Γ(1+2α)
+ · · ·

(22)
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and

v(x,y, t) = ex+y+
(2ex+y−cex+y +be2x+2y)tβ

Γ(1+β )
−be2(x+y)(−2−a+bex+y)tα+β

Γ(1+α +β )
+· · ·

(23)

Figure 3: The surface shows the numerical approximate solution of u(x,y, t) when
α = 0.88 β = 0.54, a= 0.7, b= 0.03, c= 0.3, and t=0.53.

Figure 4: The surface shows the numerical approximate solution of v(x,y, t) when
α = 0.88, β = 0.54, a= 0.7, b= 0.03, c= 0.9, and t=0.6.
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Figure 5: The surface shows the numerical approximate solution of u(x,y, t) when
α = 0.88, β = 0.54, a= 0.5, b= 0.03, c= 0.3, and t=0.53.

Figure 6: The surface shows the numerical approximate solution of u(x,y, t) when
α = 0.88, β = 0.54, a= 0.7, b= 0.04, c= 0.3, and t=0.53.
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Figures 3 and 4 cite the numerical approximate solutions for predator-prey system
with appropriate parameter. The obtained results of predator-prey population sys-
tem indicate that this model exhibits the same behaviour observed in the anomalous
biological diffusion fractional model.

Figures 5 and 6 show the numerical solutions for prey population density for dif-
ferent values of parameters a, b, i.e. natural birth rate of prey population and com-
petitive rate between predator and prey population. The results depicted in graphs
agree with the realistic data.

Case 3:

In this case, we consider the initial condition of fractional predator-prey equation
(1)-(2)

U [0,0] = u(x,y,0) =
√

xy, V [0,0] = v(x,y,0) = ex+y (24)

U [1,0] =
− x2

4(xy)3/2 − y2

4(xy)3/2 +a
√

xy−bex+y√xy

Γ(1+α)

V [0,1] =
2ex+y− cex+y +bex+y√xy

Γ(1+β )

U [1,1] =
bex+y√xy(2− c+b

√
xy)

Γ(1+α +β )

V [1,1] =
−bex+y(y2 + x2(1−4ay2 +4bex+yy2))

4(xy)3/2Γ(1+α +β )

U [2,0] =
1

16x4y4Γ(1+2α)

√
xy
(
−15y4−16bex+yx3y4+x2(2y2−8(a−bex+y)y4)+

x4(−15+16a2y4+16b2e2(x+y)y4−8bex+yy2(−1+2y+4y2)−8ay2(1+4bex+yy2)))

V [0,2] =
ex+y(4(−2+c)2(xy)3/2+4b2(xy)5/2−b(y2−4xy2+x2(1−4y+8(−2+c)y2)))

4(xy)3/2Γ(1+2β )

The solution becomes

u(x,y, t) =
√

xy+
(− x2

4(xy)3/2 − y2

4(xy)3/2 +a
√

xy−bex+y√xy)tα

Γ(1+α)
+ · · · (25)

and

v(x,y, t) =ex+y +
(2ex+y− cex+y +bex+y√xy)tβ

Γ(1+β )

+
(−bex+y(y2 + x2(1−4ay2 +4bex+yy2))tα+β

4(xy)3/2Γ(1+α +β )
+ ...

(26)
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5 Convergence Analysis and error estimate

Theorem 5.1:

Let, Dα
t u = F(u,v,ux,vx,uxx,vxx,uxxx,vxxx, ...) and Dβ

t v = H(u,v,ux,vx,uxx,vxx,uxxx,
vxxx, ...) be the general coupled fractional differential equations and let, the Ca-
puto derivatives Dkα

t u(x, t) and Dkβ

t v(x, t) are continuous functions on [0,L]× [0,T ]
i.e. Dkα

t u(x, t) ∈ C ( [0,L]× [0,T ] ) and Dkβ

t v(x, t) ∈ C ( [0,L]× [0,T ] ) for k =
0,1,2, · · · ,n+ 1, where 0 < α,β < 1, then the approximate solutions ũ(x, t) and
ṽ(x, t) of the above general coupled fractional differential equations are

ũ(x, t)∼=
n

∑
k=0

k

∑
h=0

U(h,k−h)thα+(k−h)β .

and

ṽ(x, t)∼=
n

∑
k=0

k

∑
h=0

V (h,k−h)thα+(k−h)β

where U(h,k− h) and V (h,k− h) are Coupled Fractional Reduced Differential
transforms of u(x, t) and v(x, t) respectively.

Moreover, there exists values ξ1, ξ2 where 0 ≤ ξ1, ξ2 ≤ t so that the error En(x, t)
for the approximate solution ũ(x, t) has the form

‖En(x, t)‖= Sup
0≤ x≤ L
0≤ t ≤ T

∣∣∣∣∣D(n+1)β u(x,0+)

Γ((n+1)β +1)
t(n+1)β

∣∣∣∣∣ , if ξ1, ξ2→ 0+

Proof:

From lemma 2.3, we have

JαDα f (t) = f (t)−
m−1

∑
k=0

tk

Γ(k+1)
f (k)(0+), m−1 < α < m

The error term

En(x, t) = u(x, t)− ũ(x, t)

where

u(x, t) =
∞

∑
k=0

k

∑
h=0

Dhα+β (k−h)u(x,0)
Γ(hα +β (k−h)+1)

thα+β (k−h)
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and

ũ(x, t) =
n

∑
k=0

k

∑
h=0

Dhα+β (k−h)u(x,0)
Γ(hα +β (k−h)+1)

thα+β (k−h)

Now, for 0 < α < 1,

Jhα+β (k−h)Dhα+β (k−h)u(x, t)− J(h+1)α+β (k−h)D(h+1)α+β (k−h)u(x, t)

= Jhα+β (k−h)
(

Dhα+β (k−h)u(x, t)− JαDα

(
Dhα+β (k−h)u(x, t)

))
= Jhα+β (k−h)Dhα+β (k−h)u(x,0), since 0 < α < 1, using eq. (10)

=
Dhα+β (k−h)u(x,0)

Γ(hα +β (k−h)+1)
thα+β (k−h)

(27)

The n-th order approximation for u(x, t) is

ũ(x, t) =
n

∑
k=0

k

∑
h=0

Dhα+β (k−h)u(x,0)
Γ(hα +β (k−h)+1)

thα+β (k−h)

=
n

∑
k=0

k

∑
h=0

(Jhα+β (k−h)Dhα+β (k−h)u(x, t)

− J(h+1)α+β (k−h)D(h+1)α+β (k−h)u(x, t)) using eq. (27)

=
n

∑
k=0

Jkβ Dkβ u(x, t)−
n

∑
h=0

J(h+1)α+β (n−h)D(h+1)α+β (n−h)u(x, t)

= u(x, t)+
n−1

∑
k=0

J(k+1)β D(k+1)β u(x, t)−
n

∑
h=0

J(h+1)α+β (n−h)D(h+1)α+β (n−h)u(x, t)

(28)

Therefore, from eq. (28), the error term becomes

En(x, t) = u(x, t)− ũ(x, t)

=
n

∑
h=0

J(h+1)α+β (n−h)D(h+1)α+β (n−h)u(x, t)−
n−1

∑
k=0

J(k+1)β D(k+1)β u(x, t)

=
n

∑
i=0

J(i+1)α+β (n−i)D(i+1)α+β (n−i)u(x, t)−
n−1

∑
i=0

J(i+1)β D(i+1)β u(x, t)

=
n

∑
i=0

1
Γ((i+1)α +β (n− i))

t∫
0

(t− τ)(i+1)α+β (n−i)−1D(i+1)α+β (n−i)u(x,τ)dτ
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−
n−1

∑
i=0

1
Γ((i+1)β )

t∫
0

(t− τ)(i+1)β−1D(i+1)β u(x,τ)dτ

=
n

∑
i=0

D(i+1)α+β (n−i)u(x,ξ1)

Γ((i+1)α +β (n− i)+1)
t(i+1)α+β (n−i)−

n−1

∑
i=0

D(i+1)β u(x,ξ2)

Γ((i+1)β +1)
t(i+1)β ,

applying integral mean value theorem

=
n−1

∑
i=0

D(i+1)α+β (n−i)u(x,ξ1)

Γ((i+1)α +β (n− i)+1)
t(i+1)α+β (n−i)+

D(n+1)αu(x,ξ1)

Γ((n+1)α +1)
t(n+1)α

−
n−1

∑
i=0

D(i+1)β u(x,ξ2)

Γ((i+1)β +1)
t(i+1)β

=
n−1

∑
i=0

[
D(i+1)α+β (n−i)u(x,ξ1)

Γ((i+1)α +β (n− i)+1)
t(i+1)α+β (n−i)− D(i+1)β u(x,ξ2)

Γ((i+1)β +1)
t(i+1)β

]

+
D(n+1)αu(x,ξ1)

Γ((n+1)α +1)
t(n+1)α

(29)

Using generalized Taylor’s series formula eq. (11), eq. (29) becomes

En(x, t) =u(x, t)− D(n+1)αu(x,ζ1)

Γ((n+1)α +1)
t(n+1)α −u(x, t)+

D(n+1)β u(x,ζ2)

Γ((n+1)β +1)
t(n+1)β

+
D(n+1)αu(x,ξ1)

Γ((n+1)α +1)
t(n+1)α ,

where 0≤ ζ1, ζ2 ≤max{ξ1, ξ2} and ξ1, ξ2→ 0+

This implies

‖En‖= ‖u(x, t)− ũ(x, t)‖

= Sup
0≤ x≤ L
0≤ t ≤ T

∣∣∣∣∣D(n+1)β u(x,ζ2)

Γ((n+1)β +1)
t(n+1)β−D(n+1)α u(x,ζ1)

Γ((n+1)α +1)
t(n+1)α+

D(n+1)α u(x,ξ1)

Γ((n+1)α +1)
t(n+1)α

∣∣∣∣∣<∞

= Sup
0≤ x≤ L
0≤ t ≤ T

∣∣∣∣∣D(n+1)β u(x,0+)

Γ((n+1)β +1)
t(n+1)β

∣∣∣∣∣ , since ξ1, ξ2→ 0+

(30)

As n→ ∞, ‖En‖→ 0
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Hence, u(x, t) can be approximated as

u(x, t) =
∞

∑
k=0

k

∑
h=0

U(h,k−h)thα+(k−h)β ∼=
n

∑
k=0

k

∑
h=0

U(h,k−h)thα+(k−h)β = ũ(x, t)

with the error term given in eq. (30).

Following the similar argument, we may also find the error
∥∥Ên
∥∥= ‖v(x, t)− ṽ(x, t)‖

for the approximate solution ṽ(x, t).

6 Conclusion

In this article, a new approximate numerical technique Coupled Fractional Reduced
differential transform [Saha Ray (2013a, 2013b)] has been proposed for solving
nonlinear fractional partial differential equations arising in predator-prey biologi-
cal population dynamical system. The results thus obtained validate the reliability
of the proposed algorithm. It additionally displays that the proposed process is
an extraordinarily efficient and strong technique. The main advantage of the pro-
posed method is that it necessitates less amount of computational effort. In later
study, it has been planned to use the proposed process for the solution of fractional
epidemic model, coupled fractional neutron diffusion equations with delayed neu-
trons and others physical models with the intention to show the efficiency and wide
applicability of the new proposed method.

In view of the author [Bervillier (2012)], there is no difference between Differential
Transform Method (DTM) and Taylor Series Method (TSM) both of which (nor-
mally) are provided with an analytical continuation via a stepwise procedure, since
it is essential to transform the formal series into an approximate solution of the
problem (via analytical continuation). The author also wrote in [Bervillier (2012)]
that one may then rightly remember the approach as being “an extended Taylor
series method”. Thus, the DTM could, eventually, be named as the Generalized
Taylor Series Method (GTSM). In belief of the learned author, “DTM could de-
serve its name (as a Technique) when it extends the Taylor Series Method to new
kinds of expansion (different from a Taylor Series Expansion).” He, additionally,
acknowledges that the DTM has allowed an easy generalization of the Taylor Se-
ries Method to various derivation procedures. “For example, fractional differential
equations have been considered using the DTM extended to the fractional deriva-
tive procedure via a modified version of the Taylor series”. Despite the fact that
there is a controversy in the name of DTM, the author of [Bervillier (2012)] ad-
mits that major contribution of the DTM is in the easy generalization of the Taylor
Series Method to problems involving fractional derivatives.

Furthermore, it may be stated that Taylor Series Method is used invariably in many
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mathematical analysis and derivation for the problems of applied science and engi-
neering. Taylor Series Method of order one is commonly known as Euler method.
However Euler method has its independent existence. Like that DTM is also self-
contained for at least in the application of fractional order calculus and has its own
right for its existence.

Acknowledgement: It is not out of place to mention that the author is indebted
to his respected Sir Retired Professor Rasajit Kumar Bera for sparing his valuable
time in reading the paper carefully for refinement of literature as well as technical
corrections.
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Appendix

Proof of theorem 1 (iii):

f (x,y, t) = u(x,y, t)v(x,y, t)

=

(
∞

∑
k=0

k

∑
h=0

U(h,k−h)thα+(k−h)β

)(
∞

∑
k=0

k

∑
h=0

V (h,k−h)thα+(k−h)β

)
=U(0,0)V (0,0)+(U(1,0)V (0,0)+U(0,0)V (1,0)) tα

+(U(0,1)V (0,0)+U(0,0)V (0,1)) tβ+

(U(1,0)V (0,1)+U(0,1)V (1,0)+U(1,1)V (0,0)+U(0,0)V (1,1)) tα+β + ...

=
∞

∑
k=0

k

∑
h=0

(
h

∑
l=0

k−h

∑
s=0

U(h− l,s)V (l,k−h− s)

)
thα+(k−h)β

Hence, F(h,k−h) =
h
∑

l=0

k−h
∑

s=0
U(h− l,s)V (l,k−h− s).




