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Abstract: Present study is concerned with three dimensional natural frequency
analysis of functionally graded sandwich rectangular plates using Meshless Lo-
cal Petrov-Galerkin (MLPG) method and Artificial Neural Networks (ANNs).The
plate consists of two homogeneous face sheets and a power-law FGM core. Nat-
ural frequencies of the plate are obtained by 3D MLPG method and are verified
with available references. Convergence study of the first four natural frequencies
for different node numbers is the next step. Also, effects of two parameters of “FG
core to plate thickness ratio” and “volume fraction index” on natural frequencies
of plate are investigated. Then, four distinct ANNs are used to predict the first four
natural frequencies of the plate. Back-Error Propagation (BEP) method is used to
train the ANNs. The predicted data shows a good agreement with respect to the ac-
tual data. Finally, the trained ANNs are used for prediction of natural frequencies
of some conditions where MLPG data are not available.

Keywords: Natural Frequency, Sandwich Plate with FG Core, Hybrid MLPG &
ANN.

1 Introduction

Functionally graded materials (FGMs) are a new generation of materials consists of
two or more constituent phases with a smoothly varying composition of gradually
changing the volume fraction of the materials. They offer superior thermal-resistant
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properties in comparison to conventional composites. Vibration analysis of FGM
structures has been the focus of many researchers. Praveen and Reddy (1998) and
Loy, Lam and Reddy (1999) studied the vibration of 2D FGM structures. Cheng
and Batra (2000)applied Reddy’s third-order shear deformation theory to investi-
gate the steady state vibrations of a simply supported FGM plate resting on an
elastic foundation. Furthermore, Vel and Batra (2004) presented an exact 3D so-
lution for free and forced vibrations of rectangular FGM plates. In another study,
Batra and Jin (2005) studied the FGM anisotropic plates with various boundary
conditions by applying the finite element method and first-order shear deforma-
tion theory. Ferreira, Batra, Roque, Qian, Jorge (2006) and Roque, Ferreira, Jorge
(2007) presented a meshless method based on radial basis functions for solving
the free vibration problem of FG plates. Matsunaga (2008) performed a dynamic
and stability analysis of simply supported edges FGM plates using several sets of
2D advanced approximate theories. Hosseini and Abolbashari (2010) presented an
analytical method for dynamic response analysis of FG thick hollow cylinders un-
der impact loading. They analytically solved the wave motion equation based on
the composition of Bessel functions. Furthermore, Iqbal, Muhammad, and Nazra
(2009) applied wave propagation approach to study the vibration characteristics of
FG cylindrical shells.

One of the important structural FG constructions that has been studied in the re-
cent years are sandwich FG plates. Buckling and free vibration of sandwich plates
with FGM face sheets was studied by Zenkour (2005). His study was based on a
sinusoidal shear deformation plate theory. In another paper, a 3D Ritz analysis of
sandwich FG plates of two types: plates with FGM face sheets and homogeneous
core and plates with homogeneous face sheets and a FGM core was presented by
Li, Iu and Kou (2008). In an interesting study, Neves, Ferreira, Carrera, Cinefra,
Roque, Jorge and Soares (2013) investigated the static, dynamic and stability anal-
ysis of sandwich FGM using a quasi-3D higher-order shear deformation theory.
Meanwhile, Dozio (2013) developed advanced 2D Ritz-based models for accurate
prediction of natural frequencies of thin and thick sandwich plates with FG core.

The meshless local Petrov–Galerkin (MLPG) method developed by Atluri and his
co-workers [Atluri and Zhu (1998); Atluri, Kim and Cho (1999); Atluri and Zhu
(2000); Atluri and Shen (2002)] is based on the local weak instead of global weak
formulation of the problem. In an interesting review paper, Sladeak, Stanak, Han,
Sladek and Atluri (2013) investigated recent studies that have been performed using
MLPG method in different engineering and science fields. Furthermore, Sladek,
Sladek and Solek (2009) applied MLPG to study the transient heat conduction
problems in 3D solids with continuously non-homogeneous and anisotropic ma-
terial properties. Sladek, Sladek, Tan, and Atluri (2008) also studied the tran-
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sient heat conduction in 3D anisotropic functionally graded solids using MLPG
method. In another work Sladek, Sladek, Zhang, Solek, and Starek (2007) ap-
plied MLPG to fracture analysis in continuously nonhomogeneous piezoelectric
solids. Furthermore, MLPG method was used to stress and crack analyses in 3-D
axisymmetric FGM bodies by Sladek, Sladek, Krivacek, and Zhang (2005). MLPG
method was utilized for transient linear thermoelastic analysis by Sladek, Sladek,
Solek, Tan, and Zhang (2009). In that paper they considered orthotropic mate-
rial properties for the structure. A thermo-elastic wave propagation analysis was
performed based on the Green-Naghdi coupled thermo-elasticity in a functionally
graded thick hollow cylinder considering uncertainty in constitutive mechanical
properties under thermal shock loading by Hosseini, Shahabian, Sladek and Sladek
(2011). They developed MLPG method accompanied with Monte-Carlo simula-
tion to solve the stochastic boundary value problem. Moreover, MLPG method
was exploited by Ghouhestani, Shahabian, and Hosseini (2014) for dynamic anal-
ysis of functionally graded nanocomposite cylindrical layered structure reinforced
by carbon nanotube subjected to mechanical shock loading. In that study, the car-
bon nanotubes (CNTs) were assumed to be distributed across radial direction on
thickness of cylinder, which can be simulated by linear and nonlinear volume frac-
tion. They studied free vibration and elastic wave propagation for various vol-
ume fraction exponent values at various time intervals. Liu, Long, and Li. (2008)
developed MLPG method for crack analysis in the isotropic functionally graded
material. Furthermore, Zhang, Dong, Alotaibi and Atluri (2013) applied a simple
MLPG Mixed-Collocation method for analyzing linear isotropic/anisotropic elas-
ticity with simply/multiply-connected domains. Zhang, He, Yong, Li, Alotaibi and
Atluri (2014) developed the MLPG Mixed Collocation method to solve the Cauchy
inverse problems of steady-state heat transfer. They applied the mixed scheme to
independently interpolate temperature as well as heat flux using the same meshless
basis functions. The balance and compatibility equations were satisfied strongly
at each node using the collocation method. Moreover, Long and his co-workers
[Dong and Atluri, (2012); Dong and Atluri (2011); Dong and Atluri (2012); Dong,
El-Gizawy, Juhany and Atluri (2014); Bishay, Dong, and Atluri (2014); Dong,
El-Gizawy, Juhany, Atluri (2014)] presented some interesting simple methods for
analyzing laminated composite, functionally graded and heterogeneous materials.

Sladek, Sladek and Zhang (2005) studied 2D static and dynamic deformations of
FG solids using MLPG method. Qiana, Batra and Chena (2004) and Gilhooley,
Batra, Xiao, McCarthy and Gillespie (2007) applied a higher-order shear and nor-
mal deformable plate theory and the MLPG method to investigate the static and
dynamic deformations of thick FGM plates. In another study, Rezaei Mojdehi
Darvizeh, Basti and Rajabi (2011) presented the static and dynamic analysis of
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thick FG plates using MLPG method. Hosseini (2014) applied a hybrid technique
based on composition of Newmark finite difference and MLPG methods for nat-
ural frequencies analysis of a thick FG cylinder. Moussavinezhad, Shahabian,
and Hosseini (2013) investigated the propagation of elastic wave in two dimen-
sional functionally graded thick hollow cylinder with finite length subjected to me-
chanical shock loading, considering 2D variations for mechanical properties using
MLPG method to solve the boundary value problem. In another study Avila, Han
and Atluri (2011) applied a novel MLPG finite volume mixed method for analyz-
ing Stokesian flows & study of a new vortex mixing flow. This method is based
on independent interpolation of the pressure, the deviatoric velocity strain tensor,
the volumetric velocity strain tensor and the velocity vector. Also Godinho and
Dias-da-Costa (2013) proposed the MLPG method for transient heat transfer in
frequency domain. In this study 5th version of MLPG method was applied

On the other hand, the concept of ANN in the recent years has attracted the attention
of many researchers in broad areas. Specifically, some interesting studies have been
conducted about the vibration of FG structures using ANN. Jodaei, Jalal and Yas
(2012) applied ANN technique for 3D analysis of exponentially FG annular plates
by using state-space based differential quadrature method (SSDQM) for different
boundary conditions. In another study, Jodaei, Jalal and Yas (2013) also investi-
gated the free vibration analysis of FG piezoelectric annular plates by employing
SSDQM and ANN. Also Kamarian, Yas, and Pourasghar (2013) applied Imperial-
ist Competitive Algorithm (ICA), ANN and Genetic Algorithm (GA) to optimize
the volume fraction of FG beams resting on elastic foundation for maximizing the
first natural frequency.

In this study, hybrid MLPG and ANN methods are used for parametric analysis of
3D natural frequency analysis of sandwich rectangular plates with FG core.

2 Problem Definition

2.1 Geometrical configuration

In this study, the considered structure is a rectangular FGM sandwich plate with
uniform thickness which composed of three elastic layers from bottom to top (Ho-
mogeneous face sheets and a FGM core). A schematic 3D view of the plate and
the Cartesian coordinates (x1,x2,x3) are shown in Fig. 1. The thicknesses of top
and bottom layers are equal. As illustrated in Fig. 1, h/H is the ratio of core layer
thickness to the plate thickness which is varying from 0.1 to 0.9 in this study.
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Figure 1: A Schematic3D view of the rectangular FGM sandwich plate.

2.2 Material properties

A schematic 2D view of the considered rectangular FGM sandwich plate and the
rectangular Cartesian coordinates are shown in figure 2. As illustrated in this figure,
plate composed of two homogeneous face-sheets on the bottom and top of a FG
core.

Figure 2: A schematic 2D view of the rectangular FGM sandwich plate.

In order to describe the FGM variation of material properties, power-law function
is a common pattern. For the FG core of the considered FGM sandwich plate the
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density and elasticity modulus are assumed to vary continuously in the thickness
direction only due to gradually changing of the volume fraction of the constituent
materials. Furthermore, the Poisson’s ratio assumed to be constant. Along the
thickness direction of the FG core, volume fraction function is denoted by s and
assumed to obey the following formula:

s(ς) = ((ς − ς2)/(ς3− ς2))
κ , ς ∈ [ς2,ς3] , (1)

where κ is the volume fraction index of power-law pattern and ς j = h j/H,( j =
1,2,3,4).

In addition, according to equation (2), a mixture rule composed of Young’s modulus
and mass density is used to express the effective material properties of the plate
along the thickness.

λ e f f (ς) = λ4 +(λ1−λ4)s(ς) (2)

In equation (2), λe f f , λ1 and λ4 are the effective material properties of FG core, the
properties of the top and bottom layers, respectively.

3 MLPG formulation

Equation (3) gives the 3D equation of motion in the domain of volume Ω that is
bounded by the surface Γ.

σi j, j +bi = ρ üi(x, t), in Ω (3)

In equation (3), σi j, bi, ρ and üi = ∂ 2ui/∂ t2 are the stress tensor, body force vector,
density and acceleration field, respectively. For a plate undergoing free vibration,
its periodic displacement components can be illustrated in terms of the displace-
ment amplitude functions, ui =Uieqωt , where q =

√
−1 and ω denotes the natural

frequency of the plate. The indices i and j take the values of 1, 2 and 3 and refer to
Cartesian coordinates of x,y and z, respectively. Also, the boundary conditions are
considered as:

ui = ūi on Γu (4)

σi jn j = t̄i on Γt (5)

where ui represents the displacement component and ti represents the surface trac-
tion components. ūi and t̄i are the prescribed displacement and prescribed traction
on Γu and Γt , respectively. Also, the unit outward vector normal to boundary Γt is
presented by n j.
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Over the local sub-domains, the weak formulation inside the global domain Ω is
constructed.

As can be seen in Fig. 3, brick-shaped local domains in this study are considered
as sub-domains and support domains. Because the global domain of the rectan-
gular plate is hexahedral, the mapping procedure becomes simple and no special
treatment is needed when the local sub-domain intersects the global boundary.

10 
 

 

Fig. 3. Sub-domains and global domain of a rectangular plate 
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Figure 3: Sub-domains and global domain of a rectangular plate.

3.1 Local symmetric weak form

As this paper deals with the free vibration analysis, the body force vector is as-
sumed to be zero. Therefore, over a local sub-domain around node i, the general-
ized local weak form of the equilibrium equations can be written as:∫
ΩI

s

(σi j, j +ω
2
ρui)ηIdΩ−α

∫
ΓI

su

(ui−ui)ηIdΓ = 0 (6)

In this equation ηI and ui are the test and trial functions, respectively. In equa-
tion (6), the term ΓI

su represents a part of the boundary ∂ΩI
s over which the essen-

tial boundary is prescribed and α is a penalty parameter to impose the essential
boundary condition (1 ≤ α). By applying the divergence theorem and equation
σi j, jηI = (σi jηI), j−σi jηI, j, equation (6) becomes:∫

∂ΩI
s

σi jn jηIdΓ−
∫
ΩI

s

(σi jηI, j)dΩ−α

∫
ΓI

su

(ui−ui)ηIdΓ+
∫
ΩI

s

ω
2
ρuiηIdΩ = 0. (7)
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The boundary of local sub-domain ΩI
s consists of three parts, ∂ΩI

s = ΓI
si ∪ΓI

su ∪
ΓI

st . In this equation ΓI
si is a part of local boundary which is placed inside the

global domain. It does not have any contact with the problems’ global boundary.
Furthermore, ΓI

st and ΓI
su are parts of the local boundary that coincide with the

global traction and displacement boundaries, respectively. As ūi = 0, equation (7)
is converted to

∫
ΩI

s

σi jηI, jdΩ−
∫

ΓI
su

tiηIdΓ−
∫

ΓI
st

tiηIdΓ+α

∫
ΓI

su

uiηIdΓ−ω
2
∫
ΩI

s

ρuiηIdΩ = 0. (8)

This equation is the symmetric local weak form of linear elastic free vibration. It
should be mentioned that ηI(x) should be chosen such that to be vanished outside
the Ωs, and to be positive inside the Ωs.

3.2 Moving least square approximation

In Moving Least Square (MLS) approximation the unknown trial approximant
u∗(x) of the function u(x) is defined as:

u∗(x) = pT (x)a(x) ∀x ∈Ωx (9)

In this equation, pT = [p1(x), p2(x), p3(x), ..., pm(x)] is a complete monomial basis
of order m. Meanwhile, Ωx is the defined domain of MLS approximation at point
x for the trial function. For 3D problems the quadratic basis vector pT could be
defined as:

pT = [1,x,y,z,x2, y2, z2, xy, yz, zx]. (10)

Minimization of a weighted discrete L2 norm which is defined as equation (11),
will lead to determination of coefficient vector a(x).

J(a(x)) =
N

∑
I=1

gI(x)[pT (xI)a(x)− ûI]
2
= [P.a(x)− û]T G(x)[P.a(x)− û]. (11)

In equation (11), gI(x) is the weight function of node I. Also, it is strictly positive
(gI(x) > 0) for all points located in the support domain of weight function. More-
over, xI is the Ith node position, ûI(I = 1,2,3, ...,N ∈ Ωx) presents the fictitious
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nodal value. Furthermore, G, P and û are as follows:

G =



g1(x) 0 . . . 0
0 . .
. . .
. . .
. . 0
0 . . . 0 gN(x)


N×N

,

P =



pT (x1)
pT (x2)

.

.

.
pT (xN)


N×m

, û = [û1, û2, ..., ûN ]1×N

(12)

Then, a(x) is substituted in equation (9) and the approximation of u∗(ûI) can be
obtained as:

u∗(x) =
N

∑
I=1

ϕ
I(x)ûI. (13)

In this equation ϕ I(x) is the MLS approximation shape function and is defined as
follows:

ϕ
I(x) =

m

∑
j=1

p j(x)[A−1(x)B(x)] jI (14)

Also, equation (15) represents the partial derivatives of the trial function:

u∗,i(x) =
N

∑
I=1

ϕ
I
,i(x)û

I. (15)

In this study ∂ (.)/∂xi is denoted by(.),i. Meanwhile, derivatives of MLS shape
function ϕ I

,i(x), is obtained as follows:

ϕ
I
,i(x) =

m

∑
j=1

[p j,i(A−1B) jI + p j(A−1B,i +A−1
,i B) jI]. (16)

The dimensionless size of cubic support domain is denoted by γ . Also Ri is the sup-
port size of the weight function, defined as Ri = γd

I
. So Rx = γd

I
x, Ry = γd

I
y, Rz =
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γd
I
z. The average of nodal spacing in the vicinity of node I between two neighbor-

ing nodes is d̄, where

dI
x = |x− xI| , dI

y = |y− yI| , dI
z = |z− zI| . (17)

Also d̄I
x, d̄I

y and d̄I
z are the average nodal spacing in the x,y and z directions in the

vicinity of node I and between two neighboring nodes, respectively.

3.3 Test function

In this study the test function assumed to be Heaviside step function which corre-
sponds to MLPG5 (Equation(18)). In MLPG5 method the local, nodal-based test
function, over a local sub-domain centered at a node, is the Heaviside step function.
By using this method there is no need for both a domain integral in the attendant
symmetric weak-form and a singular integral.

η(x) =
{

1 x ∈Ωs

0 x /∈Ωs
(18)

Brick-shaped sub domain is selected for support of the test function. The sub-
domain dimension for node I is defined as (2δ d̄I

x)× (2δ d̄I
y)× (2δ d̄I

z). In this ex-
pression, δ is a constant between 0 and 1.

3.4 Discretization of the weak form and numerical implementation

By substituting the MLS approximation function, Eq. (13), into Equation (8) and
summing up for all nodes, the discretized system of linear equations is obtained as:

S̃

∑
J=1

(K̃IJ−ω
2M̃IJ)ûJ = 0, (19)

where S̃ denotes the total number of nodes; K̃ and M̃ are the stiffness and mass
matrixes, respectively. Therefore, for the MLPG5 method the following equations
are obtained.

K̃IJ =−
∫
ΓI

si

NDBJdΓ−
∫

ΓI
su

SNDBJdΓ+α

∫
ΓI

su

SΦ
JdΓ (20)

M̃IJ =
∫
ΩI

s

ρΦ
JdΩ (21)
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In 3D space, the vectors and matrices of equations (19) to (21), are as follows:

BJ =



ϕJ
,x 0 0

0 ϕJ
,y 0

0 0 ϕJ
,z

ϕJ
,y ϕJ

,x 0
0 ϕJ

,z ϕJ
,y

ϕJ
,z 0 ϕJ

,x

 , (22)

N =

 ñx 0 0 ñy 0 ñz

0 ñy 0 ñx ñz 0
0 0 ñz 0 ñy ñx

 , (23)

Φ
J =

 ϕJ 0 0
0 ϕJ 0
0 0 ϕJ

 , (24)

ûJ =


ûJ

x
ûJ

y
ûJ

z

 , (25)

D =
E(z)(1− v)

(1−2v)(1+ v)



D11 D12 D12 0 0 0
D12 D11 D12 0 0 0
D12 D12 D11 0 0 0
0 0 0 D22 0 0
0 0 0 0 D22 0
0 0 0 0 0 D22


D11 = 1; D12 =

v
1− v

; D22 =
1−2v

2(1− v)
;

(26)

S =

 Sx 0 0
0 Sy 0
0 0 Sz

 , Sk =

{
1
0

if uk is prescribed on Γu

if uk is not prescribed on Γu
, k = x,y,z

(27)

Also v and E are Poisson’s ratio and Young’s modulus, respectively. In this study
the Young’s modulus and density of the structure are assumed to vary according to
power-law model through the thickness.
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4 Artificial Neural Network

Artificial Neural Networks are a paradigm for computing. They are based on a
parallel architecture to human brains. These tools are a form of a multi-processor
system with a high degree of inter-connection, simple processing elements, adop-
tive interaction between elements and simple scalar messages. The Multi-Layer
Feed Forward (MLFF) is the most popular type of ANNs. A schematic diagram
of a typical MLFF neural-network was used in this study is shown in Fig. 4. The
network consists of an input layer, some hidden layers and an output layer. In this
network, knowledge is stored in connection weights. The process of modification
of the connection weights is called training. In this study, four ANNs are trained
based on the Back-Error Propagation (BEP) method which is the most widely used
learning algorithm of MLFF neural networks. The training method proposed by
McClelland and Rumelhart (1986). For prediction of the first four non-dimensional
natural frequencies of FG plates, the inputs of the mentioned ANNs are FG core
to plate thickness ratio and volume fraction index, and the target outputs are corre-
sponding non-dimensional natural frequencies. In all ANNs, the transfer functions
for the neurons of hidden and output layers are Tansig and is defined in equation
(28).

Figure 4: A schematic view of multi-layer feed forward neural network.
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f (n) =
2

(1+ e−2n)
−1 (28)

where the output of the neural network of figure 4, is ith non-dimensional natural
frequency of the plate (Equation(34)).

In this paper, the structure of the ANNs consists of three layers, i.e. the input,
hidden and output layers. The operation of the BEP method consists of three steps
as follows.

Feed-forward stage:

T =Wbc(n).Y (n), (29)

O(n) = Φ(T (n)) =
2

1+ eT (2n)
−1, (30)

where O, T , Y and Φ are the output, input, output of hidden layer and activation
function, respectively.

a) Back-propagation stage:

Π(n) = µ (n) ·Φ [T (n)] = [D(n)−O(n)] · [O(n)] · [1−O(n)] , (31)

where Π is the local gradient function, µ shows the error function, O and D are the
actual and desired outputs, respectively.

Wab (n+1) =Wab (n)+∆Wab (n) =Wab (n)+ τ Π(n) ·O(n) , (32)

b) Adjustable weighted value stage:

The magnitudes of Wab and Wbc are the weights between the input and hidden lay-
ers, and between the hidden and output layers, respectively. Also τ is the learning
rate.

Repeating these 3 stages lead to a value of the error function, which will be zero or
a constant value.

5 Results and discussion

The results are investigated for using MLPG itself as well as the hybrid MLPG and
ANN.

5.1 MLPG results

In MLPG method, nodes are distributed in all three directions. The distance be-
tween nodes would be equal or unequal. To obtain the desired accuracy, the nodes
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can be added in each direction easily. Meanwhile, since the plate is investigated
three dimensionally, each node has 3 degrees of freedom, i.e., displacement in x, y
and z directions which are denoted by ux, uy and uz, respectively. In the plate, the
essential and natural boundary conditions are defined on the edges: 0 < x < a, 0 <
y < a and 0 < z < a. In this study, the assumed boundary condition is simply
supported edges as:

σx = 0, uy = uz = 0 on
{

x = 0
x = a

σy = 0, ux = uz = 0 on
{

y = 0
y = b

(33)

In this study the dimensionless size of the sub-domain and support-domain are
considered as δ = 0.75 and γ = 0.29. The values of these parameters are suggested
from the assessment of the accuracy of results. Furthermore, 216 gauss points are
assumed in the local sub-domain integration.

5.1.1 Verification

The MLPG solution procedure of this study is validated by comparing the natural
frequencies of a simply supported square sandwich functionally graded plate with
those presented by [Li, Iu and Kou (2008)]. Same as [Li, Iu and Kou (2008)], The
top layer in this study assumed to be Alumina with the Young’s modulus of 380GPa
and the density of 3800kg/m3. Also, the Poisson’s ratio assumed to be constant and
equal to 0.3. Meanwhile the bottom layer in this study assumed to be Aluminum
with the Young’s modulus of 70GPa and the density of 2707kg/m3.

Theoretically, the Ritz method can provide the researchers with accurate and effi-
cient solutions. The natural frequencies determination in the Ritz approach starts
with an initial value. These initial estimates are improved by increasing the num-
ber of terms of admissible functions in the computation [Li, Iu and Kou (2008)].
Rather than many other numerical methods, the convergence rate in this method is
very high and is independent of the volume fraction indices values [Li, Iu and Kou
(2006)].

In Fig. 5 the number of nodes in each x, y and z directions of the plate considered
to be 9, 10,11, 12 or 13.In this study the natural frequency is presented in non-
dimensional form as:

ϖ =
ω .b2

h

√
ρ0

E0
(34)

where E0 = 1GPa and ρ0 = 1kg/m3.
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Also the error is defined as equation (35) in percent.

Error (%) =
(MLPG method results)− (Ritz method results)

Ritz method results
×100 (35)

As can be seen in Fig. 5 for 13 nodes in each direction, the error of first, second and
third natural frequencies are negligible where the error of forth natural frequency
is about 2.6%. Therefore, 13 nodes in each perpendicular Cartesian direction are
selected for the subsequent analyses in this study.

Figure 5: Convergence study of MLPG Error of first four non-dimensional natural
frequencies for different node numbers in the sandwich FG plate.

5.1.2 Parametric analysis

According to the procedures and analyses of foregoing sections, a square sandwich
plate with power-law FG core and four simply supported edges are investigated in
this study. In this section, using the MLPG analysis, the effects of volume fraction
index of power-law FG model and also FG core to plate thickness ratios on natural
frequencies are discussed.

Fig. 6shows the effect of volume fraction index on the first four non-dimensional
natural frequencies of the sandwich FG plate. These results are obtained for dif-
ferent values of FG core to plate thickness ratios. As can be seen in these graphs,
from h/H = 0.1 to h/H = 0.4 all four natural frequencies versus κ value fluctuate,
and by increasing κ this fluctuation is damped. Furthermore, from these graphs
it is concluded that by increasing the h/H values from0.5 to 0.9, this fluctuation
decreases. Also it is resulted that h/H from 0.5 to 0.9, increasing the κ value from
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3 to 10 has not meaningful influence on the non-dimensional natural frequencies
of the plate. The other point that can be found from Fig. 6 is that the influences
of κ for all h/H values on all four natural frequencies are similar. Meanwhile, it
can be concluded that from h/H = 0.1 to h/H = 0.3 the maximum value of natural
frequencies belongs to κ = 2, but for h/H = 0.4 to h/H = 0.9 it belongs to κ = 1.

Fig. 7 illustrates the effect of FG core to plate thickness ratios on the non-dimensional
first four natural frequencies of the sandwich FG plate. These results are obtained
for different values of volume fraction indexes. As can be seen, from κ = 1 to 10 all
four natural frequencies versus h/H values have some fluctuations with a general
increasing trend. Also it is concluded that the influence of h/H for all κ values on
all four natural frequencies are similar. Meanwhile, the point that was concluded
from Fig. 6 can be seen in Fig. 7 more easily. As can be seen in Fig. 7, from
h/H = 0.1 to 0.3, the natural frequencies values for κ = 2 is higher than others but
for h/H ≥ 0.4 the maximum value belongs to κ = 1. Also from comparison of Fig.
7 against Fig. 6, no convergence to a constant value of natural frequency is seen in
Fig. 7.

5.2 Hybrid MLPG & ANN results

As stated before, in this study a combination of MLPG method and ANN is used to
predict the natural frequencies of the sandwich FG plate. In this part of study, first
of all, four MLFF neural networks were created with one input, hidden and output
layers, with 2, 10 and 1 neurons, respectively. The inputs of the ith ANNs is h/H
and κ . The target output corresponds to ith non-dimensional natural frequency of
the plate. In the next step, the ANNs are trained based on the data of 72 different
conditions of sandwich FG plate using the BEP method. In the training procedure
of ANN, the BEP iterations are assumed to be 300.Taking another value for BEP
iterations may affect the predicted results; but its investigation is not of concern in
this study. The procedure of training using BEP is shown in Fig. 8. In the BEP
training procedure, 70%, 20% and 10% of data are used to train, test and verifying,
respectively. As can be seen in Fig. 8, the training error in BEP training process for
all 4 cases is about or less than 10−3. MATLAB commercial software (2010) was
employed for using ANN in this study.

5.2.1 Verification

When ANN is trained by BEP, the trained ANNs are tested for 4 other conditions
of the plate which have not been used in the training procedure. The obtained re-
sults are compared with MLPG results which are tabulated in Tab. 1. It can be
found from this table that the average error in prediction of 1st , 2nd , 3rd and 4th

non-dimensional natural frequencies of the sandwich plate using proposed hybrid
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(a)

(b)
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(c)

(d)
Figure 6: Effect of volume fraction index on the non-dimensional (a) 1st (b) 2nd (c)
3rd & (d) 4th natural frequencies of the Sandwich FG Plate for different FG core to
plate thickness ratios (MLPG Results).
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(a)

(b)



290 Copyright © 2015 Tech Science Press CMES, vol.105, no.4, pp.271-299, 2015

(c)

(d)
Figure 7: Effect of FG core to plate thickness ratios on the non-dimensional (a) 1st

(b) 2nd (c) 3rd & (d) 4th natural frequencies of the Sandwich FG Plate for different
volume fraction indexes (MLPG Results).
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Fig. 8. Training procedure of ANN for prediction of A)1st B) 2nd C)3rd& D)4th non-dimensional natural 
frequencies of the Sandwich FG Plate using Back-Error Propagation Method 

 

5.2.1. Verification 

When ANN is trained by BEP, the trained ANNs are tested for 4 other conditions of the plate 

which have not been used in the training procedure. The obtained results are compared with 

MLPG results which are tabulated in Tab. 1. It can be found from this table that the average 

error in prediction of 1
st
, 2

nd
, 3

rd
 and 4

th
 non-dimensional natural frequencies of  the sandwich 

plate using proposed hybrid MLPG & ANN method of this study are 1.36, 2.16, 1.64 and 

0.45 percent, respectively. It can be also concluded that the predicted data have a good 

agreement with the actual data. Therefore, the proposed method has a good capability for 

prediction of natural frequencies of the sandwich FG plate. 

 

(d)
Figure 8: Training procedure of ANN for prediction of (a) 1st (b) 2nd (c) 3rd &
(d) 4th non-dimensional natural frequencies of the Sandwich FG Plate using Back-
Error Propagation Method.



Three Dimensional Natural Frequency Analysis of Sandwich Plates 293

MLPG & ANN method of this study are 1.36, 2.16, 1.64 and 0.45 percent, respec-
tively. It can be also concluded that the predicted data have a good agreement with
the actual data. Therefore, the proposed method has a good capability for prediction
of natural frequencies of the sandwich FG plate.

Table 1: Differences between actual and ANN predicted results for different values
of K and h/H.

Case No κ h/H ω̃1 ω̃2 ω̃3 ω̃4

MLPG

1 8 0.7 1.517 3.609 3.617 5.397
2 3 0.6 1.355 3.224 3.232 4.819
3 5 0.5 1.286 3.061 3.067 4.570
4 6 0.4 1.283 3.053 3.060 4.560

ANN

1 8 0.7 1.502 3.496 3.545 5.398
2 3 0.6 1.387 3.286 3.218 4.747
3 5 0.5 1.312 3.105 3.136 4.558
4 6 0.4 1.284 2.994 3.000 4.556

Error (%)

1 8 0.7 1.021 3.118 1.993 0.007
2 3 0.6 2.366 1.909 0.422 1.491
3 5 0.5 2.043 1.453 2.229 0.264
4 6 0.4 0.044 1.944 1.952 0.074

Average Error (%) 1.36 2.16 1.66 0.45

5.2.2 Prediction

In this section, using the trained ANNs first four non-dimensional natural frequen-
cies of the plate is obtained for some other volume fraction indexes and FG core
to plate thickness ratios that MLPG results are not available. The Predicted results
are tabulated in Tab. 2.

6 Conclusion

This paper deals with 3D natural frequency analysis of a sandwich plate using
hybrid MLPG and ANN methods. As a first step, a convergence study for the first
four natural frequencies was performed using MLPG method. The obtained results
were verified with an available reference. Then a parametric study was performed
on the MLPG results. In this part, the effects of two parameters: FG core to plate
thickness ratio and volume fraction index on natural frequencies are investigated.
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Table 2: Predicted ANN results for some conditions where MLPG results are not
available.

Case No κ h/H ω̃1 ω̃2 ω̃3 ω̃4

ANN

1 0.3 2.5 1.244 2.957 3.081 4.386
2 0.4 4.5 1.288 2.985 2.949 4.553
3 0.5 6.5 1.314 3.059 3.084 4.565
4 0.45 6 1.296 3.039 3.072 4.564
5 0.65 7 1.453 3.310 3.372 5.324
6 0.45 8 1.288 3.038 3.063 4.566
7 0.25 9 1.253 2.927 3.000 4.234

From the parametric analysis of power-law index on the first four natural frequen-
cies, it was concluded that from h/H = 0.1 to 0.4 all four natural frequencies versus
κ values fluctuate. Also by increasing κ , this fluctuation is damped. Furthermore,
by increasing the h/H values from 0.5 to 0.9, this fluctuation decreases. Also it is
found that for h/H from 0.5 to 0.9, increasing the κ value from 3 to 10, has not any
significant influence on the natural frequencies of the plate. The other point is that
the influences of κ for all h/H values on all four natural frequencies are similar.

Also the parametric analysis of FG core to plate thickness ratios on the first four
natural frequencies of the plate reveals that for κ = 1 to 10, all four natural fre-
quencies versus h/H values have some fluctuations with a general increasing trend.
It was concluded that the influences of h/H for all κ values on all four natural
frequencies are similar.

Then the ANNs were used for prediction and analysis of the natural frequencies in
some conditions which MLPG data are not available.

However, the main novelties of this study are as follows:

1) 3D natural frequency analysis of a sandwich plate with FG core using MLPG
method

2) Applying ANN to predict the natural frequencies

3) The effects of FG core to plate thickness ratio and volume fraction index on the
natural frequencies of the plate are investigated

4) Specifying the optimum values of parameters that maximize the natural frequen-
cies

All above novelties of this study can furnish a designer some beneficial information
on the natural frequencies of the sandwich plate with a FG core.
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