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High-Order Fully Coupled Scheme Based on Compact
Integrated RBF Approximation for Viscous Flows in

Regular and Irregular Domains
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Abstract: In this study, we present a numerical discretisation scheme, based
on a direct fully coupled approach and compact integrated radial basis function
(CIRBF) approximations, to simulate viscous flows in regular/irregular domains.
The governing equations are taken in the primitive form where the velocity and
pressure fields are solved in a direct fully coupled approach. Compact local ap-
proximations, based on integrated radial basis functions, over 3-node stencils are
introduced into the direct fully coupled approach to represent the field variables.
The present scheme is verified through the solutions of several problems including
Poisson equations, Taylor-Green vortices and lid driven cavity flows, defined on
domains of different shapes. The numerical results obtained by the present scheme
are highly accurate and in good agreement with those reported in earlier studies of
the same problems.

Keywords: Compact integrated RBF, fully coupled approach, regular/irregular
domains, viscous flow, Poisson equations, Taylor-Green vortices, lid driven cavity.

1 Introduction

In the primitive variable discrete formulation of the incompressible Navier-Stokes
equations, the treatment of the velocity-pressure coupling has a major influence on
the convergence rate of the fluid flow simulation. In the incompressible Navier-
Stokes equations, the pressure appears only through its gradient in the momentum
equations and is only indirectly specified via the continuity equation. The lack of a
dedicated equation for the pressure causes difficulty in solving the incompressible
Navier-Stokes equations. Numerous approaches of coupling between the velocity
and pressure fields have been studied to overcome this problem in the past decades.
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There are generally two approaches for the issue of the velocity-pressure storage
and coupling: segregated approaches and fully coupled approaches.

The segregated approach, in which the continuity and momentum equations are
solved sequentially, leads the most often to a so-called pressure correction method.
The first attempt of the segregated method was introduced by Patankar and Spald-
ing (1972), in which the pressure field is determined by two processes: first com-
puting an intermediate field based on a guessed pressure field; then conducting a
correction process to ensure the new velocity satisfies the continuity equation. A
difficulty of this approach lies in the lack of a pressure time derivative term in the
continuity equation. Several methods have been proposed to overcome this draw-
back and they are classified by the way in which the incompressibility constraint
is imposed. Among them, the commonly used methods are the so called pres-
sure based schemes in which the velocity-pressure coupling is solved iteratively.
The velocity variables are updated in the momentum equations and the pressure
fields are computed in pressure equations. The updating procedure is processed by
the well-known SIMPLE (Semi-Implicit Method for Pressure Linked Equations)
or SIMPLEC (SIMPLE-Consistent) or SIMPLER (SIMPLE-Revisited) or PISO
(Pressure-Implicit with Splitting of Operator) algorithm [Acharya, Baliga, Karki,
Murthy, Prakash, and Vanka (2007)]. The algorithms improve the robustness of
the pressure solver controlling its convergence rate and bring significant benefits
for the overall method. However, the main shortcoming of these methods, where
the velocity-pressure coupling is not enforced at each stage of iteration through
the solution of the linearised system, is that the convergence slows down when the
number of grid points increases [Deng, Piquet, Queutey, and Visonneau (1994a);
Pascau and Perez (1996); Elman, Howle, Shadid, and Tuminario (2003); Ammara
and Masson (2004); Darwish, Sraj, and Moukalled (2009)].

The fully coupled approach, in which the discretised equations of all variables are
solved as one system, has been investigated as an alternative to the segregated ap-
proach. In these approaches, no explicit equation for pressure or for pressure cor-
rection is required and the momentum and continuity equations are discretised in a
straightforward manner. Caretto, Curr, and Spalding (1972) proposed the coupled
solution for the momentum equations and the continuity equation, the so-called
SIVA (SImultaneous Variable Adjustments) algorithm. In this approach, the cou-
pling between dependent variables is structured in small sub-domains. The result-
ing matrices in such approaches are easy to compute but poor convergence rates are
obtained, due to the weak coupling between sub-domains, especially on fine grids.
Multigrid methods [Vanka (1986a); Bruneau and Jouron (1990)] have been devel-
oped to overcome this problem; however, they do not appear to bring significant
improvement in comparison with standard pressure based methods [Deng, Piquet,
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Queutey, and Visonneau (1994a)]. Some other examples of the fully coupled al-
gorithm include the SCGS (Symmetrical Coupled Gauss-Seidel) of Vanka (1986a),
the UVP method of Karki and Mongia (1990), among others. The absence of a
pressure equation in these fully coupled algorithms may lead to an ill-conditioned
system of equations because zeros are present in the main diagonal of the discre-
tised continuity equation [Darwish, Sraj, and Moukalled (2009)]. Attempts have
been made to deal with this issue, with various degrees of success, through the
use of preconditioning [May and Moresi (2008); Henniger, Obrist, and Kleiser
(2010)], penalty methods [Braaten and Patankar (1990); Pascau and Perez (1996)],
or by algebraic manipulations [Zedan and Schneider (1985); Galpin, Doormaal, and
Raithby (1985)]. These treatments may improve the stiffness of equations. Mazhar
(2001) presents a fully coupled approach differing from the aforementioned ap-
proaches in the sense that a direct attempt is made to solve the primitive difference
equations.

In [Hanby, Silvester, and Chew (1996)], a fully coupled procedure is presented and
compared with the SIMPLEC solver. The comparison shows that a fully coupled
solution gives quicker convergence with less nonlinear (or outer) iteration. Braaten
and Shyy (1986) investigated the effects of mesh skewness, Reynold number and
grid size on the iterative and direct solution methods. The results show the fully
coupled fully implicit treatment of equations in the direct sparse matrix method
leads to rates of convergence that are much more rapid than the iterative method.
The work also indicates the importance of retaining the coupling between veloc-
ity and pressure fields in obtaining the superior rate of convergence of the direct
scheme. Whilst a fully coupled method requires more computer memory than a
segregated approach, this is not a serious limitation on most current computers and
it may offer advantages in terms of robustness, CPU time, and level of convergence.

Radial basis function networks (RBFNs) have emerged as a powerful numerical
method for the approximation of scattered data [Fasshauer (2007)]. Kansa (1990a)
and Kansa (1990b) first proposed the concept of using direct/differential RBF (DRBF)
approximation for solving partial differential equations (PDEs). In the DRBF
method, the closed form RBF approximating function is first obtained from a set of
training points and the derivative functions are then calculated directly from such
closed form RBF [Mai-Duy and Tran-Cong (2001a)]. Mai-Duy and Tran-Cong
(2001b) and Mai-Duy and Tran-Cong (2003) then proposed the idea of using in-
direct/integrated RBF (IRBF) for the solution of PDEs. In the IRBF approach,
the highest derivatives under interest are decomposed in to RBFs; the expressions
for the lower derivatives and its functions are then obtained through integration
processes. Numerical studies in [Mai-Duy and Tran-Cong (2001a); Mai-Duy and
Tran-Cong (2001b); Mai-Duy and Tran-Cong (2003); Mai-Duy and Tran-Cong
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(2005)] have shown that the integral approach is more accurate than the differen-
tial approach because the integration process is averagely less sensitive to noise.
To employ a larger number of collocation points, a one-dimensional IRBF scheme
has been developed in literatures [Mai-Duy and Tanner (2007); Mai-Duy and Tran-
Cong (2007)]. Recently, Mai-Duy and Tran-Cong (2013) have proposed a 3-point
compact IRBF (CIRBF) stencil where only nodal values of the second-order deriva-
tive (i.e. extra information) are incorporated into the approximations. Thai-Quang,
Mai-Duy, Tran, and Tran-Cong (2012) has proposed another 3-point CIRBF stencil
where the extra information includes nodal values of both the first- and second-
order derivatives. The latter scheme with tri-diagonal matrices was reported to be
more accurate and efficient [Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2012)].

This article implements a direct fully coupled approach for the fluid flow simula-
tion with the field variables being approximated on uniform/non-uniform Cartesian
grids by the CIRBF approximation scheme presented in [Thai-Quang, Mai-Duy,
Tran, and Tran-Cong (2012)]. The tight velocity-pressure coupling is developed
on a collocated grid and one global system of equations involving the velocity and
pressure is solved simultaneously in its primitive form. In this way, momentum and
continuity conservation equations are satisfied implicitly and simultaneously over
the whole grid points. The use of fully coupled fully implicit solver for Navier-
Stokes equations exhibits rapid convergence and provides the stability for large
time steps to be employed [Elman, Howle, Shadid, and Tuminario (2003)]. A
block preconditioning technique [Henniger, Obrist, and Kleiser (2010)] is used to
refine the direct solution only when the coefficient matrix is ill-conditioned (e.g.
the problem of irregular bottom lid driven cavity).

The remainder of this paper is organised as follows: Section 2 outlines the govern-
ing equations and a fully coupled approach. Following this, a block preconditioning
technique is briefly described in section 3. Section 4 describes the spatial disretisa-
tion using CIRBF stencils. In Section 5, numerical examples are presented and the
CIRBF results are compared with some benchmark solutions, where appropriate.
Finally, concluding remarks are given in Section 6.

2 Mathematical model

The transient Navier-Stokes equations for an incompressible viscous fluid in the
primitive variables are expressed in the dimensionless non-conservative forms as
follows.
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Conservation of x-momentum

∂u
∂ t

+

{
u

∂u
∂x

+ v
∂u
∂y

}
︸ ︷︷ ︸

N(u)

=−∂ p
∂x

+
1

Re

{
∂ 2u
∂x2 +

∂ 2u
∂y2

}
︸ ︷︷ ︸

L(u)

, (1)

conservation of y-momentum

∂v
∂ t

+

{
u

∂v
∂x

+ v
∂v
∂y

}
︸ ︷︷ ︸

N(v)

=−∂ p
∂y

+
1

Re

{
∂ 2v
∂x2 +

∂ 2v
∂y2

}
︸ ︷︷ ︸

L(v)

, (2)

conservation of mass (continuity)

∂u
∂x

+
∂v
∂y

= 0, (3)

where u, v and p are the velocity components in the x-, y-direction and static pres-
sure, respectively; Re = Ul/ν is the Reynolds number, in which ν , l and U are
the kinematic viscosity, characteristic length and characteristic speed of the flow,
respectively. For simplicity, we employ notations N(u) and N(v) to represent the
convective terms in x- and y-directions, respectively; and, L(u) and L(v) to denote
the diffusive terms in x- and y-directions, respectively.

The temporal discretisations of (1)-(3), using the Adams-Bashforth scheme for the
convective terms and Crank-Nicolson scheme for the diffusive terms, result in

un−un−1

∆t
+

{
3
2

N(un−1)− 1
2

N(un−2)

}
=−Gx(pn− 1

2 )+
1

2Re

{
L(un)+L(un−1)

}
,

(4)

vn− vn−1

∆t
+

{
3
2

N(vn−1)− 1
2

N(vn−2)

}
=−Gy(pn− 1

2 )+
1

2Re

{
L(vn)+L(vn−1)

}
,

(5)

Dx(un)+Dy(vn) = 0, (6)

where n denotes the current time level; Gx and Gy are gradients in x- and y-directions,
respectively; and Dx and Dy are gradients in x- and y-directions, respectively.

Taking the unknown quantities in (4)-(6) to the left hand side and the known quan-
tities to the right hand side, and then collocating them at the interior nodal points
result in the matrix-vector form K 0 Gx

0 K Gy

Dx Dy 0

 un

vn

pn− 1
2

=

 rn
x

rn
y

0

 , (7)
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where

K =
1
∆t

{
I− ∆t

2Re
L
}
, (8)

rn
x =

1
∆t

{
I+

∆t
2Re

L
}

un−1−
{

3
2

N(un−1)− 1
2

N(un−2)

}
, (9)

rn
y =

1
∆t

{
I+

∆t
2Re

L
}

vn−1−
{

3
2

N(vn−1)− 1
2

N(vn−2)

}
, (10)

un and vn are vectors containing the nodal values of un and vn at the boundary and
interior nodes, respectively, while pn− 1

2 is a vector containing the values of pn− 1
2

at the interior nodes only; I is the identity matrix; and N and L are the matrix
operators for the approximation of the convective and diffusive terms, respectively.

Since the velocities are given at the boundary, the goal of the fully coupled approach
is to solve (7) for the values of the field variables simultaneously at the interior
points. In (7), the approximation for the pressure involves the interior nodal points
only. This is in accord with the fact that physics does not provide a prior boundary
condition for pressure as it does for velocities [Moin and Kim (1980)]. It is noted
that the pressure is only determined up to an arbitrary constant because there exists
no direct equation for pressure and the momentum equations only contain gradient
terms for pressure [Moin and Kim (1980); Vanka (1986b); Bruneau and Jouron
(1990); Perot (1993); May and Moresi (2008)].

3 Preconditioning technique

For simplicity, we define

K̂ =

[
K 0
0 K

]
, G =

[
Gx

Gy

]
, D =

[
Dx Dy

]
, Un =

[
un

vn

]
, Rn =

[
rn

x
rn

y

]
.

(11)

Substituting (11) into (7)[
K̂ G
D 0

][
Un

pn− 1
2

]
=

[
Rn

0

]
. (12)

Block-oriented preconditioning methods for the Navier-Stokes equation decom-
pose the block 2×2 matrix in (12) using a block-LU decomposition[

K̂ G
D 0

]
=

[
I 0

DK̂
−1
−I

][
K̂ G
0 DK̂

−1
G

]
. (13)
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By defining Schur complement as S = DK̂
−1

G [Silvester, Elman, Kay, and Wathen
(2001)], the block upper triangular preconditioner is expressed as[

K̂ G
0 S

]
. (14)

Substituting (13) into (12), we can obtain the Schur complement for the pressure
[May and Moresi (2008); Henniger, Obrist, and Kleiser (2010); Furuichi, May, and
Tackley (2011)]. It yields the following block upper triangular system[

K̂ G
0 S

][
Un

pn− 1
2

]
=

[
Rn

Fn

]
, (15)

where Fn = DK̂
−1

Rn.

The velocity and pressure solutions are obtained via block back substitution in (15),
i.e. solving the following systems

solve for p : Spn− 1
2 = Fn. (16)

solve for U : K̂Un = Rn−Gpn− 1
2 . (17)

In this work, it is noted that the preconditioning technique is required whenever
the coefficient matrix is ill-conditioned. In particular, it is only used to stiffen the
coefficient matrix for the problem of an irregular bottom lid driven cavity in Section
5.6.

4 Spatial discretisation

For the approximation of the first- and second-order derivatives in (7), a compact
IRBF (CIRBF) scheme of Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2012) is
employed in this paper. It is represented as follows.

Consider a two-dimensional domain Ω, which is represented by a uniform Carte-
sian grid. The nodes are indexed in the x-direction by the subscript i(i∈{1,2, ...,nx})
and in y-direction by j ( j ∈ {1,2, ...,ny}). For rectangular domains, let N be the
total number of nodes (i.e. N = nx× ny) and Nip be the number of interior nodes
(i.e. Nip = (nx−2)× (ny−2)). For non-rectangular domains, selection of interior
nodes is detailed in Section 5.2. At an interior grid point xi, j = (x(i, j),y(i, j))T where
i ∈ {2,3, ...,nx − 1} and j ∈ {2,3, ...,ny − 1}, the associated stencils to be con-
sidered here are two local stencils: {x(i−1, j),x(i, j),x(i+1, j)} in the x-direction and
{y(i, j−1),y(i, j),y(i, j+1)} in the y-direction. Hereafter, for brevity, η denotes either x
or y in a generic local stencil {η1,η2,η3}, where η1 < η2 < η3 and η2 ≡ η(i, j), are
illustrated in Figure 1.
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Figure 1: Compact 3-point 1D-IRBF stencil for interior nodes.

The integral approach starts with the decomposition of the second-order derivative
of a variable, u, into RBFs

d2u(η)

dη2 =
m

∑
i=1

wiGi(η), (18)

where m is taken to be 3 for local stencils; {Gi(η)}m
i=1 is the set of RBFs; and

{wi}m
i=1 the set of weights/coefficients to be found. Approximate representations

for the first-order derivative and the function itself are then obtained through the
integration processes

du(η)

dη
=

m

∑
i=1

wiHi(η)+ c1, (19)

u(η) =
m

∑
i=1

wiH i(η)+ c1η + c2, (20)

where Hi(η) =
∫

Gi(η)dη ; H i(η) =
∫

Hi(η)dη ; c1 and c2 are the constants of
integration.

4.1 First-order derivative compact approximations

Extra information used in the compact approximation of the first-order derivative
is chosen as du1

dη
and du3

dη
. We construct the conversion system over a 3-point stencil

associated with an interior node in the form
u1
u2
u3
du1
dη
du3
dη

=

[
H
H

]
︸ ︷︷ ︸

C1


w1
w2
w3
c1
c2

 , (21)

where dui
dη

= du
dη

(ηi) with i ∈ {1,2,3}; C1 is the conversion matrix; H and H are
defined as

H =

 H1(η1) H2(η1) H3(η1) η1 1
H1(η2) H2(η2) H3(η2) η2 1
H1(η3) H2(η3) H3(η3) η3 1

 . (22)
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H =

[
H1(η1) H2(η1) H3(η1) 1 0
H1(η3) H2(η3) H3(η3) 1 0

]
. (23)

Solving (21) yields
w1
w2
w3
c1
c2

= C−1
1


u1
u2
u3
du1
dη
du3
dη

 , (24)

which maps the vector of nodal values of the function and its first-order derivative
to the vector of RBF coefficients including the two integration constants. Approxi-
mate expressions for the first-order derivative in the physical space are obtained by
substituting (24) into (19)

du(η)

dη
=
[

H1(η) H2(η) H3(η) 1 0
]

C−1
1

 u
du1
dη
du3
dη

 , (25)

where η1 ≤ η ≤ η3 and u = [u1,u2,u3]
T . (25) can be rewritten as

du(η)

dη
=

3

∑
i=1

dφi(η)

dη
ui +

dφ4(η)

dη

du1

dη
+

dφ5(η)

dη

du3

dη
, (26)

where {φi(η)}5
i=1 is the set of IRBFs in the physical space. At the current time

level n, (26) is taken as

dun(η)

dη
=

3

∑
i=1

dφi(η)

dη
un

i +
dφ4(η)

dη

dun
1

dη
+

dφ5(η)

dη

dun
3

dη
, (27)

where nodal values of the first-order derivative on the right hand side are treated as
unknowns. Collocating (27) at η = η2 results in

−dφ4(η2)

dη

dun
1

dη
+

dun
2

dη
− dφ5(η2)

dη

dun
3

dη
=

dφ1(η2)

dη
un

1 +
dφ2(η2)

dη
un

2 +
dφ3(η2)

dη
un

3,

(28)

or in the matrix-vector form

[
−dφ4(η2)

dη
1 −dφ5(η2)

dη

]
dun

1
dη
dun

2
dη
dun

3
dη

=
[

dφ1(η2)
dη

dφ2(η2)
dη

dφ3(η2)
dη

] un
1

un
2

un
3

 . (29)
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Figure 2: Special compact 4-point 1D-IRBF stencil for boundary nodes.

At the boundary nodes, the first-order derivatives are approximated in special com-
pact stencils. Consider the boundary node, e.g. η1. Its associated stencil is
{η1,η2,η3,η4} as shown in Figure 2. The conversion system over this special
stencil is presented as the following matrix-vector multiplication


u1
u2
u3
u4
du2
dη

=

[
Hsp

Hsp

]
︸ ︷︷ ︸

Csp1



w1
w2
w3
w4
c1
c2

 , (30)

where Csp1 is the conversion matrix and Hsp, Hsp are defined as

Hsp =


H1(η1) H2(η1) H3(η1) H4(η1) η1 1
H1(η2) H2(η2) H3(η2) H4(η2) η2 1
H1(η3) H2(η3) H3(η3) H4(η3) η3 1
H1(η4) H2(η4) H3(η4) H4(η4) η4 1

 . (31)

Hsp =
[

H1(η2) H2(η2) H3(η2) H4(η2) 1 0
]
. (32)

Solving (30) yields

w1
w2
w3
w4
c1
c2

= C−1
sp1


u1
u2
u3
u4
du2
dη

 . (33)

The boundary value of the first-order derivative of u is thus obtained by substituting
(33) into (19) and taking η = η1

du(η1)

dη
=
[

H1(η1) H2(η1) H3(η1) H4(η1) 1 0
]

C−1
sp1

[
u

du2
dη

]
, (34)
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where u = [u1,u2,u3,u4]
T . (34) can be rewritten as

du(η1)

dη
=

4

∑
i=1

dφspi(η1)

dη
ui +

dφsp5(η1)

dη

du2

dη
. (35)

At the current time level n, (35) is taken as

dun(η1)

dη
=

4

∑
i=1

dφspi(η1)

dη
un

i +
dφsp5(η1)

dη

dun
2

dη
, (36)

or

dun
1

dη
−

dφsp5(η1)

dη

dun
2

dη
=

dφsp1(η1)

dη
un

1+
dφsp2(η1)

dη
un

2+
dφsp3(η1)

dη
un

3+
dφsp4(η1)

dη
un

4,

(37)

or in the matrix-vector form

[
1 −dφsp5(η1)

dη
0 0

]


dun
1

dη
dun

2
dη
dun

3
dη
dun

4
dη

=
[

dφsp1(η1)
dη

dφsp2(η1)
dη

dφsp3(η1)
dη

dφsp4(η1)
dη

]
un

1
un

2
un

3
un

4

 .
(38)

In a similar manner, one is able to calculate the first-order derivative of u at the
boundary node ηnη

. The IRBF system on a grid line for the first-order derivative of
u is obtained by letting the interior node taking values from 2 to (nη − 1) in (29)
and making use of (38) for the boundary nodes 1 and nη , resulting in

Qηun
η = Rηun, (39)

where Qη and Rη are nη ×nη matrices.

4.2 Second-order derivative compact approximations

Extra information used in the compact approximation of the second-order deriva-
tive are chosen as d2u1

dη2 and d2u3
dη2 . We construct the conversion system over a 3-point

stencil associated with an interior node in the form
u1
u2
u3

d2u1
dη2

d2u3
dη2

=

[
H
G

]
︸ ︷︷ ︸

C2


w1
w2
w3
c1
c2

 , (40)
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where d2ui
dη2 = d2u

dη2 (ηi) with i ∈ {1,2,3}; C2 is the conversion matrix; H is defined
as before (i.e. (22)) and G is defined as

G =

[
G1(η1) G2(η1) G3(η1) 0 0
G1(η3) G2(η3) G3(η3) 0 0

]
. (41)

Solving (40) yields


w1
w2
w3
c1
c2

= C−1
2


u1
u2
u3

d2u1
dη2

d2u3
dη2

 , (42)

which maps the vector of nodal values of the function and its second-order deriva-
tive to the vector of RBF coefficients including the two integration constants. Ap-
proximate expressions for the second-order derivative in the physical space are ob-
tained by substituting (42) into (18)

d2u(η)

dη2 =
[

G1(η) G2(η) G3(η) 0 0
]

C−1
2

 u
d2u1
dη2

d2u3
dη2

 , (43)

where η1 ≤ η ≤ η3 and u = [u1,u2,u3]
T . (43) can be rewritten as

d2u(η)

dη2 =
3

∑
i=1

d2φi(η)

dη2 ui +
d2φ4(η)

dη2
d2u1

dη2 +
d2φ5(η)

dη2
d2u3

dη2 . (44)

At the current time level n

d2un(η)

dη2 =
3

∑
i=1

d2φi(η)

dη2 un
i +

d2φ4(η)

dη2
d2un

1
dη2 +

d2φ5(η)

dη2
d2un

3
dη2 , (45)

where nodal values of the second-order derivative on the right hand side are treated
as unknowns. Collocating (45) at η = η2 leads to

−d2φ4(η2)

dη2
d2un

1
dη2 +

d2un
2

dη2 −
d2φ5(η2)

dη2
d2un

3
dη2 =

d2φ1(η2)

dη2 un
1+

d2φ2(η2)

dη2 un
2+

d2φ3(η2)

dη2 un
3,

(46)
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or in the matrix-vector form

[
−d2φ4(η2)

dη2 1 −d2φ5(η2)
dη2

]
d2un

1
dη2

d2un
2

dη2

d2un
3

dη2

=
[

d2φ1(η2)
dη2

d2φ2(η2)
dη2

d2φ3(η2)
dη2

] un
1

un
2

un
3

 .
(47)

At the boundary nodes, the second-order derivatives are approximated in special
compact stencils. Consider the boundary node, e.g. η1. Its associated stencil is
{η1,η2,η3,η4} as shown in Figure 2. The conversion system over this special
stencil is presented as the following matrix-vector multiplication

u1
u2
u3
u4

d2u2
dη

=

[
Hsp

Gsp

]
︸ ︷︷ ︸

Csp2



w1
w2
w3
w4
c1
c2

 , (48)

where Csp2 is the conversion matrix; Hsp is defined as before (i.e. (31)) and Gsp is
defined as

Gsp =
[

G1(η2) G2(η2) G3(η2) G4(η2) 0 0
]
. (49)

Solving (48) yields

w1
w2
w3
w4
c1
c2

= C−1
sp2


u1
u2
u3
u4

d2u2
dη2

 . (50)

The boundary value of the second-order derivative of u is thus obtained by substi-
tuting (50) into (18) and taking η = η1

d2u(η1)

dη2 =
[

G1(η1) G2(η1) G3(η1) G4(η1) 0 0
]

C−1
sp2

[
u

d2u2
dη2

]
, (51)

where u = [u1,u2,u3,u4]
T . (51) can be rewritten as

d2u(η1)

dη2 =
4

∑
i=1

d2φspi(η1)

dη2 ui +
d2φsp5(η1)

dη2
d2u2

dη2 . (52)
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At the current time level n, (52) is taken as

d2un(η1)

dη2 =
4

∑
i=1

d2φspi(η1)

dη2 un
i +

d2φsp5(η1)

dη2
d2un

2
dη2 , (53)

or

d2un
1

dη2 −
d2φsp5(η1)

dη2
d2un

2
dη2 =

d2φsp1(η1)

dη2 un
1 +

d2φsp2(η1)

dη2 un
2

+
d2φsp3(η1)

dη2 un
3 +

d2φsp4(η1)

dη2 un
4,

(54)

or in the matrix-vector form

[
1 −d2φsp5(η1)

dη2 0 0
]


d2un
1

dη2

d2un
2

dη2

d2un
3

dη2

d2un
4

dη2

=
[

d2φsp1(η1)

dη2
d2φsp2(η1)

dη2
d2φsp3(η1)

dη2
d2φsp4(η1)

dη2

]
un

1
un

2
un

3
un

4

 .
(55)

In a similar manner, one is able to calculate the second-order derivative of u at the
boundary node ηnη

. The IRBF system on a grid line for the second-order derivative
of u is obtained by letting the interior node taking values from 2 to (nη −1) in (47)
and making use of (55) for the boundary nodes 1 and nη , resulting in

Qηηun
ηη = Rηηun, (56)

where Qηη and Rηη are nη × nη matrices. It is noted that, for brevity, we use
the same notations to represent the set of IRBFs and the RBF coefficients for the
approximation of first- and second-order derivatives. In fact, for example, the basis
functions {φi(η)}5

i=1 in (26) are different from those in (44); and, the coefficient
set [w1,w2,w3,w4,c1,c2]

T in (30) is not the same as that in (48).

5 Numerical examples

We chose the multiquadric (MQ) function as the basis function in the present cal-
culations

Gi(x) =
√
(x− ci)2 +a2

i , (57)

where ci and ai are the centre and the width of the i-th MQ, respectively. For each
stencil, the set of nodal points is taken to be the same as the set of MQ centres.
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We simply choose the MQ width as ai = βhi, where β is a positive scalar and hi is
the distance between the i-th node and its closest neighbour. The value of β = 40
is chosen for calculation in Section 5.4 and β = 50 for the rest of calculations in
the present work. We evaluate the performance of the present scheme through the
following measures

i. the root mean square error (RMS) is defined as

RMS =

√
∑

N
i=1
(

fi− f i
)2

N
, (58)

where fi and f i are the computed and exact values of the solution f at the i-th
node, respectively; and, N is the number of nodes over the whole domain.

ii. the maximum absolute error (L∞) is defined as

L∞ = max
i=1,...,N

| fi− f i|. (59)

iii. the global convergence rate with respect to the grid refinement is defined
through

RMS(h)≈ γhα = O(hα), (60)

where h is the grid size; and, γ and α are exponential model’s parameters.

iv. a flow is considered as reaching its steady state when√
∑

N
i=1
(

f n
i − f n−1

i

)2

N
< 10−9. (61)

5.1 Poisson equation in rectangular domain

In order to study the spatial accuracy of the present CIRBF approximation scheme
in a rectangular domain, we consider the following Poisson equation [Mai-Duy and
Tran-Cong (2010)]

d2u
dx2

1
+

d2u
dx2

2

= 4(1−π
2){sin(π(2x1−1))sinh(2x2−1)+4cosh(2(2x1−1))cos(2π(2x2−1))} ,

(62)
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subject to Dirichlet boundary condition derived from the following exact solution

u = sin(π(2x1−1))sinh(2x2−1)+ cosh(2(2x1−1))cos(2π(2x2−1)), (63)

on a square domain [0,1]2. The calculations are carried out on a set of uniform grids
of {41×41,51×51, ...,91×91}. Figure 3 shows that present scheme outperforms
the fourth-order compact FDM (Finite Difference Method) by Tian, Liang, and
Yu (2011) and second-order standard FDM in terms of both accuracy and rates of
convergence. The solutions converge as O(h5.23) for the present scheme, O(h4.56)
for the compact FDM, and O(h1.99) for the standard FDM. Figure 4 shows that the
matrix condition number grows with approximately the same rate of O(h−2.00) for
the three methods.
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Figure 3: Poisson equation, rectangular domain, {41×41,51×51, ...,91×91}:
The effect of grid size h on the solution accuracy RMS.

5.2 Poisson equation in non-rectangular domain

To study the spatial accuracy of the present CIRBF approximation scheme in a
non-rectangular domain, we consider the following Poisson equation [Mai-Duy
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Figure 4: Poisson equation, rectangular domain, {41×41,51×51, ...,91×91}:
The effect of grid size h on the matrix condition number.

and Tran-Cong (2010)]

d2u
dx2

1
+

d2u
dx2

2
= 4(1−π

2){sin(2πx1)sinh(2x2)+4cosh(4x1)cos(4πx2)} , (64)

subject to Dirichlet boundary condition derived from the following exact solution

u = sin(2πx1)sinh(2x2)+ cosh(4x1)cos(4πx2), (65)

on a circular domain with radius of 1/2. The problem domain is embedded in a
uniform Cartesian grid and the grid nodes exterior to the domain are removed. The
interior nodes falling within a small distance δ = h/8, where h is the grid size, to the
boundary will also be discarded [Mai-Duy and Tran-Cong (2010)]. The boundary
nodes are generated through the intersection of the grid lines and the boundary as
demonstrated in Figure 5. Calculations are carried out on a set of uniform grids,
{20×20,30×30, ...,90×90}. Figure 6 shows that the present compact IRBF has
better performance than second- and fourth-order compact FDM schemes proposed
by Gamet, Ducros, Nicoud, and Poinsot (1999). The present scheme yields a fast
rate of convergence of O(h4.38) while the compact FDM produces a rate of O(h3.99)
for the fourth-order scheme and O(h1.99) for the second-order scheme. Figure 7
shows that the matrix condition number increases with approximately the same
rate of O(h−1.99) for the three methods.
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Figure 5: Poisson equation, non-rectangular domain, spatial discretisation: +, in-
terior nodes; ◦, boundary nodes.

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h

R
M

S

 

 

second−order compact FDM
fourth−order compact FDM
present

Figure 6: Poisson equation, non-rectangular domain, {20× 20,30× 30, ...,90×
90}: The effect of grid size h on the solution accuracy RMS.
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90}: The effect of grid size h on the matrix condition number.

5.3 Taylor-Green vortex in rectangular domain

To study the performance of the fully coupled approach, based on CIRBF approxi-
mation, in simulating viscous flow in a rectangular domain, we consider a transient
flow problem, namely Taylor-Green vortex [Tian, Liang, and Yu (2011)]. This
problem is governed by the Navier-Stokes equations (4)-(6) and has the analytical
solutions

u(x1,x2, t) =−cos(kx1)sin(kx2)exp(−2k2t/Re), (66)

v(x1,x2, t) = sin(kx1)cos(kx2)exp(−2k2t/Re), (67)

p(x1,x2, t) =−1/4{cos(2kx1)+ cos(2kx2)}exp(−4k2t/Re), (68)

where 0 ≤ x1,x2 ≤ 2π . Calculations are carried out for k = 2 on a set of uniform
grid, {11×11,21×21, ...,51×51}. A fixed time step ∆t = 0.002 and Re = 100
are employed. Numerical solutions are computed at t = 2. The exact solution, i.e.
equations (66)-(68), provides the initial field at t = 0 and the time-dependent bound-
ary conditions. Table 1 shows the accuracy comparison between the present scheme
and compact FDM scheme of Tian, Liang, and Yu (2011) in terms of RMS errors
and convergence rates. It is seen that the present scheme produces better accuracy
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and better convergence rates than the scheme of Tian, Liang, and Yu (2011), i.e.
O(h5.35) compared to O(h2.92) for the velocity and O(h4.48) compared to O(h3.28)
for the pressure.

5.4 Taylor-Green vortex in non-rectangular domain

In order to analyse the performance of the combination of the fully coupled ap-
proach and CIRBF approximation scheme in solving the transient viscous flow in a
non-rectangular domain, we consider the case of an array of decaying vortices with
the analytical solutions [Uhlmann (2005)] described by

u(x1,x2, t) = sin(πx1)cos(πx2)exp(−2π
2t/Re), (69)

v(x1,x2, t) =−sin(πx2)cos(πx1)exp(−2π
2t/Re), (70)

p(x1,x2, t) = 1/2
{

cos2(πx2)− sin2(πx1)
}

exp(−4π
2t/Re). (71)

The flow is computed in an embedded circular domain with radius of unity and
centred at the origin of the computational domain Ω = [−1.5,1.5]× [−1.5,1.5].
The interior nodes are chosen and the boundary nodes are generated in a similar
manner described in Section 5.2. Calculations are carried out on a set of uniform
grids, {10×10,20×20, ...,50×50}. The Reynolds number is set to be Re = 5 and
numerical solutions are computed at t = 0.3 using a fixed time step ∆t = 0.001.
The initial field at t = 0 and the time-dependent boundary conditions are given by
(69)-(71). Table 2 illustrates the accuracy comparison between the present scheme
and FDM approach of Uhlmann (2005) in terms of maximum errors and conver-
gence rates. It is observed that present scheme produces lower errors with better
convergence rates, i.e. O(h4.44) for the u-velocity and O(h4.59) for the v-velocity
in comparison with O(h2.13) for both u- and v-velocities given by the approach of
Uhlmann (2005).

5.5 Lid driven cavity flow

The classical lid driven cavity flow has been considered as a test problem for the
evaluation of numerical methods and the validation of fluid flow solvers for the past
decades. Figure 8 shows the problem definition and boundary conditions. Uniform
grids of {31×31,51×51,71×71,91×91,111×111,129×129} and a range of
Re ∈ {100,400,1000,3200} are employed in the simulation. A fixed time step
is chosen to be ∆t = 0.001. Results of the present scheme are compared with
those of some others [Ghia, Ghia, and Shin (1982); Gresho, Chan, Lee, and Up-
son (1984); Bruneau and Jouron (1990); Deng, Piquet, Queutey, and Visonneau
(1994b); Botella and Peyret (1998); Sahin and Owens (2003); Thai-Quang, Le-
Cao, Mai-Duy, and Tran-Cong (2012)]. From the literature, FDM results using
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Figure 8: Lid driven cavity: problem configuration and boundary conditions.

very dense grids presented by Ghia, Ghia, and Shin (1982) and pseudo-spectral re-
sults presented by Botella and Peyret (1998) have been referred to as "Benchmark"
results for comparison purposes.

Tables 3, 4, 5, and 6 show the present results for the extrema of the vertical and hor-
izontal velocity profiles along the horizontal and vertical centrelines of the cavity
for several Reynolds numbers. For Re = 100 (Table 3) and Re = 1000 (Table 4), the
"Errors" are evaluated relative to "Benchmark" results of Botella and Peyret (1998).
The results obtained by the present scheme are very comparable with others.

Figure 9 displays velocity profiles along the vertical and horizontal centrelines for
different grid sizes at Re = 1000, where a grid convergence of the present scheme
is obviously observed (i.e. the present solution approaches the benchmark solution
with a fast rate as the grid density is increased). The present scheme effectively
achieves the benchmark results with a grid of only 91×91 in comparison with the
grid of 129× 129 used to obtain the benchmark results in [Ghia, Ghia, and Shin
(1982)]. In addition, those velocity profiles at Re ∈ {100,400,1000,3200} with
the grid size of {51×51,71×71,91×91,129×129}, respectively, are displayed
in Figure 10, where the present solutions match the benchmark ones very well.
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Figure 9: Lid driven cavity, Re = 1000: Profiles of the u-velocity along the ver-
tical centreline and the v-velocity along the horizontal centreline as grid density
increases. It is noted that the curves for the last two grids are indistinguishable and
in good agreement with the benchmark results of [Ghia, Ghia, and Shin (1982)].



High-Order Fully Coupled Scheme 329

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

v

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

 

 

present
[Ghia et al. (1982)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

v

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

 

 

present
[Ghia et al. (1982)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

v

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

 

 

present
[Ghia et al. (1982)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

v

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

 

 

present
[Ghia et al. (1982)]

Figure 10: Lid driven cavity: Profiles of the u-velocity along the vertical centreline
and the v-velocity along the horizontal centreline for Re = 100 (top-left), Re = 400
(top-right), Re = 1000 (bottom-left), and Re = 3200 (bottom-right) with the grid of
51×51, 71×71, 91×91, and 129×129, respectively.

To exhibit contour plots of the flow, a range of Re ∈ {100,400,1000,3200} and
the grid of {51×51,71×71,91×91,129×129} are employed, respectively. Fig-
ures 11 and 12 show streamlines and iso-vorticity lines, which are derived from
the velocity field. Figure 13 shows the pressure deviation contours of the present
simulations. These plots are also in good agreement with those reported in the
literature.
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Figure 11: Lid driven cavity: Streamlines of the flow for Re = 100 (top-left), Re =
400 (top-right), Re = 1000 (bottom-left), and Re = 3200 (bottom-right) with the
grid of 51×51, 71×71, 91×91, and 129×129, respectively. The contour values
used here are taken to be the same as those in [Ghia, Ghia, and Shin (1982)].

5.6 Irregular bottom lid driven cavity

The lid driven cavity with a deformed base presented in [Udaykumar, Shyy, and
Rao (1996); Shyy, Udaykumar, Rao, and Smith (1996)] is chosen to validate the
performance of the present fluid flow solver in an irregular domain. The base is
deformed sinusoidally with an amplitude of 10 percent of the base. The compu-
tational domain and boundary conditions are illustrated in Figure 14. The inte-
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Figure 12: Lid driven cavity: Iso-vorticity lines of the flow for Re = 100 (top-left),
Re = 400 (top-right), Re = 1000 (bottom-left), and Re = 3200 (bottom-right) with
the grid of 51× 51, 71× 71, 91× 91, and 129× 129, respectively. The contour
values used here are taken to be the same as those in [Ghia, Ghia, and Shin (1982)].

rior and boundary nodes are generated in a similar manner described in Section
5.2. The spatial discretisation is shown in Figure 15. A range of uniform grids,
{53×53,63×63,83×83,93×93} is employed in the simulation. A fixed time
step and Reynolds number are chosen to be ∆t = 0.001 and Re= 1000, respectively.
The results from the present method are compared with those presented in [Shyy,
Udaykumar, Rao, and Smith (1996); Mariani and Prata (2008)], where appropriate.
From the literature, the FVM (Finite Volume Method) results using the well-tested
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Figure 13: Lid driven cavity: Static pressure contours of the flow for Re = 100
(top-left), Re = 400 (top-right), Re = 1000 (bottom-left), and Re = 3200 (bottom-
right) with the grid of 51×51, 71×71, 91×91, and 129×129, respectively. The
contour values used here are taken to be the same as those in [Abdallah (1987)] for
Re = 100 and Re = 400, [Botella and Peyret (1998)] for Re = 1000, and [Bruneau
and Saad (2006)] for Re = 3200.

body-fitted coordinate formulation and dense grid of 121×121 presented in [Shyy,
Udaykumar, Rao, and Smith (1996)] have been considered as "Benchmark" results
for comparison purposes.

Figure 16 displays horizontal and vertical velocity profiles along the vertical cen-
treline for different grid sizes at Re= 1000, where a grid convergence of the present
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Figure 14: Irregular bottom lid driven cavity: problem configuration and boundary
conditions.

Figure 15: Irregular bottom lid driven cavity, spatial discretisation: +, interior
nodes; ◦, boundary nodes.
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Figure 16: Irregular bottom lid driven cavity, Re = 1000: Profiles of the u-velocity
(top) and v-velocity (bottom) along the vertical centreline as grid density increases.
It is noted that the curves for the last two grids are indistinguishable and in good
agreement with the benchmark results of Shyy, Udaykumar, Rao, and Smith (1996).
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Figure 17: Irregular bottom lid driven cavity: Streamlines of the flow for Re= 1000
with the grid of 83× 83. The plot contains 30 contour lines whose levels vary
linearly from the minimum to maximum values; and, it is in good agreement with
that of Shyy, Udaykumar, Rao, and Smith (1996).

Figure 18: Irregular bottom lid driven cavity: Static pressure contours of the flow
for Re = 1000 with the grid of 83×83. The plot contains 160 contour lines whose
levels vary linearly from the minimum to maximum values.
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scheme is obviously observed (i.e. the present solution approaches the benchmark
solution with a fast rate as the grid density is increased). The present scheme ef-
fectively achieves the benchmark results with a grid of only 83×83 in comparison
with the grid of 121×121 used to obtain the benchmark results in [Shyy, Udayku-
mar, Rao, and Smith (1996)]. In addition, the present results with a grid of only
53×53 outperform those of Mariani and Prata (2008) using the grid of 100×100.
To exhibit contour plots of the flow, we employ the grid of 83×83 for Re = 1000.
Figure 17 shows streamlines which are derived from the velocity field. Figure 18
shows the pressure deviation contours of the present simulation. These plots are in
close agreement with those reported in the literature.

6 Concluding remarks

In this paper, we implement the high-order compact integrated radial basis function
(CIRBF) scheme, where first- and second-order derivative values of the field vari-
ables are included, in combination with the direct fully coupled velocity-pressure
approach in the Cartesian-grid point-collocation structure. Like FDMs, the present
approximation technique involves 3 nodes in each direction, which results in a
sparse system matrix. Numerical examples indicate that the results of the present
scheme are superior to those of the standard FDM scheme and second- and fourth-
order compact FDM schemes in terms of solution accuracy and convergence rates
with grid refinement. It is shown that the CIRBF scheme has at least fourth-order
accuracy when approximating the Poisson equations in either rectangular or non-
rectangular domains. The combination of the CIRBF and the direct fully coupled
approach maintains the fourth-order accuracy in solving the transient flow prob-
lems of Taylor-Green vortices in rectangular/non-rectangular domains. In the fluid
flow simulations with regular/irregular boundaries, the numerical results obtained
by the present approach are highly accurate and in good agreement with the re-
ported results in the literature.
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Postgraduate Research Scholarship. The authors would like to thank the reviewers
for their helpful comments.
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