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Numerical Solutions of Two-dimensional Stokes Flows by
the Boundary Knot Method
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Abstract: In this paper, the boundary knot method (BKM) is adopted for accu-
rately analyzing two-dimensional Stokes flows, dominated by viscous force and
pressure gradient force. The Stokes flows, which denoted the flow fields with
extremely viscous fluid or with very small velocity, appear in various engineer-
ing applications, such that it is very important to develop an efficient and accu-
rate numerical method to solve the Stokes equations. The BKM, which can avoid
the controversial fictitious boundary for sources, is an integral-free boundary-type
meshless method and its solutions are expressed as linear combinations of non-
singular general solutions for Stokes equations. The weighting coefficients in the
solution expressions can be acquired by enforcing the satisfactions of boundary
conditions at every boundary node, since the non-singular general solutions are
derived in this paper and already satisfied the Stokes equations. Three examples
of two-dimensional Stokes flows were adopted to validate the accuracy and the
simplicity of the BKM. Besides, the optimal shape parameter in the non-singular
general solutions was determined by examining the minimum average residual of
the linear system from the BKM.

Keywords: Boundary knot method, two-dimensional Stokes flow, boundary-type
meshless method, non-singular general solution, shape parameter.

1 Introduction

The Stokes flows, also known as the creeping flows or the low-Reynolds-number
flows, are used to describe the flow fields, dominated by viscous force and pressure
gradient force. Thus, the Stokes flows frequently appear in our daily life, such as
the flow fields of honey and lubrication oil. The governing equations for Stokes
flows, which are known as the primary-variable formulation, have been derived by
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following the conservation laws of mass and momentum. Because the computation
of pressure component in the primary-variable formulation is non-trivial, different
formulations of the Stokes equations have been developed, such as the velocity-
vorticity formulation and the streamfunction formulation.

In the past decades, many numerical methods have been developed for numeri-
cal solutions of the primary-variable formulation [Barrero-Gil (2012); Zeb, Elliott,
Ingham and Lesnic (1998)], the velocity-vorticity formulation [Young, Jane, Lin,
Chiu and Chen (2004)] and the streamfunction formulation [Chen, Hsiao and Leu
(2008); Young, Chiu, Fan, Tsai and Lin (2006)] in order to understand the under-
lying physics of the Stokes flows. For example, Zeb, Elliott, Ingham and Lesnic
(1998) adopted the boundary element method (BEM) with the Stokeslets, the fun-
damental solutions of the Stokes equations, to analyze two-dimensional Stokes
equations, while Young, Jane, Lin, Chiu and Chen (2004) used the radial basis
function collocation method (RBFCM) to solve the velocity-vorticity formulation
of the Stokes equations. Although some numerical schemes have been proposed
to successfully solve different formulations of the Stokes equations, it is still es-
sential to develop an accurate, reliable and simple numerical method for solutions
of Stokes equations. In this paper, we proposed a novel boundary-type meshless
method for accurately analyzing the primary-variable formulation of the Stokes
equations.

Since computer technology has been rapidly developed in the past, many numerical
methods have been proposed to analyze various partial differential equations and
engineering applications. In comparison with the mesh-based methods, the devel-
opments of the so-called meshless (or meshfree) methods caught many researchers’
attention, since the meshless methods can truly get rid of time-consuming mesh
generation and numerical quadrature. During the past two decades, there are many
promising meshless methods proposed, such as the method of fundamental solu-
tions (MFS) [Alves and Silvestre (2004); Barrero-Gil (2013); Chen, Lee, Yu and
Shieh (2009); Tsai and Young (2013); Young, Chen, Fan, Murugesan and Tsai
(2005); Young, Jane, Fan, Murugesan and Tsai (2006)], the Trefftz method [Fan,
Chan, Kuo and Yeih (2012); Karageorghis, Lesnic and Marin (2014); Ku (2014)],
the singular boundary method (SBM) [Chen and Gu (2012); Chen, Fu and Wei
(2009); Fu, Chen, Chen, Qu (2014)], the boundary knot method (BKM) [Canelas
and Sensale (2010); Chen (2002); Chen and Hon (2003); Chen, Shen, Shen and
Yuan (2005); Chen and Tanaka (2002); Hon and Chen (2003); Jin and Zheng
(2005a); Jin and Zheng (2005b); Lin, Chen, Chen and Jiang (2013); Wang, Chen
and Jiang (2010); Zhang and Wang (2012); Zheng and Ma (2012)], the method
of approximate particular solutions (MAPS) [Chen, Fan and Wen (2011); Chen,
Fan and Wen (2012)], the generalized finite difference method (GFDM) [Benito,
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Urena, Gavete and Alonso (2008); Chan, Fan and Kuo (2013); Fan, Huang, Li and
Chiu (2014)], the local RBFCM (LRBFCM) [Chan and Fan (2013); Fan, Chien,
Chan and Chiu (2013); Vertnik and Sarler (2009)]. The MAPS, the GFDM and the
LRBFCM are three promising domain-type meshless methods and can be applied
to various partial differential equations. Since both of the interior nodes and the
boundary nodes are needed in the implementations of these domain-type methods,
the efficiency of numerical simulations by using the domain-type meshless methods
is worse than the boundary-type meshless methods for some cases.

The MFS, the Trefftz method, the SBM and the BKM are four powerful boundary-
type meshless methods. Since only boundary nodes are necessary for numerical
simulations by using the boundary-type meshless methods, the dimensionality of
the problem under consideration can be reduced by one and the efficiency of com-
puter simulation can be greatly improved. The MFS remains the merits of the
BEM, since it is involved from the BEM. The solutions in the MFS can be ex-
pressed by a linear combination of the fundamental solutions which are located
out of the computational domain in order to avoid numerical singularity. By en-
forcing the satisfactions of boundary conditions at every boundary node, a system
of linear (or non-linear) algebraic equations is yielded and the coefficients in the
solution expression can be acquired by solving this resultant system. The MFS
is very powerful if the fundamental solutions of the governing equations can be
found. On the other hand, the accuracy of solution in the MFS is greatly influenced
by the locations of fictitious boundary for fundamental solutions. In order to avoid
the controversial fictitious boundary for fundamental solutions in the MFS, some
relevant methods have been proposed, such as the SBM and the BKM.

In the BKM, the solution is expressed as a linear combination of non-singular gen-
eral solutions instead of the fundamental solutions in the MFS. The sources in the
BKM are located exactly on the physical boundary, such that the problem of fic-
titious boundary in the MFS can be eliminated. The BKM remains the merits of
the MFS and, in the meantime, gets rid of the troublesome problem of the loca-
tions of sources. The BKM was proposed by Chen and Tanaka (2002) and then
a symmetric BKM is also proposed by Chen (2002). Meanwhile, Chen, Chang,
Chen and Chen (2002) and Chen, Chang, Chen and Lin (2002) also used the non-
singular general solution to avoid possible numerical singularity of the MFS and
successfully analyzed the eigenproblems in acoustics. During the past ten years, the
BKM have been applied for various problems, such as Helmholtz equation [Chen
and Hon (2003); Hon and Chen (2003)], Poisson equation [Chen, Shen, Shen and
Yuan (2005)], inverse problems [Jin and Zheng (2005a); Jin and Zheng (2005b)],
elastic and viscoelastic problems [Canelas and Sensale (2010)], and axisymmetric
Helmholtz problems with high wavenumber [Lin, Chen, Chen and Jiang (2013)].
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An overview of the BKM can be found in [Zhang and Wang (2012)]. Based on the
above discussions of the BKM, it can be noticed that the BKM has been only used
for numerical solutions of simple and single partial differential equation, except for
the elastic and viscoelastic problems in [Canelas and Sensale (2010)]. In [Canelas
and Sensale (2010)], it was the first time that the BKM is adopted for numerical
solutions of vector equations. Thus, in this paper we would extend the BKM for
numerical solutions of another system of vector equations, the Stokes equations,
and the non-singular general solutions of the Stokes equations are also derived.

Like the fundamental solution in the MFS, we have to derive the non-singular gen-
eral solutions of the Stokes equations if the BKM is adopted. The fundamental
solutions for the Stokes equations are known as the Stokeslets [Alves and Silvestre
(2004); Young, Chen, Fan, Murugesan and Tsai (2005); Young, Jane, Fan, Mu-
rugesan and Tsai (2006); Zeb, Elliott, Ingham and Lesnic (1998)], which can be
derived by using the Hormander operator decomposition technique [Rashed (2002);
Tsai and Hsu (2011)]. By carefully observing the mathematical derivation of the
Stokeslets, it can be found that the fundamental solutions of the Stokes equations
are represented by vector derivatives of a scalar potential. When two-dimensional
Stokes equations are considered, the scalar potential is the fundamental solution of
a bi-harmonic operator. Namely, the two-dimensional Stokeslets are expressed as
vector derivatives of the fundamental solution of a bi-harmonic operator. Therefore,
in this study, we adopted the non-singular general solution of bi-harmonic opera-
tor [Chen, Fu and Jin (2010)] to replace the fundamental solution of bi-harmonic
operator during the mathematical derivation, such that the non-singular general so-
lutions for the Stokes equations can be derived. Once the non-singular general
solutions for the Stokes equations are obtained, the velocity components, pressure,
vorticity and streamfunction can be expressed as linear combinations of the non-
singular general solutions.

By enforcing the satisfactions of given linear boundary conditions at every bound-
ary node, a system of linear algebraic equations is yielded and then the coefficients
in the solutions expressions can be acquired by solving this resultant system. The
solutions and their derivatives can be obtained by simple summation once the coef-
ficients are acquired. The proposed BKM is very simple, accurate and easy-to-use
when the Stokes equations are considered. Three examples were provided to ver-
ify the merits of the proposed boundary-type meshless method. The motivation of
this study and the discussions of relevant literatures were provided in the first sec-
tion. Then, the Stokes equations and the numerical procedures of the BKM were
discussed. Followings were numerical results and comparisons. Finally, some con-
clusions and discussions were drawn.
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2 Governing Equations for Stokes Flow

When the viscous force and the pressure gradient force dominate the flow fields
in comparison with the inertial force, the flow fields are called the Stokes flows,
which are also known as the creeping flows. The governing equations for Stokes
flows can be derived by following the conservation laws of mass and momentum,

−∇
2u+

∂ p
∂x

= 0 x ∈Ω (1)

−∇
2v+

∂ p
∂y

= 0 x ∈Ω (2)

∂u
∂x

+
∂v
∂y

= 0 x ∈Ω (3)

where u(x) and v(x) are x-directional and y-directional velocity components, re-
spectively. p(x) is the pressure component, Ω is the computational domain, x =

(x,y) is the space coordinates and ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 is the Laplacian differential op-
erator. Equations (1) and (2) are the x-directional and y-directional momentum
equations as well as Eq. (3) is the continuity equation.

The above system of Eqs.(1)-(3) is known as the primary-variable formulation of
the Stokes equations. Except for two velocity components and one pressure com-
ponent, the vorticity and the streamfunction are also important to flow fields. The
definitions for the vorticity and the streamfunction are shown as follows:

ω =
∂v
∂x
− ∂u

∂y
, (4)

u =
∂ψ

∂y
, (5)

v =−∂ψ

∂x
, (6)

where ω (x) and ψ (x) are the vorticity and the streamfunction. Once the Stokes
equations, Eqs. (1)-(3), with suitable boundary conditions are solved numerically,
the solutions of velocity components, pressure, vorticity and streamfunction can
be acquired simultaneously. In this paper, we adopted the BKM, one kind of
boundary-type meshless methods, to efficiently analyze the above Stokes equa-
tions.



496 Copyright © 2015 Tech Science Press CMES, vol.105, no.6, pp.491-515, 2015

3 Numerical Method

Since the solution in the BKM is expressed by linear combination of non-singular
general solutions, we have to derive these non-singular general solutions for two-
dimensional Stokes equations in this section. First, we adopted the Hormander
operator decomposition technique [Rashed (2002); Tsai and Hsu (2011)] to derive
the Stokeslets. During the mathematical derivations, it will be noticed that the
fundamental solutions of the Stokes equations are expressed as vector derivatives
of a scalar potential, which is the fundamental solution of bi-harmonic differential
operator. Instead of using the fundamental solution of bi-harmonic operator, we
adopted the non-singular general solution of bi-harmonic operator to acquire the
non-singular general solutions of the Stokes equations.

In order to derive the non-singular general solutions of the Stokes equations, Eqs.
(1)-(3) are re-written in the following matrix form: −∇2 0 ∂

∂x
0 −∇2 ∂

∂y
∂

∂x
∂

∂y 0




u
v
p

= L̃


u
v
p

=


0
0
0

 . (7)

Then, we defined the fundamental solutions of the Stokes equations by the follow-
ing equation,

L̃

 gu
1 gu

2 0
gv

1 gv
2 0

gp
1 gp

2 0

=

 −δ (x− s) 0 0
0 −δ (x− s) 0
0 0 0

 , (8)

where s = (sx,sy) and δ () are the space coordinates of source and the Dirac delta
function. The adjoint operator of L̃ can be demonstrated as,

L̃ad j =


− ∂ 2

∂y2
∂ 2

∂x∂y

(
∂

∂x

)
∇2

∂ 2

∂x∂y − ∂ 2

∂x2

(
∂

∂y

)
∇2(

∂

∂x

)
∇2

(
∂

∂y

)
∇2 ∇2∇2

 , (9)

which is defined by

L̃L̃ad j = L̃ad jL̃ = Idet(L̃) = I∇
2
∇

2, (10)

where I is the identity matrix. According to the Hormander operator decomposition
technique, a scalar function G is assumed such that gu

1 gu
2 0

gv
1 gv

2 0
gp

1 gp
2 0

= L̃ad j

 G 0 0
0 G 0
0 0 0

 . (11)
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Substituting Eq.(11) to Eq.(8) and using Eq. (10) will result in

∇
2
∇

2G =−δ (x− s) . (12)

From the above equation, it is obvious that the scalar function G is the fundamental
solution of a bi-harmonic equation and can be shown as [Young, Chiu, Fan, Tsai
and Lin (2006)]

G =
−1
8π

r2 ln(r) , (13)

where r = ‖x− s‖ is the Euclidean distance between field node x and source node
s. Consequently, the Stokeslets can be found by substituting Eq. (13) to Eq. (11),

 gu
1 gu

2 0
gv

1 gv
2 0

gp
1 gp

2 0

=


− ∂ 2

∂y2
∂ 2

∂x∂y

(
∂

∂x

)
∇2

∂ 2

∂x∂y − ∂ 2

∂x2

(
∂

∂y

)
∇2(

∂

∂x

)
∇2

(
∂

∂y

)
∇2 ∇2∇2


 G 0 0

0 G 0
0 0 0

 . (14)

The fundamental solutions of the Stokes equations are singular such that the sources
in the MFS have to be located on fictitious boundary, which is out of the computa-
tional domain.

In order to overcome the controversial fictitious boundary of sources, the following
non-singular general solution of bi-harmonic differential operator [Chen, Fu and
Jin (2010)] is adopted to replace Eq. (13),

Gns = r2e−c((x−sx)
2−(y−sy)

2) cos(2c(x− sx)(y− sy)) , (15)

where c is the shape parameter and have to be determined manually. In this paper,
we tracked the minimum average residual of the linear system to determine the
optimal shape parameter. By substituting Eq. (15) to Eq. (11), we can have the
following non-singular general solutions for two-dimensional Stokes equations,

 gu,ns
1 gu,ns

2 0
gv,ns

1 gv,ns
2 0

gp,ns
1 gp,ns

2 0

=


− ∂ 2

∂y2
∂ 2

∂x∂y

(
∂

∂x

)
∇2

∂ 2

∂x∂y − ∂ 2

∂x2

(
∂

∂y

)
∇2(

∂

∂x

)
∇2

(
∂

∂y

)
∇2 ∇2∇2


 Gns 0 0

0 Gns 0
0 0 0

 .
(16)

Once the above non-singular general solutions of the Stokes equations, Eq. (16),
are derived, two velocity components and one pressure component can be expressed
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by the following equations:

u(x)=
n

∑
j=1

α
1
j gu,ns

1 (x,s j)+α
2
j gu,ns

2 (x,s j)=
n

∑
j=1
−α

1
j
∂ 2Gns (x,s j)

∂y2 +α
2
j
∂ 2Gns (x,s j)

∂x∂y
,

(17)

v(x)=
n

∑
j=1

α
1
j gv,ns

1 (x,s j)+α
2
j gv,ns

2 (x,s j)=
n

∑
j=1

α
1
j
∂ 2Gns (x,s j)

∂x∂y
−α

2
j
∂ 2Gns (x,s j)

∂x2 ,

(18)

p(x)=
n

∑
j=1

α
1
j gp,ns

1 (x,s j)+α
2
j gp,ns

2 (x,s j)=
n

∑
j=1

α
1
j
∂∇2Gns (x,s j)

∂x
+α

2
j
∂∇2Gns (x,s j)

∂y
,

(19)

where
{

α1
j

}n

j=1
and

{
α2

j

}n

j=1
are unknown coefficients and will be acquired by

enforcing the satisfactions of boundary conditions at every boundary node. n is the
number of sources, which are exactly located along the physical boundary, and s j is
the coordinates for the jth source. In addition, the solution expressions for vorticity
and streamfunction can be acquired by using their definitions, Eqs. (4)-(6), and the
solution expressions for these components are shown as,

ω (x) =
n

∑
j=1

α
1
j
∂∇2Gns (x,s j)

∂y
−α

2
j
∂∇2Gns (x,s j)

∂x
, (20)

ψ (x) =
n

∑
j=1
−α

1
j
∂Gns (x,s j)

∂y
+α

2
j
∂Gns (x,s j)

∂x
. (21)

For example, if a Stokes problem with prescribed Dirichlet velocity boundary con-
ditions is considered, we can adopt m boundary nodes, which are uniformly dis-
tributed along physical boundary. Since the non-singular general solutions of Stokes
equations already satisfied the governing equations, the satisfactions of boundary
conditions have to be imposed to determine the coefficients in the solution expres-
sions. By enforcing the satisfactions of given Dirichlet velocity boundary condi-
tions at every boundary node, a system of linear algebraic equations is yielded,

ū(xi) =
n

∑
j=1
−α

1
j

∂ 2Gns (x,s j)

∂y2

∣∣∣∣
x=xi

+α
2
j

∂ 2Gns (x,s j)

∂x∂y

∣∣∣∣
x=xi

i = 1,2,3, .....m, (22)
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v̄(xi) =
n

∑
j=1

α
1
j

∂ 2Gns (x,s j)

∂x∂y

∣∣∣∣
x=xi

−α
2
j

∂ 2Gns (x,s j)

∂x2

∣∣∣∣
x=xi

i = 1,2,3.....m, (23)

where ū(xi) and v̄(xi) are given velocity boundary conditions at the ith boundary
node. By using the collocation approach at every boundary node, a system of 2m
linear equations with 2n unknowns is yielded,

A(2m)×(2n)q(2n)×1= b(2m)×1, (24)

where A is the coefficient matrix. q =
[
α1

1 ,α
1
2 ,α

1
3 , .....,α

1
n ,α

2
1 ,α

2
2 ,α

2
3 , .....,α

2
n
]T

is the unknown vector where the superscript T denotes the transpose of the ma-
trix. b = [ū(x1) , ū(x2) , ...., ū(xm) , v̄(x1) , v̄(x2) , ...., v̄(xm)]

T is the vector of given
boundary conditions. The unknown vector can be acquired by solving the above
system of linear algebraic equations. Once the unknown coefficients are obtained,
the velocity components, pressure, vorticity and streamfunction at any position can
be acquired by simple summation in Eqs. (17)-(21).

Because the linear system in the BKM is ill-conditioned [Wang, Chen and Jiang
(2010)], in this study we used the least-squares method to reduce this problem by
setting m = 2n. Namely, the number of boundary nodes is twice the number of
sources. Furthermore, the optimal shape parameter c of Eq. (15) is determined
by tracing the minimum of the average residual ‖Aq−b‖

2m . A range of c and the
increment of c are defined manually, so a vector of c can be acquired. For each c, the
numerical procedure of Eqs. (22)-(24) are implemented and then a corresponding
value of average residual can be obtained. When everyone of the c vector and their
corresponding average residuals are calculated, the optimal c can be determined
according to the minimum among those average residuals. The optimal value of c is
used to calculate the distributions of physical values inside computational domain.
From the above descriptions, it can be found that the numerical procedure of the
BKM is very simple once the non-singular general solutions of the Stokes equations
are derived. Three numerical examples were provided in the next section to verify
the merits of the BKM for numerical solutions of two-dimensional Stokes flows.

4 Numerical Results and Comparisons

In this paper, the non-singular general solutions of two-dimensional Stokes equa-
tions are derived to form the solution expressions of the BKM. The sources of the
BKM can be located along the physical boundary, such that the controversial ficti-
tious boundary for sources in the MFS can be avoided. In addition, the least-squares
method is used to reduce the problem of ill-conditioned matrix in the BKM. The
optimal shape parameter in the non-singular general solutions was determined ac-
cording to the minimum of the average residual. In the following subsections, the
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numerical results and comparisons of three examples of Stokes flows were provided
to validate the accuracy and the simplicity of the BKM.

4.1 Example 1

The first example in this paper is the Stokes flow in a lid-driven square cavity and
the computational domain is a unit square. Unit positive x-directional velocity
is imposed along the top lid while the no-slip boundary condition is given along
the other three sides of the cavity. The schematic diagram of the square cavity
is shown in Fig. 1(a), as 200 boundary nodes are uniformly distributed along the
boundary, which is demonstrated in Fig. 1(b). In order to achieve accurate and
stable numerical results, the profiles of the variation of average residual with respect
to shape parameter are depicted in Fig. 2 when the number of boundary nodes is
set as 200, 400 and 800. In our test, the study range for shape parameter c is
0 < c ≤ 20 and 200 different shape parameters are uniformly determined in this
range. For each c, the numerical procedures of the proposed BKM, Eqs. (22)-(24),
are implemented and a average residual is obtained. From this figure, we can find
a minimum average residual at every profile and the optimal shape parameter is
then determined at the minimum average residual. According to the results in this
figure, the optimal shape parameter is equal to 16, 16.5 and 17 when 200, 400 and
800 boundary nodes are adopted.

We used 2401 interior nodes to plot the distributions of flow field inside the compu-
tational domain. The distributions of x-directional velocity, y-directional velocity,
velocity vector, pressure and streamlines are illustrated in Figs. 3(a)-3(e). Since
the results by using m=200 are almost identical to those obtained by using m=400
and m=800, only the solutions for m=200 are provided in this paper for simplicity.
The numerical results are in good agreements with those obtained by the RBFCM
[Young, Jane, Lin, Chiu and Chen (2004)], and the MFS [Young, Jane, Fan, Mu-
rugesan and Tsai (2006)]. A main circulation moving in the clockwise direction
near the center of cavity is obvious from the distributions of velocity vector and
streamlines in Figs. 3(c) and 3(e). In order to carefully examine the accuracy of
results, the profiles of x-directional velocity along the central vertical axis and the
y-directional velocity along the central horizontal axis are depicted in Figs. 4(a)-
4(b). The numerical results of the BKM by using 200, 400 and 800 boundary nodes
are compared well with the solutions by the RBFCM [Young, Jane, Lin, Chiu and
Chen (2004)] in these figures. The accuracy and the consistency of the proposed
BKM are validated from these figures. Besides, the comparisons in Fig. 4 also ver-
ified that the proposed scheme for determining the optimal shape parameter from
the minimum average residual is useful.

In 2012, Barrero-Gil proposed a numerical technique for dealing with the singular-
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Figure 1: (a) The schematic diagram of lid-driven square cavity and (b) distribution of 

boundary nodes. 

 

 

 

 

 

Figure 1: (a) The schematic diagram of lid-driven square cavity and (b) distribution
of boundary nodes.

ity of the MFS when the fictitious boundary is located exactly along the physical
boundary. The singular entries of the coefficient matrix are replaced by averaging
the influences of a group of auxiliary Stokeslets near each singularity, so more ef-
forts for calculating the coefficient matrix should be paid and the resultant system
of linear algebraic equations have to be solved only once. However, in our proposed
BKM, the system of linear algebraic equations should be analyzed several times in
order to find the optimal shape parameter. From the viewpoint of computational
efficiency, the computational cost in the proposed BKM is higher than the modified
MFS [Barrero-Gil (2012)] due to the direct-searching of optimal shape parameter.
Therefore, more efficient way for determining the optimal shape parameter should
be researched in the future.
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Figure 2: Profiles of average residual of linear system with respect to different
shape parameters.

4.2 Example 2

The second example is the lid-driven circular cavity, which is depicted in Fig. 5(a).
A tangential velocity with unit magnitude in counterclockwise direction is imposed
along the upper half boundary, as the no-slip boundary condition is given along the
bottom half boundary. From the imposed boundary conditions, we can expect that
a main circulation moving in the counterclockwise direction will appear near the
center of the cavity. In this example, we adopted 100 boundary nodes, which are
demonstrated in Fig 5(b), for numerical simulation. When 100, 200, 400 and 800
boundary nodes are adopted, there will appear a minimum average residual for
every profile in Fig. 6 and then the optimal shape parameter can be determined.
The optimal shape parameter is equal to 2.5, 3, 3 and 3 while 100, 200, 400 and
800 boundary nodes are used.

The numerical results of x-directional velocity, y-directional velocity, velocity vec-
tor, vorticity and streamlines are depicted in Figs. 7(a)-7(e). Since using these four
different numbers of boundary nodes can acquire very similar solutions, we only
provide the results by using 100 boundary nodes. Due to the imposed boundary
conditions, the distributions of x-directional velocity and y-directional velocity in
Figs. 7(a)-7(b) are symmetric and anti-symmetric (skew-symmetric) with respect
to y axis. As we expected, a main circulation appeared near the center of cav-
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Figure 3: Distributions of (a) x-directional velocity, (b) y-directional velocity, (c) 

velocity vector, (d) pressure and (e) streamlines. 
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Figure 3: Distributions of (a) x-directional velocity, (b) y-directional velocity, (c)
velocity vector, (d) pressure and (e) streamlines.



504 Copyright © 2015 Tech Science Press CMES, vol.105, no.6, pp.491-515, 2015

27 
 

 

(a) 

 

(b) 

Figure 4: Profiles of (a) x-directional velocity along central vertical axis and (b) 

y-directional velocity along central horizontal axis. 

 

 

Figure 4: Profiles of (a) x-directional velocity along central vertical axis and (b)
y-directional velocity along central horizontal axis.

ity in Fig. 7(c). The provided results are in good agreements with the solutions
by the RBFCM [Young, Jane, Lin, Chiu and Chen (2004)], one kind of domain-
type meshless methods. Furthermore, the profiles of x-directional velocity along
the central vertical axis and the y-directional velocity along the central horizontal
axis are demonstrated in Figs. 8(a)-(b).The numerical results by adopting different
numbers of boundary nodes are almost identical to each other and they are very
similar to the solutions by using dual reciprocity BEM [Young, Tsai, Eldho and
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Figure 5: (a) The schematic diagram of lid-driven circular cavity and (b) distribution 

of boundary nodes. 

 

 

 

 

 

 

Figure 5: (a) The schematic diagram of lid-driven circular cavity and (b) distribu-
tion of boundary nodes.

Cheng (2002)]. The accuracy of the proposed BKM for numerical solutions of
Stokes flows are validated from the provided numerical results in this example. It
is obvious that profiles in Fig. 6 are near flat when shape parameter c is smaller
than 4. Similar with the solutions in Fig. 8, the results along two central axes are
depicted in Fig. 9 by using different shape parameters. To adopt c = 1, c = 2 and
c = 3 can acquire similar level of average residuals, so their results are very close to
each other and extremely accurate. Conversely, the profiles for c = 7 in Fig. 9 are
very different from others since the average residual for c = 7 is quite larger than
those for c = 1, c = 2 and c = 3. Hence, it is also verified that the optimal shape
parameter of the non-singular general solutions can be determined by the proposed
technique.
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Figure 6: Profiles of average residual of linear system with respect to different
shape parameters.

4.3 Example 3

The third example is the lid-driven rectangular cavity with wave-shaped bottom,
which is depicted in Fig. 10(a). The function to describe the bottom shape and
the given boundary conditions are shown in Fig. 10(a). In this case, we adopted
561 boundary nodes, distributed along the physical domain and demonstrated in
Fig. 10(b). The profile of the average residual of the linear system with respect
to shape parameter is given in Fig. 11 and then the optimal shape parameter is
equal to 3 according to this figure. We used 938 interior nodes to show the results
of x-directional velocity, velocity vector, vorticity and streamlines in Figs. 12(a)-
12(d). From these results, a main circulation inside the cavity can be easily found.
Besides, the flow pattern influenced by the bottom shape is obvious and these nu-
merical results are in good agreements with the solutions by using the MFS [Young,
Jane, Fan, Murugesan and Tsai (2006)]. The accuracy and the simplicity of the pro-
posed BKM are verified from these provided numerical results and comparisons.
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Figure 7: Distributions of (a) x-directional velocity, (b) y-directional velocity, (c) 

velocity vector, (d) vorticity and (e) streamlines. 

 

 

 

Figure 7: Distributions of (a) x-directional velocity, (b) y-directional velocity, (c)
velocity vector, (d) vorticity and (e) streamlines.
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Figure 8: Profiles of (a) x-directional velocity along central vertical axis and (b) 

y-directional velocity along central horizontal axis. 

 

Figure 8: Profiles of (a) x-directional velocity along central vertical axis and (b)
y-directional velocity along central horizontal axis.
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Figure 9: Profiles of (a) x-directional velocity along central vertical axis and (b) 

y-directional velocity along central horizontal axis by adopting different shape 

parameters. 

 

Figure 9: Profiles of (a) x-directional velocity along central vertical axis and (b)
y-directional velocity along central horizontal axis by adopting different shape pa-
rameters.
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Figure 10: (a) The schematic diagram of lid-driven rectangular cavity with 

wave-shaped bottom and (b) distribution of boundary nodes. 

 

 

 

 

 

Figure 10: (a) The schematic diagram of lid-driven rectangular cavity with wave-
shaped bottom and (b) distribution of boundary nodes.

5 Conclusions and Discussions

The BKM, a promising boundary-type meshless method, was adopted to analyze
the two-dimensional Stokes flows in this paper. The BKM is truly free from mesh
generation and numerical quadrature, as well as only boundary nodes are neces-
sary during its numerical implementation. In contrast to fictitious boundary of the
MFS, the sources in the BKM can be exactly located on the physical boundary.
The non-singular general solutions of the two-dimensional Stokes equations, which
were derived by the Hormander operator decomposition method in this paper, are
adopted to express the numerical solutions of the BKM. Thus, the unknown coeffi-
cients in the solution expressions can be acquired by enforcing the satisfactions of
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Figure 11: Profiles of average residual of linear system with respect to different shape 

parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 11: Profiles of average residual of linear system with respect to different
shape parameters.
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(c)                       (d) 

Figure 12: Distributions of (a) x-directional velocity (b) velocity vector, (c) vorticity 

and (d) streamlines. 

 

 

 

Figure 12: Distributions of (a) x-directional velocity (b) velocity vector, (c) vortic-
ity and (d) streamlines.
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boundary conditions via a collocation approach. The least-squares method, which
means that the number of boundary nodes is greater than the number of sources, is
adopted to reduce the problem of ill-conditioned matrix. In addition, the optimal
shape parameter in the non-singular general solutions was determined by tracking
the minimum average residual of the resultant linear system.

Three numerical examples were provided to validate the accuracy, the consistency
and the simplicity of the proposed BKM. The accurate numerical results were ac-
quired by using very few boundary nodes. In addition, the numerical results in these
three examples by adopting the BKM are compared well with those obtained by the
RBFCM, the MFS and the dual reciprocity BEM. The proposed BKM for numerical
solutions of Stokes equations and the way for deriving the non-singular general so-
lutions will be directly extended to Stokes problems in multiply-connected domains
and three-dimensional Stokes problems in the near future. In addition, although the
way for acquiring the optimal shape parameter, c, in this paper is workable, we will
focus our future research on developing more efficient scheme to determine this
shape parameter.
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