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Analysis of Symmetry Breaking Bifurcation in Duffing
System with Random Parameter
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Abstract: The symmetry breaking bifurcation (SBB) phenomenon in a determin-
istic parameter Duffing system (DP-DS) is well known, yet the problem how would
SBB phenomenon happen in a Duffing system with random parameter (RP-DS) is
still open. For comparison study, the results for DP-DS are summarized at first: in
short, SBB in DP-DS is just a transition of response phase trajectories from a single
self-symmetric one about the origin into two mutual symmetric once, or vice versa.
However, in DP-DS case, the two mutual symmetric phase trajectories are never
commutable. In view of every sample of RP-DS is a DP-DS, we think that SBB
phenomenon might also happen in a RP-DS as an ensemble mean behavior. Since
the orthogonal polynomial approach is a practical method to study the dynamical
behavior of nonlinear system with random parameters, so we apply the Chebyshev
polynomials approach to reduce the RP-DS to an equivalent deterministic system
(EDS) to study its dynamical behavior in ensemble average mean. Numerical sim-
ulations on both DP-DS and EDS show that though SBB may happen in similar
apparent forms, but for EDS the two coexisting symmetric phase trajectories are
occasionally commutable. We cannot but resort to study the different features of
attractive basins for these two kind of mutual symmetric phase trajectories. We
found that the boundary of attractive basins in EDS case is fractal-like, while that
in DP-DS case is smooth.

Keywords: Duffing system, Symmetry breaking bifurcation, Random parameter,
Chebyshev orthogonal polynomial approximation, attractive basin, basin boundary.

1 Introduction

Symmetry is ubiquitous in nature, and it appears in many classical nonlinear dy-
namical systems, such as Duffing system, van der Pol system and so on [Thompson
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and Stewart (1986); Yue, Xu and Zhang (2012); Zhang and Guo (2013); Xu et
al. (2013); Dai et al. (2014)]. One typical symmetric phenomenon in nonlinear
dynamics is SBB, which has been studied for decades [Fang and Dowell (1987);
Sunner and Sauermann (1993); Chen et al. (2001); Bishop et al. (2005); Zhang et
al. (2009)].It is easy to find that the self-symmetry has been broken after SBB, but
in our previous research [Fang and Zhang (2008)] SBB operates just as a transition
between different symmetry forms, while still preserving system’s symmetry. In
order to gain a further insight into the mechanism of SBB, a significant phase por-
trait for two newly born symmetric periodic motions is shown by the flow pattern
of Poincaré mapping points, which reveals that SBB is always associated with a
periodic saddle-node bifurcation. Based on the researches in deterministic system,
we are still interested in the stochastic behaviors in Duffing system.

The stochastic phenomena of a nonlinear dynamical system have many incentives,
such as exterior and interior stochastic excitation [Xu, Gu et al. (2011); Xu, Feng
et al (2013, 2015)], stochastic initial condition (IC) [Mei (1992)], and system pa-
rameter uncertainty. What’s more, the dynamical behaviors of stochastic fractional
dynamical systems have also been studied in recent years [Xu, Li and Liu (2013,
2014)]. In this paper, we focus on the effect of parameter uncertainty, which is a
common phenomenon in real world system [Zhang, Xu and Fang (2007); Xu et
al. (2011); Ma et al. (2013)], and should not be ignored. For instance, the system
parameters are usually random, ascribed to so many unavoidable uncertain factors
in material, processes of measuring, manufacturing and installing. It is important
to understand how the randomness of parameter influences the system, especially
when it involves nonlinear dynamical behavior. To the best knowledge of us, this is
an understudied problem in the literature, and very few works [Wang et al. (2013)]
has explicitly focused on it from a global perspective. Therefore, an insight into the
stability and dynamical behaviors of RP-DS is performed accordingly in this paper.

In order to research the stochastic structure dynamical system, three available fun-
damental mathematical methods are proposed. Stochastic perturbation method,
which is restricted to the small fluctuation of random variables, gets higher calculat-
ing precision. Monte Carlo simulation method, which is one of the most commonly
used and powerful approach, but it is computationally very intensive. Thus, the or-
thogonal polynomial approximation method is applied in this uncertainty problem
because of its extensive applicability and reduced computation complexity, which
is introduced by Spanos and Jensen [Spanos and Ghanem (1989); Jensen and Iwan
(1992)].

Main works of this paper consist of three parts as follows. In Sect.2, symmetri-
cal phenomena in DP-DS are finely investigated by analyzing phase trajectories,
bifurcation diagram, top Lyapunov exponents and basins of attraction. In Sect.3,
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Chebyshev orthogonal polynomial approach is used to reduce RP-DS to an EDS.
Furthermore, the SBB in EDS are analyzed in Sect.4. Finally, the results and con-
clusions are drawn in Sect. 5.

2 Deterministic symmetry-breaking bifurcation in DP-DS

We present a Duffing oscillator subjected to a simple harmonic excitation as:

ẍ+ cẋ+(1+ax2)x = F cosωt, (1)

where F cosωt is a given harmonic excitation, a = 1.0, c = 0.2, F2 = 40 and ω are
all constants. Let x = x, ẋ = y, Eq. 1 can be rewritten as:

ẋ = y

ẏ = − (1 + ax2 )x− cy+ F cos ω t.
(2)

The symmetry property of Eq. 2 has been analyzed in our previous work [Fang and
Zhang (2008)]. Taking ω as a bifurcation parameter, the multi-bifurcation diagrams
and the corresponding Top Lyapunov Exponent (TLE) diagrams are shown in Fig.1.

From Fig. 1, 2 and Fig. 3, one can obviously see that with the increasing of
ω , SBB and its inverse bifurcation occur at four different values of ω , and the
forms of symmetry are changed accordingly when ω passes a certain critical value.
Moreover, the TLEs become zero at each SBB point [Parker and Chua (1989); Ott
(2002)].

An insight into the phenomena of post SBB in Poincaré section was given in our
previous work [Fang and Zhang (2008)]. In Fig. 4(a), the flow lines are composed
by discrete Poincaré mapping points of system (2); and in Fig. 4(b), we just keep
the fined saddle point S, together with its invariant unstable manifolds SA, SB and
parts of its stable manifolds CS, DS; while A and B are two stable notes. Comparing
with Fig. 4(c), it is clearly that stable manifolds of S are just lying on the basin
boundary, and which is smooth. Since A and B are two isolated singular points and
the flow lines of Poincare mapping points terminal at A or B are separated by this
invariant unstable manifold of S, so that the phase trajectories corresponding to A
or B never be commutable.

3 Orthogonal polynomial approach for RP-DS

Duffing system with random parameter c can be described as:

ẍ+(c̄+σξ )ẋ+(1+ax2)x = F cosωt, (3)



40 Copyright © 2015 Tech Science Press CMES, vol.106, no.1, pp.37-51, 2015

to reduce RP-DS to an EDS. Furthermore, the SBB in EDS are analyzed in Sect.4. Finally, the 

results and conclusions are drawn in Sect. 5. 

2 Deterministic symmetry-breaking bifurcation in DP-DS 

We present a Duffing oscillator subjected to a simple harmonic excitation as: 
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The symmetry property of Eq. 2 has been analyzed in our previous work [Fang and Zhang 

(2008)]. Taking  as a bifurcation parameter, the multi-bifurcation diagrams and the 

corresponding Top Lyapunov Exponent (TLE) diagrams are shown in Fig.1. 

  

 (a)                                                      (b) 

  

 (c)                                                      (d) 

Figure. 1 The multi-bifurcation diagrams of Eq.2, which are calculated from 60 different ICs. 

The parameter interval of (a) is )7.0,05.0( and (b) is )4.1,9.0( ; (c) and (d) are separated 

TLE diagrams 

Figure 1: The multi-bifurcation diagrams of Eq.2, which are calculated from 60 dif-
ferent ICs. The parameter interval of (a) is ω ∈ (0.05,0.7) and (b) is ω ∈ (0.9,1.4);
(c) and (d) are separated TLE diagrams.

where c is expressed as c = c̄+σξ . Herein, c̄ is the mean value of c, ξ is a random
variable under the arch-like distribution on [−1,1] and σ is the intensity of ξ [Fang,
Leng and Song (2003)]. Such that, the response of system (3) is the function of t
and ξ , and can be expressed as:

x(t,ξ ) =
N

∑
i=0

xi(t)Hi(ξ ). (4)

Based on the relationships between the distributions and polynomials in Askey
scheme, the associated second kinds of Chebyshev orthogonal polynomials are ap-
plied in series (4) as {Hi(ξ ), i = 1,2, · · · ,n}, where N represents the largest order

of polynomials we have taken. Only if N → ∞,
N
∑

i=0
xi(t)Hi(ξ ) is strictly equal to
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 From Fig. 1, 2 and Fig. 3, one can obviously see that with the increasing of , SBB and its 

inverse bifurcation occur at four different values of , and the forms of symmetry are changed 

accordingly when   passes a certain critical value. Moreover, the TLEs become zero at each 

SBB point [Parker and Chua (1989); Ott (2002)]. 

 

  

  (a)                                                          (b) 

  

(c)                                                         (d) 

Figure. 2  The periodic phase trajectories of Eq.2 with (a) 55.0  before SBB; when 6.0 , 

(b) and (c) are two different ICs, after SBB; and (c) 65.0 , after inverse SBB. 

   

(a)                                                           (b) 

Figure 2: The periodic phase trajectories of Eq.2 with (a) ω = 0.55 before SBB;
when ω = 0.6, (b) and (c) are two different ICs, after SBB; and (c) ω = 0.65, after
inverse SBB.

x(t,ξ ). In this paper, we take N = 4 to obtain the approximate responses with a
minimal mean square residual error [Wang and Guo (2000)]. In our previous re-
searches [Zhang, Xu and Fang (2007)], the effectiveness of this method with finite
number N = 4has been verified.

Then substituting Eq. 4 into Eq. 3, the Eq. 3 is transformed as:
4

∑
i=0

ẍi(t)Hi(ξ )+(c̄+σξ )
4

∑
i=0

ẋi(t)Hi(ξ )

+(1+a(
4

∑
i=0

xi(t)Hi(ξ ))
2) ·

4

∑
i=0

xi(t)Hi(ξ ) = F cosωt.

(5)

Thereafter, by applying properties and recurrent formulas of Chebyshev polynomi-
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(a)                                                           (b) 

  

(c)                                                          (d) 

Figure. 3  The periodic phase trajectories of Eq.2: (a) 93.0 ; (b) and (c) are with two different 

ICs for 97.0 ;  (d) 40.1 . 

 

   

  (a)                                              (b)                                              (c) 

Figure. 4 For Eq.2, fixed 0.1 : (a) Global pattern of flow lines of Poincaré mapping points 

around periodic saddle S and periodic node A and B; (b) the refined periodic saddle point and its 

stable and unstable manifolds, C and D are the initial points; (c) the two coexisting symmetric 

attractors (black dots) and their basins (green for node A and red for node B). 

An insight into the phenomena of post SBB in Poincaré section was given in our previous work 

[Fang and Zhang (2008)]. In Fig. 4(a), the flow lines are composed by discrete Poincaré mapping 

Figure 3: The periodic phase trajectories of Eq.2: (a) ω = 0.93; (b) and (c) are with
two different ICs for ω = 0.97; (d) ω = 1.40.

als to Eq.5, the EDS is obtained as


ẍ0 + c̄ẋ0 +

1
2 σ ẋ1 + x0 +aX0 = F cosωt

ẍ1 + c̄ẋ1 +
1
2 σ (ẋ0 + ẋ2)+ x1 +aX1 = 0

ẍ2 + c̄ẋ2 +
1
2 σ (ẋ1 + ẋ3)+ x2 +aX2 = 0

ẍ3 + c̄ẋ3 +
1
2 σ (ẋ2 + ẋ4)+ x3 +aX3 = 0

ẍ4 + c̄ẋ4 +
1
2 σ ẋ3 + x4 +aX4 = 0

, (6)

which is a deterministic system in form, yet depending on some statistical charac-
teristics of the random parameters .
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(c)                                                          (d) 

Figure. 3  The periodic phase trajectories of Eq.2: (a) 93.0 ; (b) and (c) are with two different 

ICs for 97.0 ;  (d) 40.1 . 

 

   

  (a)                                              (b)                                              (c) 

Figure. 4 For Eq.2, fixed 0.1 : (a) Global pattern of flow lines of Poincaré mapping points 

around periodic saddle S and periodic node A and B; (b) the refined periodic saddle point and its 

stable and unstable manifolds, C and D are the initial points; (c) the two coexisting symmetric 

attractors (black dots) and their basins (green for node A and red for node B). 

An insight into the phenomena of post SBB in Poincaré section was given in our previous work 

[Fang and Zhang (2008)]. In Fig. 4(a), the flow lines are composed by discrete Poincaré mapping 

Figure 4: For Eq.2, fixed ω = 1.0: (a) Global pattern of flow lines of Poincaré
mapping points around periodic saddle S and periodic node A and B; (b) the refined
periodic saddle point and its stable and unstable manifolds, C and D are the initial
points; (c) the two coexisting symmetric attractors (black dots) and their basins
(green for node A and red for node B).

Let xi = xi, ẋi = yi, (i = 0, · · · ,4), Eq. 6 can be rewritten as:

ẋ0 = y0

ẏ0 =−c̄y0− 1
2 σ y1− x0−aX0 +F cosωt

ẋ1 = y1

ẏ1 =−c̄y1− 1
2 σ (y0 + y2)− x1−aX1

ẋ2 = y2

ẏ2 =−c̄y2− 1
2 σ (y1 + y3)− x2−aX2

ẋ3 = y3

ẏ3 =−c̄y3− 1
2 σ (y2 + y4)− x3−aX3

ẋ4 = y4

ẏ4 =−c̄y4− 1
2 σ y3− x4−aX4

. (7)

In order to analyze this ten demission system, the ensemble mean responses (EMR)
of Eq. 7 can be obtained as:

E[x(t,ξ )] =
4
∑

i=0
xi(t)E[Hi(ξ )] = x0(t)

E[y(t,ξ )] =
4
∑

i=0
yi(t)E[Hi(ξ )] = y0(t)

, (8)

which are the expectation of responses of EDS. Therefore, based on studying EMR,
the dynamical behavior of RP-DS in ensemble mean can be explored.

When σ = 0 or ξ = 0, EMR should be equivalent to the deterministic responses
(short for DR) of Duffing system (2). In Fig. 5, taking ω = 0.91 and 0.93, EMR
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  (a)                                                                     (b) 

  

 (c)                                                                     (d) 

Figure. 5 The phase trajectories of DR and EMR with 0 : (a) 91.0 ; (b) 93.0 ; (c) 1 , 

CI-1; (d) 1 , IC-2. 

When 0 or 0 , EMR should be equivalent to the deterministic responses (short for DR) of 

Duffing system (2). In Fig. 5, taking 93.091.0 and , EMR keeps the single self-symmetric 

behavior. And for the post SBB at 0.1 , the self-symmetric behavior is disappeared and 

replaced by two coexisting symmetric ones. Since DR and EMR have preferably coherence in 

Fig.5 (a)-(d), it is demonstrated that this Chebyshev polynomial approximation method is feasible 

and effective in this research.  

Figure 5: The phase trajectories of DR and EMR with σ = 0: (a) ω = 0.91; (b)
ω = 0.93; (c) ω = 1, CI-1; (d) ω = 1, IC-2.

keeps the single self-symmetric behavior. And for the post SBB at ω = 1.0, the self-
symmetric behavior is disappeared and replaced by two coexisting symmetric ones.
Since DR and EMR have preferably coherence in Fig. 5 (a)-(d), it is demonstrated
that this Chebyshev polynomial approximation method is feasible and effective in
this research.
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4 Effect of random parameter

The ensemble mean dynamical behaviors of RP-DS are investigated in this section.
When ω = 0.93, EMR preserves the same self-symmetric periodic behavior as that
in DR-DS before SBB shown in Fig. 6(a). However, with the influence of random
factor, the phase trajectories of EMR has been changed a little, and the details are
shown in Fig. 6(b) with enlarged scale.

4 Effect of random parameter 

The ensemble mean dynamical behaviors of RP-DS are investigated in this section. 

When 93.0 , EMR preserves the same self-symmetric periodic behavior as that in DR-DS 

before SBB shown in Fig. 6(a). However, with the influence of random factor, the phase 

trajectories of EMR has been changed a little, and the details are shown in Fig. 6(b) with enlarged 

scale.   

 

 

 

  

   (a)                                                                     (b) 

Figure. 6 (a) The phase trajectories of EMR at 93.0 for 0.0 , 05.0 and 1.0 ；(b) The 

zoom in figure of (a). 

After SBB, taking 1  into consideration, the phase trajectories and bifurcation diagrams of 

EMR are calculated from two different initial conditions shown in Fig. 7. When we do the 

simulation from IC-1, in Fig. 7(a), the dynamical behavior of EMR is basically the same as that of 

DR shown in Fig. 5(c), and only a tiny modification is induced by random parameter. In addition, 

the corresponding bifurcation diagram in Fig. 7(c) also illustrates that EMR is robust 

when ]1.0,0.0[ .  

 

Figure 6: (a) The phase trajectories of EMR at ω = 0.93 for σ = 0.0, σ = 0.05 and
σ = 0.1; (b) The zoom in figure of (a).

After SBB, taking ω = 1 into consideration, the phase trajectories and bifurcation
diagrams of EMR are calculated from two different initial conditions shown in Fig.
7. When we do the simulation from IC-1, in Fig. 7(a), the dynamical behavior of
EMR is basically the same as that of DR shown in Fig. 5(c), and only a tiny modifi-
cation is induced by random parameter. In addition, the corresponding bifurcation
diagram in Fig. 7(c) also illustrates that EMR is robust when σ ∈ [0.0, 0.1].

Once we choose IC-2 as initial condition, the phase trajectory of EMR, represented
by solid line in Fig. 7(b), is symmetry with that calculated from IC-1. But since
σ ≥ 0.065, EMR suddenly ‘jumps’ to the other coexisting attractor as shown in
Fig. 7(b) by dot line. This phenomenon predicates that RP-DS keeps the same two
symmetric attractors as in DP-DS, but due to the effect of random parameter, the
two mutual symmetric phase trajectories of EMR are occasionally commutable.

After observing the ‘jumping’ phenomenon by chance, the global analysis is ap-
plied to investigate which kind of ICs is unstable under the influence of random
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   (a)                                                                     (b) 

  

  (c)                                                                     (d) 

Figure. 7 When 1 , the phase trajectories of EMR for different intensities: (a) IC-1 and (b) IC-

2；The bifurcation diagrams of EMR for ]1.0,0.0[ : (c) IC-1 and (d) IC-2. 

Once we choose IC-2 as initial condition, the phase trajectory of EMR, represented by solid line 

in Fig. 7(b), is symmetry with that calculated from IC-1. But since 065.0≥ , EMR suddenly 

‘jumps’ to the other coexisting attractor as shown in Fig. 7(b) by dot line. This phenomenon 

predicates that RP-DS keeps the same two symmetric attractors as in DP-DS, but due to the effect 

of random parameter, the two mutual symmetric phase trajectories of EMR are occasionally 

commutable. 

After observing the ‘jumping’ phenomenon by chance, the global analysis is applied to 

investigate which kind of ICs is unstable under the influence of random parameter on initial plane. 

Thus the different features of attractive basins for these two symmetric attractors and the flow 

lines on Poincaré section are presented in Fig. 8 and Fig. 9. 

Figure 7: When ω = 1, the phase trajectories of EMR for different intensities: (a)
IC-1 and (b) IC-2; The bifurcation diagrams of EMR for σ ∈ [0.0, 0.1]: (c) IC-1
and (d) IC-2.

parameter on initial plane. Thus the different features of attractive basins for these
two symmetric attractors and the flow lines on Poincaré section are presented in
Fig. 8 and Fig. 9.

In Fig. 8, the attractors and their attractive basins for EMR are shown for different
value of σ when ω = 1. It is obvious that system preserves the same attractors as
that in DP-DS, but the basin boundary is deformed under the influence of random
parameter. When σ = 0, the boundary is still regular and smooth as shown in Fig.
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   (a)                                                                      (b) 

  

   (c)                                                                     (d) 

Figure. 8 Fixed 1 , the two coexisting attractors and their basins of EMR: (a) 01.0 , (b) is 

the room in figure of (a); (c) 03.0  and (d) 08.0 , where black dots are attractors, and the 

red and green regions are attractive basins. 

In Fig. 8, the attractors and their attractive basins for EMR are shown for different value 

of when 1 . It is obvious that system preserves the same attractors as that in DP-DS, but the 

basin boundary is deformed under the influence of random parameter. When 0 , the boundary 

is still regular and smooth as shown in Fig. 4(c). However with the increasing of as in Fig. 8, it 

is not smooth anymore and become fractal-like. Furthermore, from Fig. 8 (a) to (d), we can see 

that the bigger the intensity of random parameter is, the wider the basin boundary is. Which mean 

that the qualitative characteristics of dynamical behavior of RP-DS are not changed with the 

effect of random parameter, but become sensitive surrounding the basin boundary after SBB in 

ensemble mean.  

Figure 8: Fixed ω = 1, the two coexisting attractors and their basins of EMR: (a)
σ = 0.01, (b) is the room in figure of (a); (c) σ = 0.03 and (d) σ = 0.08, where
black dots are attractors, and the red and green regions are attractive basins.

4(c). However with the increasing of σ as in Fig. 8, it is not smooth anymore
and become fractal-like. Furthermore, from Fig. 8 (a) to (d), we can see that the
bigger the intensity of random parameter is, the wider the basin boundary is. Which
mean that the qualitative characteristics of dynamical behavior of RP-DS are not
changed with the effect of random parameter, but become sensitive surrounding the
basin boundary after SBB in ensemble mean.
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 (a) 

  

  (b)                                                                    (c) 

Figure. 9 When 1 , the flow patterns of Poincaré mapping points and attractors of EMR: (a) 

0 with 4 IC points; (b) 01.0 , with 7 ICs and (c) 03.0 , with 8 ICs. 

In our previous study of DP-DS, the flow pattern formed by Poincaré mapping points is 

performed to approximate the position of origin saddle and its invariant stable and unstable 

manifolds. Herein, the same strategy is applied to study SBB phenomenon in random case. By 

taking 0 , 01.0 and 03.0 for examples, the flow patterns are shown in Fig. 9. It is 

obvious that RP-DS preserves the same two symmetric attractors as that in DP-DS after SBB, and 

the ‘jumping’ phenomenon can also be found through the flow patterns close to the invariant 

manifolds. In Fig. 9, we do numerical simulations from several initial conditions which are 

chosen near the invariant manifolds. When 0 , there are no ‘jumping’ events. Observing the 

red flow line in Fig. 9(b), in deterministic condition, Poincaré points of EMR should go along the 

unstable manifold and terminal at node A. However, as increases from zero to 0.01, the phase 

Figure 9: When ω = 1, the flow patterns of Poincaré mapping points and attractors
of EMR: (a) σ = 0 with 4 IC points; (b) σ = 0.01, with 7 ICs and (c) σ = 0.03,
with 8 ICs.

In our previous study of DP-DS, the flow pattern formed by Poincaré mapping
points is performed to approximate the position of origin saddle and its invariant
stable and unstable manifolds. Herein, the same strategy is applied to study SBB
phenomenon in random case. By taking σ = 0, σ = 0.01 and σ = 0.03 for ex-
amples, the flow patterns are shown in Fig. 9. It is obvious that RP-DS preserves
the same two symmetric attractors as that in DP-DS after SBB, and the ‘jump-
ing’ phenomenon can also be found through the flow patterns close to the invariant
manifolds. In Fig. 9, we do numerical simulations from several initial conditions
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which are chosen near the invariant manifolds. When σ = 0, there are no ‘jump-
ing’ events. Observing the red flow line in Fig. 9(b), in deterministic condition,
Poincaré points of EMR should go along the unstable manifold and terminal at
node A. However, as σ increases from zero to 0.01, the phase trajectory of EMR is
changed and eventually attracted by node B. In Fig. 9 (c), it is shown that with big-
ger intensity σ = 0.03, the ‘jumping’ phenomenon appears more frequently. That
is to say, with increasing of σ , ‘jumping’ region is enlarged around the invariant
manifolds, which coincides with the changes in basin boundary.

5 Conclusions

In this paper, dynamical behaviors of SBB with the effect of random parameter
are investigated by applying global analysis via invariant stable and unstable man-
ifolds of the original saddle and basins boundary of attractors. In order to analysis
SBB phenomena in RP-DS effectively, the Chebyshev orthogonal polynomial ap-
proximation method is applied to reduce RP-DS to an EDS to study its dynamical
behavior in ensemble average mean. For comparison study, the SBB phenomena
in DP-DS are summarized at first. Numerical simulations on both DP-DS and EDS
show that SBB may happen in similar apparent forms. However, with the influ-
ence of random parameter, the two coexisting symmetric attractors are occasionally
commutable, and the corresponding boundary of attractive basins becomes fractal-
like, while that in DP-DS case is smooth. In addition, the fractal-like boundary will
be enlarged with the increasing of random parameter intensity.
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