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Abstract: In the recent years many publications appeared putting emphasis on
the simulation-based identification of piezoelectric material parameters from elec-
trical or mechanical measurements and combinations of them. By experience, one
is aware of the importance of a single input parameter. However, it is not yet
fully understood and in particular quantified to which extend missing knowledge in
the single parameters (parameter uncertainty) influences the quality of the model’s
prognosis. In this paper, we adapt and apply variance-based sensitivity measures
to models describing the piezoelectric effect in the linear case and derive global
information about the single input parameter’s sensitivities.
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1 Introduction

Piezoelectric ceramics are nowadays widely used in many sensor and actuator ap-
plications, like microphones, sonar technologies or injection-valves. The increas-
ing number of the application of numerical simulations in design, development and
control of piezoelectric devices requires reliable simulation outcomes, see, e.g.,
Zhang, Xu, and Wang (2014); Dziatkiewicz and Fedelinski (2007) for different for-
mulations or Olyaie, Razfar, Wang, and Kansa (2011); Olyaie, Razfar, and Kansa
(2011) for topics based on the design optimization of piezoelectric structures.
Simulation responses can be assumed to be reliable, when the underlying math-
ematical model itself can be validated and the numerical treatment verified, but
also when all input parameters are known precisely. This, however, is often not
the case, as parameter identification methods are costly, time consuming and un-
derlay other challenges and restrictions. Further, inherent nonlinear behavior of
the material parameters needs to be taken into account, e.g. temperature or ex-
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citation frequency dependency. These non-linear parameter relationships are not
always fully understood and therefore often neglected in the analysis. Many pub-
lications can be found which deal with the characterization of piezoelectric ma-
terials, e.g. Du, Wang, and Uchino (2004); IEEEStandard (1985); Kaltenbacher,
Lahmer, and Mohr (2006); Kwok, Chan, and Choy (1997); Sherrit, Wiederick, and
Mukherjee (1997, 1992); Jonsson, Andersson, and Lindahl (2013), where different
strategies are applied, e.g. nonlinear optimization, genetic programming or reg-
ularizing methods, see examples in Poteralskia, Szczepanika, Dziatkiewicza, W.,
and Burczyńskiab (2011); Lahmer (2009); Rupitsch, Sutor, Ilg, and Lerch (2010).
Also contributions differ in the types of measurements evaluated, e.g. impedance,
charges or displacement measurements and combinations of them, see, e.g., IEEE-
Standard (1985); Lahmer (2009); Rupitsch and Lerch (2009); Rupitsch, Sutor, Ilg,
and Lerch (2010). All these approaches might have their pros and cons but all
have in common that the uncertainty in the parameter estimates cannot be reduced
completely to zero. The sources of these uncertainties are twofold: Firstly, there
is the aleatoric uncertainty caused by the randomness in the material composition
or by Gaussian noise in the measurements used to estimate the parameter. Partic-
ularly, in the case of sparse measurements, the statistical uncertainty rises. Sec-
ondly, pure epistemic uncertainty is present due to systematic errors in either the
model setup or the configuration of the experiment. In this case, systematic errors
are directly mapped to the parameter estimates. Regularization methods may re-
duce this effect a little, but a certain amount of bias remains. As a consequence,
one has to consider the parameter estimates as random variables each following a
specific probability distribution which is characterized by its statistical properties
like mean value and standard deviation (parameter uncertainty). In particular the
latter might be high due to low sensitivities of the parameters, see, e.g., Lahmer,
Kaltenbacher, Kaltenbacher, Leder, and Lerch (2008). An uncertainty quantifica-
tion of MEMS (micro-electromechanical systems) derived in a unified framework
is reported in Alwan and Aluru (2011). Generally, in order to reduce the parameter
uncertainty, further experiments need to be conducted, probably combined with a
preceding design of experiments, see Rus, Palma, and Pérez-Aparicio (2011); Lah-
mer, Kaltenbacher, and Schulz (2008).
In order to answer the question if this additional experimental and calibration ef-
forts are justified, a sensitivity analysis should be conducted. Doing so, it can be
quantified to which extend uncertainties in the input parameters influence the un-
certainty in the model’s response or by the definition of Saltelli, Ratto, Andres,
Campolongo, Cariboni, Gatelli, M., and Tarantola (2008) “how uncertainty in the
output of a model can be apportioned to different sources of uncertainty in the
model input”. Sensitivity analyses for piezoelectric models based on partial deriva-
tives are reported in Lahmer (2009); Lahmer, Kaltenbacher, Kaltenbacher, Leder,
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and Lerch (2008), a visual type of sensitivity analysis is reported in Rupitsch, Wolf,
Sutor, and Lerch (2012).
The aim of this article is to quantify the sources of uncertainty using global sen-
sitivity measures for different typical piezoelectric problems, e.g. to clarify how a
coefficient of variation of 10% of any input parameter influences the frequency of
the first eigenmode.
From this information, the following questions might be answered:

• Which parameters are mainly responsible for the system’s behavior?

• Which parameter has a completely non-influential variance and can therefore
be considered deterministically?

• Is my simulation reliable or does the model answer depend strongly on weak
assumptions on the input parameters?

• To which type of measurements are my parameters sensitive? (Design of
Experiments)

• Prioritization of further research: Which input factors require further inves-
tigations and which not?

Finally, results of a carefully conducted sensitivity analysis supports the user’s un-
derstanding of the model and the process of decision-making based on numerical
simulation results, as e.g. done in Most (2011). In particular, this point should be
discussed intensively as it (de-)motivates further time and money consuming re-
search activities.
The sensitivity measures applied in this research are variance-based methods, i.e.
the variance is considered as the measure of uncertainty. Further, the measures are
of a global character and can handle both non-linearities and interactions between
pairs of input parameters. In the case that models are prohibitively expensive for
global measures, sensitivity indices based on their correlations or computed by re-
sponse surface methods are shown to be an alternative.

The paper is organized as follows: In Section 2 the model, i.e. balance equations
and piezoelectric constitutive equations are introduced and the Finite Element dis-
cretisation is briefly discussed. In Section 3 variance-based sensitivity measures
are introduced and efficient computing strategies are presented. Section 4 contains
results of this analysis and Section 5 closes this article with a discussion of the
results obtained.
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2 Piezoelectric Effect And Equations

The material law describing the piezoelectric effect under small signal loading is
given by

[σ ] = [cE ][S]− [e]T E (1)

D = [e][S]+ [εS]E. (2)

It relates the mechanical stress tensor [σ ] and the electrical displacement D, re-
spectively, to the mechanical strain tensor [S] and the electric field E. Due to the
symmetry of the mechanical tensors [σ ] and [S], we may rewrite them in Voigt
notation as follows

σ = (σxxσyyσzzσyzσxzσxy)
T (3)

S = (sxxsyyszzsyzsxzsxy)
T . (4)

In the electrostatic case, the relation between electric field E and the electric poten-
tial φ is given by

E =−∇φ , with∇ := (
∂

∂x
,

∂

∂y
,

∂

∂ z
)T .

Mechanical strains S are related to the mechanical displacements u by

S = Bu

where B is the first order differential operator relating strains and displacements.
The material tensors [cE ], [εS], and [e], appearing in (1), (2) are the elasticity co-
efficients, the dielectric constants, and the piezoelectric coupling coefficients, re-
spectively. According to the crystal structure and polarization of the piezoelectric
material, these matrices show a certain symmetry and sparsity pattern (cf. IEEE-
Standard (1985)). For the 6mm crystal class we have, e.g.

[cE ] =



cE
11 cE

12 cE
13 0 0 0

cE
12 cE

11 cE
13 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 (cE
11− cE

12)/2
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[e] =

 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

 , [εS] =

 εS
11 0 0
0 εS

11 0
0 0 εS

33

 .

The mechanical behavior of piezoelectric materials is described by Newton’s law

BT
σ = ρ

∂ 2u
∂ t2 , (5)

where ρ denotes the mass density. Since piezoelectric materials are insulating, i.e.,
do not contain free volume charges

∇ ·D = 0 . (6)

Plugging the constitutive laws (1), (2) in the balance equations (5) and (6), one
obtains a fully determined set of partial differential equations which are solved for
the primary unknowns u and φ inside a piezoelectric domain Ω

ρ
∂ 2u
∂ t2 −BT ([cE ]Bu+[e]T ∇φ

)
= 0 in Ω (7)

−∇ ·
(
[e]Bu− [εS]∇φ

)
= 0 in Ω .

The following boundary conditions are according to the typical experimental set-
ting of vanishing normal stresses at the boundaries, and two electrodes being ap-
plied at opposite positions Γg and Γe, one of them loaded by a prescribed electric
potential φ e

σn = 0 on ∂Ω

φ = 0 on Γg

φ = φ e on Γe

D ·n = 0 on ∂Ω\ (Γg∪Γe) .

(8)

The application of the Fourier Transformation and Finite Element discretization to
equations in (7) gives the following set of coupled algebraic equations in frequency
domain, see e.g. Lerch (1990); Kaltenbacher (2004)(
−ω2Muu +Kuu Kuφ

KT
uφ

−Kφφ

)(
û
φ̂

)
=

(
0
0

)
. (9)

Herein Kuu, and Muu denote the mechanical stiffness, and mass matrix, respec-
tively, Kφφ and Kuφ are the dielectric stiffness- and the piezoelectric coupling ma-
trix. The variable ω denotes the angular frequency. The Finite Element solutions



110 Copyright © 2015 Tech Science Press CMES, vol.106, no.2, pp.105-126, 2015

are the nodal vector of displacements û and the nodal vector of the electric potential
φ̂ .

In order to take energy-dissipation of the material into account, complex valued
material parameters are considered, which is equivalent to a velocity proportional
damping in time domain. For each tensor, a constant scaling factor between the real
and imaginary part is introduced assuming that an equal damping of the different
entries in the material tensors is a valid approach, i.e.

cE = (1+ jαc)cE (10)

e = (1+ jαe)e (11)

ε
S = (1+ jαεS)εS. (12)

In (10), j denotes the imaginary unit, i.e. j2 =−1 in the complex number system.
The eigenvalues problem in (9) is solved by the aid of the ARPACK package, see
Sorensen, Lehoucq, Yang, and Maschhoff (1996), yielding the angular eigenfre-
quencies ω1,ω2, .... The eigenfrequencies correspond to all possible mechanical
eigenmodes, even the ones that cannot be excited electrically.

3 Global Sensitivity Analysis

Sensitivity analyses can be conducted in different ways. The most simple approach
and mathematically motivated by the definition of a sensitivity in calculus is to
compute partial derivatives. This strategy is justified for a first understanding of
the problem, however, one needs to be aware that it is just a local measure as
it computes a parameter’s sensitivity when the values of all other parameters are
fixed, i.e. assumed to be known exactly. The parameter’s sensitivity however might
change drastically when the other parameters in the model contain different values.
This can be exemplified regarding the sensitivity of the mechanical deflection with
respect to an infinitesimal change of the mechanical damping parameter. If we are
away of resonance, no significant influence will be seen. However, a change of
stiffness properties may shift the resonance’s positions and the damping parameter
might become visibly influential as it is now mainly responsible for the magnitude
of the deflection in resonance.

Due to these interrelations, we consider global measures, where all parameters are
varied while determining the sensitivity of a parameter of interest. Those meth-
ods where firstly introduced in 1973 by Cukier et. al. Cukier, Fortuin, Shuler,
Petschek, and Schaibly (59) and were extended by Homma, Imam, Sobol and
Saltelli, Homma and Saltelli (1996); Sobol (1990); Saltelli, Tarantola, and Chan
(1999) and applied in various models in economy, engineering and science, see
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e.g. Sin, Gernaey, Neumann, Loosdrecht, and Gujer (2009); Keitel, Karaki, Lah-
mer, Nikulla, and Zabel (2011); Kamiński and Lauke (2013). According to our
knowledge, global variance-based sensitivity measures have not been applied to
any qualitative assessment of models for smart materials, like piezoelectric ones.

Let us assume, that in the following F is the forward operator of our model

F : X → Y (13)

(p1, ..., pn) 7→ y (14)

which maps the n model input parameters p1, ..., pn to the model output y = F(p1,
..., pn). With X and Y , we denote the finite-dimensional parameter and measure-
ment spaces. With E(y) and V (y), we denote the mean and the variance of the
model’s response, respectively, and by E(pi) and V (pi) for i = 1, ...,n the mean
and variances of the parameters.

3.1 Variance-based Sensitivity Measures

In this context, all parameters are assumed to be uncertain, i.e. they are allowed
to vary according to an assumed probability distribution. Now the question arises,
what happens to the variance of the model’s response, if we were able to know one
parameter precisely, i.e.

V (y|pi = p∗i ).

The above is the variance of y under the condition that pi is known to have ex-
actly the value p∗i . As the true value of pi cannot be assumed to be not known
precisely, the mean of the conditional variance is further regarded. This measures
the expected amount by which the uncertainty in y is reduced if we were able to
determine pi precisely on average. By this, the dependence of the measure on p∗i is
removed. Now

Epi(Vp∼i(y|pi))

is on average the expected amount of variance which is removed if we were able
to know pi precisely. According to the decomposition of variance (law of total
variance)

V (y) =Vpi(Ep∼i(y|pi))+Epi(Vp∼i(y|pi)) (15)

either a large value of Vpi(Ep∼i(y|pi)) or a small value Epi(Vp∼i(y|pi)) implies that
pi is an important (sensitive) parameter. Normalization gives finally the definition
of a first order sensitivity index

Si :=
Vpi(Ep∼i(y|pi))

V (y)
.
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The index Si is therefore a measure of the exclusive influence of the input parame-
ter pi. If the sum of all Si is close to one, the model is additive with respect to its
variances and no remarkable interactions between the parameters seem to exist.
However, for the piezoelectric equations it is not fully understood to which extent
choices of single parameters may influence each other so that higher order sensitiv-
ity measures should be evaluated in addition. The term

E(V (y|p∼i))

gives now the expected amount of variance which remains if we were able to know
all parameters except pi precisely, i.e. pi is allowed to vary over its uncertainty
range while all other parameters are kept fixed. After normalization and applying
(15) the total effects sensitivity measure is defined as

STi = 1− V (E(y|p∼i))

V (y)
, (16)

see Sobol (1990); Homma and Saltelli (1996). The total effect index STi includes
both, the influence of the first order effects and all higher order (interaction) effects.
Consequently,

n

∑
i=1

STi ≥
n

∑
i=1

Si.

If both sums are almost equal, then all input parameters seem to be independent.
The quantities 1−∑Si or ∑STi−1 are measures of the degree of interactions, which
is in particular a valuable hint concerning the unique identifiability of the parame-
ters in the associated inverse problem of parameter identification.

3.2 Computational Aspects

A brute force Monte-Carlo-based computation of the variance of the mean or vice
versa would actually require N ×N evaluations of the piezoelectric problem un-
der investigation, where N denotes the number of samples in a Monte Carlo type
simulation. Therefore, for the computation of the senstivity indices we follow the
strategy poposed in Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli, M., and
Tarantola (2008) going back to earlier approaches by Sobol (1990) and Homma and
Saltelli (1996). Our implementation is based on a Latin-Hypercube Sampling strat-
egy with which two matrices A and B of dimensions N× n are filled with random
entries. The samples are generated according the assumed probability distribution
of the single model parameters. The number of samples N is required to be cho-
sen sufficiently high in order to remove any statistical uncertainty from the results.
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Further matrices Ci, i = 1, ...,n are set up then, which are equal to A except the ith
column, which is taken from B. Now the model output, i.e. the Finite Element so-
lution of the piezoelectric problem is computed for all rows in A, B and Ci yielding
2+n vectors of length N. The entries are given by solving

(yA)k = F(Aki), (yB)k = F(Bki) (17)

(yCi)k = F(Cki), k = 1, ...,N, i = 1, ...,n. (18)

Now, the sensitivity measures can be approximated by

Si =
η yA · yCi− f 2

0

η yA · yA− f 2
0

(19)

STi = 1−
η yB · yCi− f 2

0

η yA · yA− f 2
0

(20)

with η = 1/N and f 2
0 =

(
η ∑

N
k=1(yA)k

)2
.

Where as the first order sensitivity indices might rather be used in the context of
research prioritization (which parameters need a more careful investigation / iden-
tification), the total order sensitivity indices provide information to which extent
models can be simplified as it may be shown that some parameters are completely
non-influential.
The random input parameters are in all cases assumed to be normally distributed
and are generated using a Latin Hypercube sampling strategy, see e.g. Iman and
Conover (1980).
The Finite Element simulations have been conducted with the noncommercial tool
CFS++ Kaltenbacher (2010) with the calculation time tF for one model output
y = F(p1, ..., pn). Pre- and post-processing is performed with MATLABr (The
MathWorks, Inc.). The effort to compute (19) and (20) is of order O(N(n+2)). By
using the Parallel Computing Toolbox of MATLABr and an appropriate computer
with minimum n+2 CPU’s the computation time reduces to N · tF .

3.3 Alternative Strategies to Assess Sensitivities

Variance-based sensitivity measures provide global information, however, under
sometimes prohibitive high computational costs. We therefore present two alterna-
tives that approximate the information obtained from the variance-based sensitiv-
ity analysis. The first one measures simply correlations between input and output
signals; the second alternative discusses the use of variance-based methods on sur-
rogate models.
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3.3.1 Correlation-Based Sensitivity Analysis

To anticipate, the numerical results show a rather linear relation between the sys-
tem responses and uncertainties in the input parameters. Therefore, working with
weighted linear correlation coefficients may give good approximations of the sen-
sitivity indices. However, as the weighted correlation coefficients are based on
Pearson’s definition of correlation, they only measure primary effects and no in-
teractions, thus they are of the same quality as the first order effects. Correlation
coefficients are defined as

ρpi,y =
E((pi−µpi)(y−µy))

σpiσy
(21)

with µpi , µy being the mean values of the model’s input and output quantities and
σpi , σy are the standard deviations of pi and y. A weighted sensitivity index based
on linear correlation can now be defined as

Sρi =
ρpi,y

∑
n
i=1 |ρpi,y|

, i = 1, ...,n. (22)

Besides their cheaper computation correlation coefficients provide the additional
advantage that the sign of correlation (positive/negative) can be retrieved.

3.3.2 Sensitivity Analysis on Surrogate Models

As high numbers of samples are generally required to approximate the conditional
variances sufficiently precise, uncertainty analysis based on response surfaces is
proposed by several authors, see e.g. for the analysis of other engineering prob-
lems Marrel, Iooss, Veiga, and Ribatet (2012); Karaki (2012). Here, the true model
is approximated by a response surface, also called a meta-model, which allows the
main functional dependencies of the model output from model input to be repre-
sented. For rather smooth model responses, multivariate polynomial regression is
generally a good choice. Any polynomial regression for models with n input pa-
rameters requires the definition of an appropriate basis, e.g. with terms of linear
and quadratic order

{X1,X2, ...Xn,X1
1 ,X

2
2 , ....X

2
n ,X1X2,X1X3, ...Xn−1Xn}. (23)

Higher order terms could be included in this basis, however, then the problem of
overfitting could become severe. According to the law of parsimony, often less
complex approaches are preferable. The total number of entries in the basis is
denoted by m.
The regression model is given now by

Ŷ = α̂0 +
n

∑
i=1

α̂iXi +
n

∑
i=1

β̂iX2
i +

n

∑
i=1

n

∑
j=i+1

γ̂i jXiX j + ε,
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for which the regression parameters α̂0, α̂i, β̂i, γ̂i j need to be estimated. This is
generally done by minimizing all residuals e j = y j− ŷ j, i.e. the difference between
the regression model and the true model’s response for every sample point j =
1, ...,Nse. One method to do so is the ordinary least-squares minimization (sum of
squared errors), i.e.

SSE =
Nse

∑
j=1

e2
j . (24)

Minimization of this terms leads to a set of normal equations from which the coef-
ficients can be retrieved as follows

β̂ = (X>X)−1X>Y,

where all regression coefficients are stored in the vector β̂

β̂ = {α̂0, α̂i, ..., α̂n, β̂1, ...β̂n, γ̂12, ...γ̂n−1,n}.

The matrix X is the so-called Vandermonde matrix whose columns are composed
by the m basis entries (see e.g. the basis in (23)) which vary for every sample over
the Nse rows, for details see, e.g., Forrester, Sobester, and Keane (2008), Chapter
2. As long as all regression variables are linearly independent this is a well posed
problem. In some contexts, a regularized version of the least squares solution could
reduce the risk of non-invertability of the matrix (X>X). Applying Tikhonov reg-
ularization one adds a constraint in the form of a penalty term to the minimization
problem (24) so that the regression coefficients β̂ will not exceed a given value.
Equivalently, one may solve an unconstrained minimization problem of the sum of
least-squares approach with a penalty of the form αreg‖β‖2 added to the diagonal
entries of (X>X), where αreg > 0 is a regularizing constant. In a Bayesian setting,
this strategy is equal to defining a zero-mean normally distributed prior on the pa-
rameter vector.
The so called coefficient of determination R2

R2 =
SSreg

SStot

measures how well the regression model fits to the true model since it relates the
explained variance (variance of the model’s predictions)

SSreg = ∑
i
(ŷi− ȳ)2

with the total variance (of the data)

SStot = ∑
i
(yi− ȳ)2.
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Table 1: Assumed mean values for the parameters of a Pz27 ceramic (cE
xy in N/m2;

εS
xx in As/V m; exy in As/m2; density ρ in kg/m3).

Parameter Value Parameter Value
cE

11 1.47e11 ρ 7700
cE

12 1.05e11 e31 -3.09
cE

13 9.37e10 e33 16.00
cE

33 1.13e11 e15 11.64
cE

44 2.30e10 αc 0.017
εS

11 1.00e-08 αe 0.017
εS

33 8.09e-09 αε 0.017

Here yi are the model outputs, ŷi is the approximated output and ȳ is the mean
value of the model output evaluated. Values of R2 close to one (at least > 0.8)
are required for an acceptable approximation of the true model by the regression
model. Sensitivity measures which are computed on such response surfaces need
to be reduced by the factor R2 as some behavior of the true model might remain
unexplained, i.e.

SR
i = R2Si

and

SR
Ti
= R2STi .

Certainly, there are many more issues to discuss when applying regression mod-
els (reduced accuracy, over-fitting, confidence, local/global regressions, ...), which
however, are beyond the scope of this paper and we refer to Armstrong (2012);
Cumming (2012) for further reading on these issues.

4 Results

The uncertainty analysis is conducted for two different piezoelectric problems,
namely the computation of the electrical impedance of a piezoelectric disc and
the computation of displacements of the tip of a piezoelectric unimorph actuator.

4.1 Electrical impedance - eigenvalue problem

The fastest way to compute resonant frequencies is to solve the eigenvalue problem.
By doing so, one obtains a list of eigenfrequencies with the corresponding eigen-
vectors. This list contains all mechanical eigenfrequencies of the given model, even
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Figure 1: Electrical impedance curve of a piecoelectric disc with diameter D =
25mm and height h = 2mm computed with the parameters as given in Table 4.1.
The radial (left box) and thickness (right) resonance of the disc are visualized and
can be found at ∼ 80kHz and ∼ 1MHz, respectively.

the ones that cannot be electrically excited with the potential Φ defined by the elec-
trodes and the applied voltage U (see Fig. 1). The major problem for this approach
is the identification of the eigenfreqency that belongs to the sought-after resonance.
An analysis of the eigenfrequencies and the corresponding eigenvectors shows, that
every electrically excitable resonance leads to very low values of the impedance in
the associated eigenvector. Since the radial resonance is the first one that can be
excited electrically, it can be easily found by means of this impedance value. The
frequency range around the thickness resonance also contains higher order radial
modes that do not allow for a unique identifiability of the thickness resonance by
means of an eigenfrequency analysis.
The second column in Table 4.1 lists the first and total order sensitivity indices with
respect to the location of the radial resonance for selected parameters. The selec-
tion of the parameter is motivated by a previous parameter study Rupitsch, Sutor,
Ilg, and Lerch (2010). As material a Pz27 ceramic from FERROPERM was chosen
with assumed material mean-values according to Table 4.1. A check of statistical
convergence revealed that after computing 100000 samples a good approximation
of the sensitivity indices could be achieved. From this calculations (see Tab. 4.1),
we can draw directly following conclusions

• For the location of the radial resonator’s resonance, only the entries in the
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Table 2: Sensitivity indices for the resonance frequencies of a radial resonator.

eigenvalue harmonic
radial res. radial res. thickness res.

Parameter Si STi Si STi Si STi

cE
11 0.16 0.18 0.16 0.18 0.03 0.04

cE
12 0.05 0.05 0.00 0.05 0.00 0.00

cE
13 0.61 0.61 0.57 0.58 0.00 0.01

cE
33 0.16 0.16 0.12 0.14 0.92 0.98

cE
44 0.00 0.01 0.00 0.01 0.00 0.00

e31 0.00 0.01 0.00 0.02 0.01 0.02
e33 0.00 0.01 0.01 0.01 0.00 0.01
εS

33 0.00 0.00 0.01 0.02 0.01 0.03
αc 0.00 0.01 0.00 0.02 0.01 0.04

Sum: 0.98 1.04 0.87 1.03 0.98 1.13

stiffness tensor show a significant sensitivity, especially cE
13.

• The decomposition of the system’s variance is nearly linear. 98% of the
uncertainty can be explained by primary effects and roughly 4% are due to
interaction effects between certain variables.

• The interaction is mainly affecting the parameter cE
11.

4.2 Electrical impedance - harmonic analysis

In the following, the sensitivity analysis was applied to a harmonic analysis of a
piezoelectric disc where both the fundamental radial and the thickness resonance
are investigated. Simulations have been conducted for 400 linearly distributed fre-
quencies around the resonances. In detail, the frequency ranges 70 – 90 kHz and
850 – 1050 kHz are considered and the resonances are given by searching for the
minimum impedance within these ranges. Table 4.1 shows that the harmonic anal-
ysis results in the same sensitivities as w.r.t. the solution of the eigenvalue problem
(compare columns two and three). The calculated sensitivity indices for the thick-
ness resonance allow for the following conclusion:

• For the location of the thickness resonance only cE
33 shows a significant sen-

sitivity.
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Table 3: Coefficients of Determination Using different Bases for the Regression
Model.

Bases linear
linear
and
quadratic

linear,
quadratic
and mixed

Number of
regression
coefficients

10 20 65

Coefficients
of Deter-
mination

R2 = 0.95 R2 = 0.98 R2 = 0.99

• The decomposition of the system’s variance is also approximately linear.
98% of the uncertainty can be explained by primary effects and roughly 13%
are due to interaction effects between certain variables.

• The interaction is mainly affecting the parameters cE
33, εS

33 and αc.

4.3 Piezoelectric unimorph - static analysis - UA based on response surfaces

The strategy of applying sensitivity measures on regression models is now applied
to a piezoelectric unimorph modeled in 3D as it is assumed to be „too costly" for an
analsyis directly on the model. The unimorph consists of two plates, a piezoelectric
ceramic, Pz27, and copper sheet, which are glued together. The piezoelectric layer
is polarized in the third dimension (z), the electrodes are always in x− y plane, see
Figure 2. For the copper, a Young’s modulus of 9.6e+10Pa and a Poisson ratio of
0.3 are assumed.

Different bases for setting up a polynomial regression model have been tested lead-
ing to coefficients of determination as given in Table 4.3, which allows for a very
good approximation of the true model behavior. For setting up the regression mod-
els, 500 samples have been generated with a coefficient of variation of 5%. The
sensitivity measures computed on the regression model with linear, quadratic and
mixed quadratic terms are reported in the Tables 4.3 and 4.3. For the generation
of the random input parameters, a coefficient of variation of 2% was assumed and
200000 samples have been evaluated on the regression model. The values in Table
4.3 belong to a model where the Z direction corresponds with the 3 direction of
the material. In Table 4.3 a reorientation of the material is assumed so that the Z
direction of the model is now the 1 direction of the material.
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As for setting up the regression models, already a series of model responses needs
to be computed, a sensitivity analysis based on correlation can be conducted addi-
tionally, where the results are reported in Tables 4.3 and 4.3 in the third last column.

Figure 2: Displacement field and electric potential of a piezoelectric unimorph
polarized in z- direction. The unimorph is mechanically clamped at the left-hand
side (y = 0).

The findings have shown that sensitivity analysis on regression models give quite
accurate approximations of the real sensitivities, however, with a significantly re-
duced computational time. The analysis of the unimorph with a reoriented material
serves mainly academic considerations as it shows sensitivities of the parameters
for less common models where experiences about the main input parameters are
less available. As we see, indices based on correlation give a fair approximation to
the variance-based indices and may also be used for the purpose of factor prioriti-
zation.

Remark: By comparing the changes in the results while evaluating new samples,
one can define a stopping criterion. With this criterion an upper limit of samples
can be determined. See Figure 3 for the convergence of the sum of all sensitivity
measures for the unimorph example assuming uniformly distributed input parame-
ters. As the sensitivity indices are approximated by stochastic sampling schemes,
the results are only to be regarded as estimates of the true values. The accuracy
of these estimates depends mainly on the number of simulation runs, the assumed
scatter in the input parameters and the number of parameters in the model. A too
small number of simulations or poorly chosen samples may give inaccurate results.
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Table 4: Sensitivity Indices of a 3 D Model unimorph for the displacements in Z (3)
direction under static analysis. Z - Polarization on a response surface with mixed
quadratic terms.

Parameter SR
i SR

Ti
Sρi

cE
11 0.436 0.443 0.29

cE
12 0.090 0.098 0.14

cE
13 0.351 0.360 -0.32

cE
33 0.003 0.011 0.00

cE
44 0.002 0.004 -0.05

eE
31 0.003 0.002 0.01

eE
33 0.085 0.113 -0.12

eE
15 0.006 0.025 0.02

εS
11 0.008 0.005 0.0

εS
33 0.009 0.005 0.00

Sum (abs): 0.99 1.06 1.0

Table 5: Sensitivity Indices of a 3 D Model unimorph for the displacements in Z (1)
direction under static analysis. Z - Polarization on a response surface with mixed
quadratic terms.

Parameter SR
i SR

Ti
Sρi

cE
11 0.048 0.052 0.04

cE
12 0.024 0.028 0.04

cE
13 0.044 0.047 -0.06

cE
33 0.064 0.065 0.08

cE
44 0.001 0.002 -0.01

eE
31 0.27 0.28 -0.26

eE
33 0.29 0.29 0.31

eE
15 0.15 0.15 0.10

εS
11 0.09 0.09 0.005

εS
33 0.001 0.002 0.01

Sum (abs): 0.98 1.01 1.0
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Figure 3: Convergence of first and total order sensitivity indices, logarithmic scale.

These are visible, e.g. when sensitivity indices close to zero have a negative sign
or when some Si values are larger than the STi values. If these effects are rather
visible, it is recommended to repeat the sampling with a higher number of samples.
Results are only reliably with respect to the second position after the decimal point.
Repeated analyses and averaging would yield more robust results.

5 Conclusion and Outlook

From the numerical results one can draw the conclusion that for the applications
discussed here, the variance in the responses of piezoelectric models might be sep-
arated in an almost additive manner according to the variances of the single input
parameters. The relatively small differences in the values of first-order and total-
order sensitivity measures allow such conclusions. However, the result might be
different when looking at further objectives, e.g. the quality factor or the emitted
waves of a piezoelectric ultrasound generator. Variance-based methods are proven
to be a valuable tool in analysing and studying piezoelectric models of moderate
complexity. For larger models, the high computational costs may limit the applica-
bility of the proposed methods. In those cases, indices computed with regression
models or correlation-based measures have been shown to be an acceptable approx-
imation. In order to obtain more precise statistical information about the model
input parameter’s, a parameter estimation in the framework of Bayesian model up-
dating should be conducted. The result of those inversions is a so called a posteriori
probability from which all statistical moments can be retrieved. Those results will
mainly be dependent on the number of measurements and the measurements’ noise.
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