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An Error Estimator for the Finite Element Approximation
of Plane and Cylindrical Acoustic Waves.

J. E. Sebold1, L. A. Lacerda2 and J. A. M. Carrer3

Abstract: This paper deals with a Finite Element Method (FEM) for the ap-
proximation of the Helmholtz equation for two dimensional problems. The acoustic
boundary conditions are weakly posed and an auxiliary problem with homogeneous
boundary conditions is defined. This auxiliary approach allows for the formulation
of a general solution method. Second order finite elements are used along with a
discretization parameter based on the fixed wave vector and the imposed error tol-
erance. An explicit formula is defined for the mesh size control parameter based
on Padé approximant. A parametric analysis is conducted to validate the rectan-
gular finite element approach and the mesh control parameter. The results of the
examples show that the discrete dispersion relation (DDR) can be used for the rect-
angular finite element mesh refinement under predefined error tolerances. It is also
shown that the numerical formulation is robust and can be extended to higher order
finite element analyses.

Keywords: Numerical Methods in Engineering, Finite Element Method, Helmholtz
Equations, Plane and Cylindrical Wave Propagation.

1 Introduction

Numerical solutions of the Helmholtz Equation are well-known in literature, where
finite and boundary element methods of aproximation have been proposed for a
broad range of problems.

One particular issue addressed by many authors is the necessary/minimum mesh
discretization for the solution approximation for a fixed wavenumber. See for in-
stance, Harari et al. (1996), who used the technique of dispersion analysis to include
complex wavenumbers. In addition, complex Fourier analysis techniques were
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used by them to observe the dispersion and attenuation characteristics of the p-
version finite element method. Based on numerical evidences they conjectured that
the elements of degree p provide an approximation of order 2p for the dispersion
relation in the limit when the element size tends to zero. Ainsworth (2003) analyzed
the discrete dispersion in the aproximation by finite elements with relatively high
wavenumbers. Sarkar et al. (2011) showed that infinite flexible structural acous-
tic waveguides have a general form for the dispersion equation. Christon (1999)
considered the dispersive behaviour of a variety of second order finite elements for
wave equations and presented numerical comparisons between the discrete phase,
group velocity and the analytical value. Babuška et al. (1995) studied the scat-
tering properties of high order finite elements for the Helmholtz equation in one
dimension, and obtained estimates up to the fifth order approximation, in which the
product between the temporal frequency and the mesh parameter is smaller than
one, that is, when ωh < 1. The same article presents numerical evidences, which
lead to the conjecture that elements of order p have an order approximation 2p for
dispersion relation when the mesh parameter h tends to zero. Sebold et al. (2014)
presented analytical expressions that provide information to the mesh control of
edge finite element for the approximation of Maxwell’s equations. Such expres-
sions were generated from the numerical phase velocity and dispersion analysis.
Another important task in the present work is the use of hierarchical basis func-
tions, Adjerid (2002). A hierarchical basis has the property that the base level p+1
is obtained by adding new functions to the base level p, i.e., the base as a whole
does not need to be rebuilt when the degree of the polynomial is increased. This
property is desirable, if not essential, when using the p-version of the finite element
method. The hierarchical basis functions in one-dimension are defined as integrals
of Legendre polynomials. Thus, the orthogonality properties are guaranteed, lead-
ing to sparse and well conditioned stiffness matrices. Although the proposal of
analytical expressions for the mesh refinement, based on the discrete dispersion
relation, is a significant contribution of this article, the main novelty is the presen-
tation of a contribution applied to acoustic which related with the works mentioned
above. This contribution enables one to extend the work of Sebold et al. (2014) to
nodal finite elements, unifying, from this point of view, the acoustic studies pre-
sented by Christon (1999) for numerical phase velocity and Babuška et al. (1995)
for discrete dispersion relation.

In this study the discrete dispersion relation suggests the used of the phase velocity
number as an error estimator for the finite element approximation of the Helmholtz
equation. The analytical expressions for the numerical phase velocity can be used
to estimate the approximation error in the presence of plane or cylindrical waves,
thus providing a faster, more efficient and less expensive computationally way to
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obtain results within an imposed error margin. It is the authors’ reasoning that
restricting the study to quadrilateral elements is a convenient way to provide an
initial understanding for those readers interested in the foundations of this theory.

2 Basis functions

Let Ω be an open and bounded domain in the real set R, and let Xhp ⊂ H1(Ω) be a
subspace of piecewise continuous polynomials of degree p ∈ Z+ with m variables
denoted by P

(m)
p , i.e.

Xhp = {uhp| uhp ∈C0(Ω)∩P(m)
p (Ωe)}, (1)

where C0(Ω) is the space of all continous functions on Ω, H1(Ω) is the Hilbert
space of differentiable functions u, such that u and ∂u

∂x j
, with j = 1, ...m, are inte-

grable square functions.

2.1 Legendre hierarchical base functions

Let M j be the set of Legendre polynomials defined on a reference element Ωe,
which are given by Rodrigues formula, Olver et al. (2010), for 0≤ j ≤ p as:

M j(ξ ) =
1

2 j j!
d( j)

dξ j

[
(ξ 2−1) j] , ξ ∈Ωe

Furthermore, consider the subset N(p)
k ∈ P

(1)
p , with k ∈ Z+, defined according to:


N(p)

k (ξ ) =
1
2
(1+ξkξ ), k = 1,2,

N(p)
k (ξ ) =

1
||Mk−2||

∫
ξ

−1
Mk−2(t) dt, k = 3, ..., p+1

(2)

where ξ1 = −1, ξ2 = 1 and ||Mk−2||2 = 2
2k−3 . Note that N(p)

k (±1) = 0 for k ≥ 3.
Note that this happens because of the orthogonality of M j with respect to the L2-
inner product when the upper limit of integration, in equation (2), is ξ = 1. One
may arrive intuitively at the same conclusion by taking ξ =−1.

The functions defined by equations (2) form what is called Legendre Hierarchical
Shape Functions, Harari et al. (1996) and Thompson and Pinsky (1994).

2.2 Hierarchical base functions for rectangular elements of p-order

Let P(2)
p be the space of polynomials in two variables, associated to the elements of

p-order, defined as

P
(2)
p =

{
f̂ (ξ ,η); f̂ (ξ ,η) ∈ span{Xp,q}; with q ∈ Z+

}
(3)
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where Xp,q is the monomial set of degree less or equal to p in ξ and of degree less
or equal to q in η , i.e.

Xp,q = {ξ r
η

s; 0≤ r ≤ p; 0≤ s≤ q} (4)

Thus, the basis functions with two variables, ξ and η , of order p = q, are given by
the tensor product


N(p)

1 (ξ )

N(p)
3 (ξ )

...
N(p)

k (ξ )

N(p)
2 (ξ )


[

N(p)
1 (η) N(p)

3 (η) · · · N(p)
k (η) N(p)

2 (η)
]
, (5)

where each product N(p)
i (ξ )N(p)

j (η) ∈ P
(2)
p , for i, j = 1,2, ...,k. Each polynomial

appearing in the tensor product entries (5) is associated with a single node l of the
reference element. In particular, for p = 2, the basic functions f̂ are defined as
follows. Considering the set (3), the basis functions are generated by

span{X2,2}= span{1,ξ ,η ,ξ 2,η2,ξ η ,ξ 2
η ,η2

ξ ,ξ 2
η

2}

Thus, it follows that each basis function f̂l(ξ ,η) =N(2)
i (ξ )N(2)

j (η), with l = 1, ...,9
and with i, j = 1,2,3, associated with the node l, appears at the tensor product
entries, see equation (6) and Figure 1(a), N(2)

1 (ξ )

N(2)
3 (ξ )

N(2)
2 (ξ )

[ N(2)
1 (η) N(2)

3 (η) N(2)
2 (η)

]
=

 N(2)
1 (ξ )N(2)

1 (η) N(2)
1 (ξ )N(2)

3 (η) N(2)
1 (ξ )N(2)

2 (η)

N(2)
3 (ξ )N(2)

1 (η) N(2)
3 (ξ )N(2)

3 (η) N(2)
3 (ξ )N(2)

2 (η)

N(2)
2 (ξ )N(2)

1 (η) N(2)
2 (ξ )N(2)

3 (η) N(2)
2 (ξ )N(2)

2 (η)

=


f̂1(ξ ,η) f̂8(ξ ,η) f̂4(ξ ,η)

f̂5(ξ ,η) f̂9(ξ ,η) f̂7(ξ ,η)

f̂2(ξ ,η) f̂6(ξ ,η) f̂3(ξ ,η)

=
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

1
4(1−ξ )(1−η)

√
3

32(1−ξ )(η2−1) 1
4(1−ξ )(1+η)

√
3

32(ξ
2−1)(1−η) 3

8(ξ
2−1)(η2−1)

√
3
32(ξ

2−1)(1+η)

1
4(1+ξ )(1−η)

√
3

32(1+ξ )(η2−1) 1
4(1+ξ )(1+η)


(6)

1-η=0

η=0

1+η=0

1-ξ=0ξ=01+ξ=0

η

ξ

1 2

34

5

6

7

8 9

(−1,−1) (0,−1) (1,−1)

(−1, 0) (0, 0) (1, 0)
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(a)

Figure 1: Reference element Ωe associated with the basis functions of p = 2.

3 Helmholtz equation and the finite element method approach

3.1 Plane wave

Let Ω⊂ R2 be a domain with boundary Γ. The homogeneous acoustic wave equa-
tion can be written as

∂ 2u
∂x2

1
+

∂ 2u
∂x2

2
− 1

c2
∂ 2u
∂ t2 = 0 (7)



132 Copyright © 2015 Tech Science Press CMES, vol.106, no.2, pp.127-145, 2015

For time harmonic waves, a solution of equation (7) can be written as

u(xxx, t) = ũ(xxx)e−iωt , (8)

where ũ(xxx) is the sound pressure amplitude in the frequency domain and c is the
speed of sound. Substituting equation (8) in equation (7), the following homoge-
neous scalar Helmholtz Equation in two dimensions can be obtained:

∇
2ũ(xxx)+

ω2

c2 ũ(xxx) = 0 ∀ xxx ∈Ω (9)

Furthermore, one can assume that the wave vector κκκ = (κ1,κ2) is related to the
circular frequency ω by the dispersion relation, Oliveira et al. (2007),

ω = c|κκκ|= c
√

κ2
1 +κ2

2 (10)

Thus, the following variational problem, present in Liu (2009), can be stated: Find
ũ ∈ H1(Ω) such that

(∇ũ,∇w)L2 =
ω2

c2 (ũ,w)L2 ∀ w ∈ H1
0 (Ω) (11)

in which (·, ·)L2 denotes the inner product L2(Ω). The problem (11) is subject to
boundary conditions

Pressure : ũ = uB ∀ xxx ∈ Γ.

Velocity :
∂ ũ
∂x j

= iκ jρv(xxx) ∀ xxx ∈ Γ

(12)

where i =
√
−1, ρ is the mass density(ρ = 1,29kg/m3 for air under 0oC and 1-

atm), v is the particle velocity and the quantity uB is a given complex function. If
one chooses v(xxx) = eiκκκ·xxx, then an exact solution to the problem (11) with boundary
conditions (12) is given by u(xxx) = ρeiκκκ·xxx. Approximation by finite elements with
uh ∈ Xhp ⊂ H1(Ω) is such that

(∇uh,∇wh)L2 =
ω2

c2 (uh,wh)L2 (13)

for all wh ∈ Xhp ∩H1
0 (Ω), where H1

0 (Ω) = {u ∈ H1(Ω);u(xxx) = 0 ∀xxx ∈ Γ} . The
boundary conditions are applied requiring uh(xxx) = ρvh(xxx), ∀ xxx ∈ Γ, where vh(xxx) is
the discrete version of the complex exponential v(xxx) = eiκκκ·xxx, Sebold et al. (2014).

An alternative approach, which aims a simpler programming solution for the prob-
lem (11)-(12), is presented in the sequence. The idea is to establish, from u(xxx) data,
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a new problem with homogeneous boundary conditions. The new problem is solved
with second order finite element method using the Legendre hierarchical shape
functions for retangular elements. Once the solution to the new problem has been
found, the next step is the recovery of the solution of the problem given by equa-
tions (11)-(12). For this approach, α(xxx) = 1+ x2

1x2
2(1− x1)

2(1− x2)
2 is defined, as

well as u0(xxx) = α(xxx)u(xxx) and u(xxx) = u(xxx)− u0(xxx) for all xxx ∈ Ω = (0,1)× (0,1).
Thus, one has the new boundary conditions: u(xxx) = ∂u(xxx)

∂x j
= 0, ∀ xxx ∈ Γ, with

j = 1,2. Proceeding this way, the problem defined by (11)-(12) turns into the non-
homogeouos problems

∇
2u(xxx)+

ω2

c2 u(xxx) = f (xxx) ∀ xxx ∈Ω (14)

where f (xxx) = ∇2u0(xxx) + ω2

c2 u0(xxx). Therefore, u ∈ H1
0 (Ω) satisfies the following

variational problem:

(∇u,∇w)L2−
ω2

c2 (u,w)L2 = ( f ,w)L2 ∀ w ∈ H1
0 (Ω), (15)

subject to the boundary conditions
Pressure : u(xxx) = 0

Velocity :
∂u(xxx)
∂x j

= 0
∀ xxx ∈ Γ (16)

Discretizing the domain Ω, the approximation by second order finite elements uh ∈
Xh2∩H1

0 (Ω) is calculated, such that

(∇uh,∇wh)L2−
ω2

c2 (uh,wh)L2 = ( f ,wh)L2 (17)

for all wh ∈Xh2∩H1
0 (Ω). Once the problem (15)-(16) is solved for uh the approxi-

mate solution of the problem (11)-(12) is obtained by carrying out the substitution:
uh = uh +u0.

3.2 Cylindrical wave

Another relevant case appears when one has as solution of (14) the convolution

û(xxx) = (g∗ f )(xxx) =
∫
Rd

g(xxx− yyy) f (yyy)dyyy (18)
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where g, f ∈ Lp(Ω), with 1≤ p≤ ∞, has compact support in the domain Ω⊂ Rd ,
with d = 1,2, ...,n. In the solution (18), g is known as free space Helmholtz Green’s
function, Beylkin et al. (2009). Furthermore, the function g satisfy

∇
2g+

ω2

c2 g =−δxxx ∀ xxx ∈Ω (19)

onde δxxx is the Dirac-delta function concentrated in xxx(d), Monk (2003). In three
dimension, with xxx(3) = (x1,x2,x3) and yyy(3) = (y1,y2,y3), the expression of the fun-
damental solution to equation (19) is given by

g(xxx(3),yyy(3)) =
1

4π

ei ω2

c2 |xxx(3)−yyy(3)|

|xxx(3)− yyy(3)| , xxx(3) 6= yyy(3) (20)

The main interest of this work is the case d = 2. Thus, the fundamental solution
in two dimensions can be obtained by taking xxx(2) = (x1,x2) and yyy(2) = (y1,y2),
r1 = |xxx(3)−yyy(3)|, r2 = |xxx(2)−yyy(2)|, x3 = 0, y3 = r2sinh(t), with t ∈R and the identity
cosh(θ)− sinh(θ) = 1 for any θ angle. Thus, by taking

g(xxx(2),yyy(2)) =
∫

∞

−∞

g(xxx(3),yyy(3))|x3=0 dy3

=
1

4π

∫
∞

−∞

ei ω2

c2 r2cosh(t) dt

=
i
4

h(1)0

(
ω2

c2 r
)

(21)

where r = r2 e h(1)0 is the Hankel function of the first kind, see equation 10.9.10 in
Olver et al. (2010). Note that the solution in (21) satisfies the Sommerfeld radiation
condition, that is:

lim
r−→∞

r
1
2

(
∂g
∂ r
− i

ω2

c2 g
)
= 0 (22)

Suppose the cylindrical waves expanding from a punctual source which is located at
(0,0) ∈ R2, see Figure 2(a). Finite element approximation is considered on square
domain Ω⊂ R2 extracted from Figure 2(a)(see Figure 2(b)).

3.3 Numerical experiments

Figure 3(a) shows the analytical solution of the problem (11)-(12), while Figure
3(b) shows the result of alternative approach suggested using second order finite
elements, the wave vector κκκ = (10π,10π), h = 1/16 and the Legendre hierarchical
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(a) (b)

Figure 2: (a) Cylindrical wave; (b) Domain Ω.

basis functions for rectangular elements. Figures 4(a) and 4(b) show the exact
solution (21) and finite element approach, respectively, referring to the cylindrical
wave. This approximation is calculated using the same wave vector and the same
parameter h for the plane wave approximation.

Figures 5(a), 5(b) and 5(c) depict the diagonal slice in the (1,1) direction of the
plane wave from Figure 3(a), and of the discrete surface encountered by alternative
approach from Figure 3(b), at different levels of refinement: h = 1/16, h = 1/32,
h = 1/64.

Figures 6(a), 6(b) and 6(c) depict the diagonal slice in the (1,1) direction of the
region propagation Ω = [1,1]× [2,2] of the cylindrical wave, Figure 4(a), and of
the discrete surface encountered by alternative approach, Figure 4(b), at different
levels of refinement: h = 1/16, h = 1/32, h = 1/64.

(a) (b)

Figure 3: (a) Analytic solution of the problem (11)-(12); (b) Alternative finite ele-
ment method approach with p = 2, κ = 10π and refinement level h = 1/16.
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(a) (b)

Figure 4: (a) Analytic Solution for cylindrical wave; (b) Alternative finite element
method approach for cylindrical wave with refinement level h = 1/16.

(a) (b) (c)

Figure 5: (a), (b) and (c) depict the diagonal slice in the (1,1) direction of the plane
wave, at different levels of refinement, h = 1/16, h = 1/32, h = 1/64, respectively.

(a) (b) (c)

Figure 6: (a), (b) and (c) depict the diagonal slice in the (1,1) direction of the
region propagation Ω = [1,1]× [2,2] of the cylindrical wave, at different levels of
refinement, h = 1/16, h = 1/32, h = 1/64, respectively.
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4 Discrete dispersion relation

First let’s establish some requirements for the definition of the discrete dispersion
relation for the scalar Helmholtz equation in two dimensions must be establish.
Suppose that a uniform mesh size h = 1

n > 0, with n ∈ Z, is placed on the real
line with nodes located at hZ, where Z is the set of integers. The set of continuous
piecewice linear functions on the mesh is denoted Xh1. In analogy to the continuous
problem defined by equation (7), one should be concerned with solutions of the
form

uh(x, t) = ũh(x)e−iωt (23)

Let l(1)n ∈ Xh1 be defined as l(1)n (s) = s
h + 1− n if nh− h < s ≤ nh, and l(1)n (s) =

s
h +1−n if nh < s < nh+h. Note that l(1)n one has the property

l(1)n (x+mh) = l(1)n−m(x), x ∈Ω and m ∈ Z (24)

If ũh is defined as

ũh(x) = ∑
n∈Z

einkhl(1)n (x), (25)

then the property (24) shows that

ũh(x+nh) = eiκnhũh(x), ∀ x ∈Ω and for each n ∈ Z (26)

Thus, the analysis can be performed uniformly at any point of the mesh. The func-
tion ũh ∈ Xh1 is a discrete version of the complex exponential ũ(s) = eiκs, where κ

is the wavenumber, which is related to the frequency ω by the dispersion relation,
found at Oliveira et al. (2007), and written below

ω(κ) = cκ (27)

Considering the Helmholtz equation in one dimension

ũ′′+ω(κ)2ũ = 0 (28)

the following variational problem can be stated: Find ũh ∈ Xh1 such that∫
R

ũ′h(s)w
′
h(s) ds = ωh(κ)

2
∫
R

ũh(s)wh(s) ds ∀ wh ∈ Xh1 (29)

From another point of view, one can consider (29) as an eigenvalue problem, where
ωh(κ)

2 can be calculated by setting wh = l(1)m . In fact, after replacing equation (25)
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into equation (29) and noting that l(1)n (s)l(1)m (s) 6= 0 for s ∈ (mh− h;mh+ h) and
following a similar statement for (l(1)n (s))′(l(1)m (s))′, then follows

ωh(κ)
2 =

6
h2

(
1− cos(hκ)

2+ cos(hκ)

)
(30)

If 0 < hκ � 1, equation (30) can be expanded as Maclaurin series, so

ωh(κ)
2 = κ

2(1+
(hκ)2

12
+ ...) (31)

By taking c = 1, from relation (27) it is found that ω(κ) = κ . Considering the limit
when h→ 0 in (31) one has

ω
2(κ) = ω

2
h (κ) (32)

Expression (32) corresponds to the discrete dispersion relation for the scalar Helmholtz
equation in one dimension.

4.1 Discrete dispersion relation for the Helmholtz equation in two dimensions

Suppose now that we have a real plane with nodes located at hZ2. The set of
continuous piecewice polinomials with degree p less than or equal to two on the
mesh is denoted Xh2. In analogy to the solution of the continuous problem defined
by equation (25), one should be concerned with solutions of the form

ũh(xxx) = βLh(κ1,x1)Lh(κ2,x2), (33)

where

Lh(κ,s) = ∑
m∈Z

eimκhl(2)m (s) with l(2)m ∈ Xh2 (34)

has nodal values defined by l(2)m (nh) = δmn(this feature can also be observed in l(1)m )
and β is a constant. Thus, the presented problem is: Find ũh ∈ Xh2, such that(

∂ ũh

∂x1
,
∂wh

∂x1

)
+

(
∂ ũh

∂x2
,
∂wh

∂x2

)
−ω

2(ũh,wh) = 0 ∀ wh ∈ Xh2 (35)

Choosing wh(xxx) = l(2)m (x1)l
(2)
m (x2) and using equation (29), one has

(ũh,wh) = β

2

∏
r=1

∫
R

Lh(κr,xr)l
(2)
m (xr) dxr, (36)
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(
∂ ũh

∂x1
,
∂wh

∂x1

)
= βωh(κ1)

2
2

∏
r=1

∫
R

Lh(κr,xr)l
(2)
m (xr) dxr (37)

and(
∂ ũh

∂x2
,
∂wh

∂x2

)
= βωh(κ2)

2
2

∏
r=1

∫
R

Lh(κr,xr)l
(2)
m (xr) dxr (38)

Replacing (36), (37) and (38) in (35) the discrete dispersion relation for the Helmholtz
equation in two dimensions is obtaind. It is written as follows:

ω
2 = ωh(κ1)

2 +ωh(κ2)
2 (39)

4.2 Discrete dispersion relation for elements of p-order.

In order to use equation (30), it is desirable to express ωh(κ) in terms of κ . A
practical way to achieve this goal consist is finding an implicit definition for ωh(κ)
in terms of cos(hκ). For example, for the case of elements of the first order, relation
(30) can be rewritten as

cos(hκ) =
6−2(hωh)

2

6+(hωh)2 , (40)

This expression is generalized to arbitrary orders of p in the following theorem,
presented by Ainsworth (2003).

Teorema 4.1 Let [2Ne + 2/2Ne]κtan(κ) and let [2No/2No − 2]κcot(κ) be the nota-
tions for the Pad approximation of κtan(κ) and κcot(κ), respectively, where Ne =
bp/2c and No = b(p+1)/2c. Thus, ωhp satisfies cos(hκ)≈ Rp(hωhp), where Rp

is a rational function

Rp(2κ) =
[2No/2No−2]κcot(κ)− [2Ne +2/2Ne]κtan(κ)

[2No/2No−2]κcot(κ)+[2Ne +2/2Ne]κtan(κ)
(41)

where bxc= max{m ∈ Z;m≤ x ∈ R}.

According to Theorem 4.1 expressions that represent the approximation cos(hκ)≈
Rp(hωhp) for p = 1 and p = 2 are, respectively

cos(hκ) =
6−2(hωh1(κ))

2

6+(hωh1(κ))2 (42)

and

cos(hκ) =
3(hωh2(κ))

4−104(hωh2(κ))
2 +240

(hωh2(κ))4 +16(hωh2(κ))2 +240
(43)
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5 Parameter selection for mesh

Now the theory developed in the two previous sections is used to establish a crite-
rion for selection of the mesh refinement parameter n for second order rectangular
elements.

First, consider the speed of numerical phase as

C =
ω

|κκκ| . (44)

Second, to establish a connection with the numerical experiments carried out in
Section 3, consider a wave vector with the same characteristics as that used in the
approximation of the problem (11)-(12), i.e., κκκ = (κ,κ). Thus, note that ω2 =
2κ2C2. On the other hand, equation (39) shows that ω2 = 2ωh(κ)

2, consequently

C =
ωh(κ)

κ
, (45)

Considering the cos(hκ) approximations for p = 1 and p = 2, equations (42) and
(43), respectively, the numerical phase velocity C can be written as a function of
hκ , thus obtaining,

C =
1

hκ

(
6(1− cos(hκ))

2+ cos(hκ)

)1/2

for p = 1 (46)

and

C =
1

hκ(6−2(cos(hκ))1/2

[
16cos(hκ)+104+(β )1/2

]1/2
for p = 2, (47)

where β = (16cos(hκ)+104)2−960(cos(hκ)−3)(cos(hκ)−1).

However, from dispersion relation (10) of the continuous problem, the exact phase
velocity is given by c = 1. For example, for p = 2, Figure 7(a) shows the exact
phase velocity compared with the numerical phase velocity given by equation (47).
Figure 7(b) presents a closer view of Figure 7(a), with 0 ≤ hκ ≤ 1, from which
it is possible to determine, for example, the minimum value of the parameter h
so that the estimated phase velocity error is less than 0.01%. This is done simply
by observing the point at which the velocity curve reaches the value 1.0001 (or
hκ ≈ 0.62).

Note that the wave vector in the numerical example was κκκ = 10π(1,1), then by
taking κ = 10π , has h ≈ 0.62

10π
≈ 0.01973 ≈ 1

51 . Consequently, for n ≥ 51, the er-
ror between the approximated and exact phase velocity is less than 0.01%. The
possible use of this approximation for mesh refinement is now evaluated through a
convergence analysis.



An Error Estimator for the Finite Element Approximation 141

(a) (b)

Figure 7: (a) Numerical phase velocity for first and second order elements; (b)
Closer view of Figure 7(a).

5.1 Convergence analysis

Let d be the relative error in the phase velocity given by |1−C|. Equation (46)
is employed to show the phase velocity approximation for a fixed κ and an in-
creasing n. This is shown in Figure 8(a) for three different κ values and, as ex-
pected, it is clear that improving the approximation for c requires smaller h values
for larger frequency numbers. For convenience, it would be interesting to vali-

(a)

Figure 8: Phase Velocity approximation by Equation (47) with increasing dis-
cretization and FEM results for n = 51.
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date the equation (27) for problems in two dimensions. To do so, it is assumed that
κκκ = κ(cos(θ),sin(θ)). Let ua ∈H1(Ω) be defined by ua(xxx)= ρei ω

c [cos(θ)x1+sin(θ)x2].
Note que ua is an analytical solution of problem (11)-(12).

For calculation purposes let || · || be the norm for a real value function, defined by

||u||=

(
∑

j
|u(x j)|2

) 1
2

n2 ∀ xxx ∈Ω (48)

Consider uh ∈Xh2 the Finite Element numerical solution of problem (11)-(12), with
51 elements in the mesh discretization. By taking the same direction of propagation
of the plane wave of the numerical experiment, i.e., θ = π

4 , one can define uad j ∈
H1(Ω) by

uad j(xxx) = ρe
i
√

2ω

2cad j
[x1+x2]

, (49)

that are analytics solutions within the range 0.9 < cad j < 1.1. Furthermore, we
consider the analytical solutions of diagonal points of the domain Ω, i.e., x1 = x2,
are considered. The error norm ||uad j−uh|| is shown in Figure 9(a), where can be
noticed that the numerical result is better adjusted by an analytic expression with
cad j very close to 1. A closer view is shown in Figure 9(b) where it becomes clear
that the numerical phase velocity error is in neighborhood d < 0.01%, conforming
the estimated result obtained from 7(b).

(a) (b)

Figure 9: (a) Error norm with 51 elements in the mesh indicating the better adjust
by analytic expression with cad j very close to 1; (b) Closer view of Figure 9(a).
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The same analysis can be made for the experiment involving cylindrical waves. In
this version, uad j is defined according to:

uad j

(
ω

cad j
r
)
=

i
4

h(1)0

(√
2

ω

cad j
r
)

(50)

where r is the distance between any point on the diagonal of the domain Ω =
[1,1]× [2,2] and the point (0,0). Figures 10(a) and 10(b) show the error norm
reaching its lowest value, ≈ 10−7, also in the neighborhood d < 0.01% of cad j ≈ 1.

(a) (b)

Figure 10: (a) Error norm with 51 elements in the mesh indicating the better adjust
by analytic expression with cad j very close to 1; (b) Closer view of Figure 10(a).

In both experiments, with plane and cylindrical waves, the correlation between the
error in the numerical phase velocity and the error of the approximation by finite
element is evident and shows that the phase velocity equations obtained from the
discrete dispersion analysis may be used as error estimators in the FEM solution of
the Helmhotz equation problems.

6 Conclusion

The use of Legendre hierarchical basis functions facilitate the computer implemen-
tation of the finite element method for solving Helmholtz equation problems. It
is always possible to take advantage of the functions used in the approximation of
order p in the numerical experiments of order p+ 1. Solution approximations of
a simple numerical problem with fixed wavenumber were presented, until fourth
order, demonstrating the already known efficiency of the method.
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From the variational formulation of the Helmholtz equation the already known ex-
pression of the discrete dispersion relation was presented for a finite element space
of order p = 1. Such relation was reformulated with aid of Padé approximation and
extended to spaces of elements of order p = 2. A direct link between the phase
velocity, written as a function of the discrete dispersion relation, and the size of
the elements used in domain discretization is shown for orders p = 1 and p = 2.
Graphical interpretation of these equations clearly indicate the phase velocity error
reduction with the increasing mesh refinement for several wavenumbers.

Finite element analyses were carried out and confirmed the validity of the devel-
oped phase velocity equations for p = 1 and p = 2. FEM results were fitted to
obtain a numerical phase velocity and it was shown that the best fit was in perfect
agreement with the error estimates derived from the phase velocity equation and
the number of elements in the uniform discretization.

Error norms were evaluated in all FEM analysis and a strong correlation was ob-
served with the phase velocity error in the analyzed problem. This evidence sug-
gests that the numerical phase velocity defined from the discrete dispersion can be
used as an error estimator in the approximation of the Helmholtz equation by the
finite element method.
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