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Efficient Load-balancing Scheme for Multi-agent
Simulation Systems

K. Kuramoto', M. Furuichi’ and K. Kakuda?

Abstract: This paper describes a scheme to improve efficiency of multi-agent
simulation system (MAS) on single computer that has multiple processor cores.
Simulation technology is applied for broad usage in the world, and MAS gathers
attention from the fields that treat complicated and non-numeric issues such as traf-
fic analysis, analyzing evacuation from a building, and defense training.

Since the requirements of simulation scale and fidelity are growing, the importance
of their performance is also increasing. However, CPU clock speedup is slowing,
and improvement of computer performance has come to depend on the number of
processors, cores, and graphics processing units. Consequently, load distribution
and balancing are the keys to deriving better performance, and we consider there is
a brilliant move to improve efficiency by utilizing MAS’s peculiar attributes.

We have developed a multi-agent system framework called Furuichi-lab Unified
Simulation Environment (FUSE) that enables easy building of MAS systems and
can control thousands of agents with human-like artificial intelligence in real time
on standard personal computers. Since agents are heterogeneous and their cluster
size can vary, including in our MAS application, we have based our load-balancing
method on estimating each agent’s workload. Load-balancing must be the basic
function of the framework, and the load-balancing method must be available im-
plicitly without any intention on the part of simulation developers. Therefore, the
workload estimation process must be independent of the application.

We propose an efficient load-balancing scheme for MAS that utilizes the history of
agents’ workload records. In this paper, we describe the algorithm of our proposed
scheme, show an overview of preliminary experiments using a prototype core sys-
tem, and then explain the results and discuss the effectiveness of this scheme by
applying it to a practical simulation program.

Keywords: Multi-agent simulation system, MAS, performance optimization, load-
balancing.

! Graduate School of Industrial Technology, Nihon University, Narashino, Chiba, Japan.
2 College of Industrial Technology, Nihon University, Narashino, Chiba, Japan.



170 Copyright © 2015 Tech Science Press CMES, vol.106, no.3, pp.169-186, 2015

1 Introduction and related work

Recently, computer simulation has become an indispensable technology in vari-
ous fields such as engineering, medical science [Caudill and Lawson (2013)], car
traffic analysis [ Yoshimura (2006); Fujii, Yoshimura and Seki (2010)], analyzing
evacuation from a building [Kuramoto and Furuichi (2012)], and defense training
[Wittman and Harrison (2001)]. As the scale of simulation becomes large, comput-
ing efficiency becomes important.

A load-balancing method is an important issue in high performance computing.
Studies on them can be classified as shown in Fig. 1.
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Figure 1: Taxonomy of load-balancing schemes.

In the field of operating systems, efficient methods for scheduling jobs on a CPU
to derive the best performance have been studied and used for years [Tanenbaum
(2008)]. However, since operating systems are for general purposes, the dynamic
behavior of applications can be used for load-balancing on a number of processors,
cores, and GPUs. Therefore, the following schemes have been studied.

Classic methods have used one or more load balancers in a system to allocate jobs
to processors to derive better performance [Cybenko (1989); Furuichi, Taki and
Ichiyoshi (1990); Watts and Taylor (1998)].

Since multi-agent simulation (MAS) is a common application for computers, there

are a number of job distribution studies for it. In the late 1990s, the United States
Department of Defense developed a standard called High Level Architecture (HLA)
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for modeling and simulation, which became an international standard (IEEE std
1516). HLA is designed for distributed simulation, and it can work efficiently on
multiple computers by balancing agent workloads. HLA is implemented as mid-
dleware with application program interfaces, but its basic functions do not include
functions for load-balancing, and developers must employ their own schemes for
the application. A scheme for such situation is Space Time Object Model, an object
management scheme of moving agents for efficient processing on distributed com-
puters [Furuichi, Ozaki, Abe, Nakajima and Tanaka(2000); Furuichi, Ozaki, Mat-
sukawa, and Iwase(2001)]. Agent management, deciding which computer should
own an agent, is still the key technique for load-balancing on multiple computers
[Cordasco, De Chiara and Scarano (2011)].

As stated above, the research trend of load-balancing in the MAS field tends to
focus on distributed systems. However, there are few studies on the efficiency
of MAS framework on a single computer with multiple cores. Load-balancing
methodology on a single computer differs from that on distributed systems. For
MAS on distributed systems, the important point of job distribution is reduction
of information exchange between agents on other computers. In contrast, in the
case of MAS on a single computer, all agents share the same physical memory,
and information exchange among agents is not a serious efficiency problem. The
primary issues of load-balancing on a single computer are reducing job-fetching
time and evening the workload among all threads.

Although it is certain that performance efficiency on distributed systems is obvi-
ously important in conducting very large-scale simulations, the performance on a
single computer also deserves attention. Nowadays, powerful desktop computers
can conduct simulations with a large number of agents, and many simulation users
run their simulations by a single PC on their desktop.

Therefore, we propose a load-balancing scheme that focuses on MAS with hetero-
geneous agents that have various roles and broad workloads.

2 FUSE: a multi-agent framework

We have developed a multi-agent framework FUSE that focuses on hierarchical
organization behaviors with a large number of agents to simulate a human organi-
zation [Kuramoto and Furuichi (2013)]. It is a library-type framework for build-
ing MAS systems easily, and provides functions commonly required by multi-
agent systems such as agent management, message passing, and two- and three-
dimensional visualization.

Our first objective in developing FUSE was to simulate organized agents similar to
a human organization; hence, FUSE contains functions for simulating the decision
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making of organization leaders. Furthermore, since the framework can operate
thousands of agents and can set decision-making rules easily, the framework is
used in our laboratory for various types of simulation. Some examples of MAS
programs created using FUSE are shown in Fig. 2.

One of the important functions of such a framework is a load-balancing mechanism,
since recent computers have multiple cores, and efficient simulation execution re-
quires efficient workload distribution to the computer’s threads.

In particular, FUSE deals with agents whose workloads can be very different de-
pending on purpose of a framework. For example, in the case of simulating human
behaviors in hierarchical organization, there is a significant difference between the
workload of a top leader agent and that of an underling agent.

Figure 2: Simulation programs built using FUSE (Top: reaching a goal by co-op
demonstration, Right: historical battle simulation, Left and Bottom: counter fire
disaster simulation).

3 Proposed scheme

3.1 Underlying factors of the study

Since our algorithm is optimized for the MAS framework on a single computer,
it has presuppositions and constraints. First, target jobs are usually various tasks,
but they are all conducted by agents, and they are presumed to have workloads
with time series relevance, since many of the agents exist for multiple simulation
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cycles. Accordingly, an agent’s workload can be estimated based on its status.
Second, physical memory is shared by all threads on a single computer. Therefore,
all threads can access the entire memory of a process evenly, and there is no cost in
sharing information with agents on other threads. Third, in the case of time-step-
type MAS, all agents have the same job priorities, and the number of jobs on the
time-step cycle is fixed in advance. Given these factors, conditions for providing
jobs are relatively simple compared with providing general OS processes.

A typical agent job distribution mechanism on a single computer is shown in Fig.
3. The algorithm allocates agent jobs to threads cyclically, with all threads having
nearly the same number of agent jobs. After jobs are allocated, the threads are
executed. In this figure, Thread 1 is the critical thread, and other threads must wait
for it.

An appropriate load-balancing method is required to solve the inefficiency prob-
lem of CPU resource. If programmers can set accurate values for agents’ workload
in program code manually, the task becomes very easy. However, in reality, it is
difficult to estimate an agent’s workload in advance, and the usability of the frame-
work deteriorates substantially if simulation developers are required to predict their
agent’s workload. Therefore, workload estimation must be implicit for program-
mers.

Cycle Begin Cycle End
—
‘
thread2 | [ T T TS
Agent Job List -

: :
T

|:| : Agent Job - : Waiting Other Threads

Figure 3: Simple job distribution.

3.2 Estimating workload of agent-job

Focusing on MAS, we built on a hypothesis that an agent’s job workload does not
change frequently. In other words, we regarded an agent job’s workload on a time-
step cycle to be close to what it was on the previous cycle. Therefore, if an agent
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workload on the current cycle is sufficiently similar to that of the previous cycle,
it is possible to achieve load-balancing of threads using information of previous
workload.

Fig. 4 illustrates this method. At first, agent jobs are sorted in descending order
of their workloads on the previous cycle, and then jobs are allocated one by one to
the thread that has the minimum estimated workload at that time. Sorting is signif-
icantly important, since the workload of the last-fetched agent directly affects the
thread’s waiting time. The utility of sorting for performance more than compen-
sates for its computing time.

Consequently, estimated workloads of threads are expected to be nearly equal, im-
proving CPU usage efficiency.

Cycle Begin Cycle End

Agent Job Thread 1 [ [

Thread 2 | | Shorter
Sorted Agent Job List <

Thread N [

I:| : Agent Job - : Waiting Other Threads

Figure 4: Job distribution using previous workload information.

3.3 Dynamic distribution

The above methods provide jobs to threads statically. If all of the estimated work-
loads are perfectly correct, static job distribution is an effective manner of achieving
load-balancing. However, estimation from an agent’s previous workload is not al-
ways accurate, since an agent’s job is not the same on each time-step cycle. Even if
our hypothesis is correct ideally, and an agent’s job workload changes very slightly,
it is impossible to eliminate the error between the estimated and actual workloads.
Therefore, a robust mechanism against error is required, and we propose dynamic
job distribution as the solution. In this algorithm, each thread requires a new job
after every job execution, and an agent manager allocates jobs to threads.

An advantage of dynamic distribution is robustness against estimation error. In the
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other hand, static algorithm causes waiting of threads for others, since assignment
of jobs has been fixed in advance and there is no opportunity to restore job distribu-
tion. In contrast, idle threads always require jobs in a dynamic algorithm, reducing
the idling time. Since agent jobs are sorted, workloads of jobs executed on the
previous time-step cycle might be small. Consequently, gaps of processing time in
each thread become very small (Fig. 5).

Cycle Begin Cycle End
Age”“f’b]z Thread 1 / m
Thread 2 L P (Bl

Agent Manager

\D\ Thread N

|:| : Executing Agent Job || :Fetching Agent Job from Agent Manager
- Waiting to Fetch - : Waiting Other Threads

Figure 5: Dynamic individual job distribution

N
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Although a dynamic distribution method looks more appropriate than a static one,
it has problems in the job-fetching phase. Since a static method allocates jobs to
threads before beginning parallel processing, thread safety is not an issue.

In contrast, in the dynamic method each thread requires jobs with parallel process-
ing, and threads can try to access the agent manager simultaneously. This creates
a need for a locking mechanism to avoid job-fetching collision. However, a lock-
unlock mechanism for job fetching can degrade performance.

We test two types of method in this paper, fetching jobs individually and fetching
jobs as clusters to reduce the number of fetching, as illustrated in Fig. 6. We expect
the clustering to reduce fetching time; however it may cause to increase thread
waiting time as a result of the unit size of jobs.
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Figure 6: Dynamic clustered job distribution

3.4 Details of the algorithm

The algorithm proposed in this paper has two primary parts, sorting jobs using
previous workloads and gathering jobs into clusters.

As mentioned above, agent jobs must be sorted in descending order to reduce work-
load gaps of threads, and the individual job distribution method follows this prin-
ciple. Furthermore, the principle must be adapted to the job clustering method.
Therefore, we have to determine two parameters, initial-ratio and reduce-ratio, in
the algorithm.

Initial-ratio is the ratio of the first job cluster size to the total agents’ workload
size. Reduce-ratio is the ratio of cluster size reduction. Consequently, cluster size
follows a geometric progression. If both initial-ratio and reduce-ratio are relatively
large, then the number of fetching processes becomes small, but job cluster size
tends to increase, and workload gaps in each thread can become wide. If these ratios
are small, then keeping thread’s workloads equal becomes easy, and the number of
fetching increases.

We consider a normalized agent workload W.
n 1—R"
wW=YIR""1=1—— 1
k; < - ) (1)

In equation (1), R is the reduce-ratio and [/ is the initial-ratio. The normalized
workload W can be regarded as the number of threads N. When N approaches
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infinity, we define the relationship between these ratios as follows:

1
N=IT"% @

N—-1
R=— 3)

The equations (2) and (3) define the relationship between initial-ratio and reduce-
ratio. Initial-ratio must be given to compute the cluster size. Generally, if the agent
workloads are nearly fixed, and estimation succeeds every time, a large initial-ratio
might make the simulation efficient, because the number of fetches is reduced.
Conversely, if agent workloads are not stable, then estimation often creates large
errors; it is risky to adopt a large initial-ratio in such a situation, because of the
possibility of increasing waiting time.

However, since it is difficult to decide the ratios in advance, we introduced an
adaptive method. At the beginning of a simulation, initial-ratio is always set to
0.5. Then, when the simulation cycle is an odd number, temporal initial-ratio is
reduced by a small value diff, and conversely, if the cycle is an even number, the
ratio is increased by diff. Next, an agent manager considers the past 10 cycle times
to determine whether the next initial-ratio is to be increased or decreased.

As shown in Fig. 7, the agent manager counts the number of wins in bigger and
smaller cases of past cycles. If the number of wins in bigger cases is greater than
in smaller cases, then the manager increases initial-ratio. If the number in smaller
cases is greater than in bigger cases, then the manager reduces initial-ratio. In either
case, the speed of changing the actual initial-ratio is much less than the diff value.
Since we use 10 past cycle data, initial-ratio is fixed in the 10 cycles, and we apply
the adaptive method from the 11th cycle.

Simulation cycle  Cycle time  Temporal I-ratio
1 1] [I-diff
G Better (bigger wins)

2 [ - diff &
Worse (bigger wins)

s 1 ran

] @ Better (bigger wins)
o [ rar
10 [ | rar

Figure 7: Initial-ratio deciding process.

G Better (smaller wins)
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4 Performance experiments and results

In this section, we explain the experiments for evaluating our algorithm and present
its results. We tested four algorithms, static cyclic, static with estimation, dynamic
estimated individually, and dynamic estimated with clusters. All of our program
code for the experiments is written in Java which is the language of developing
FUSE.

In our experiments, we test our method on primitive agents with simple calculation
tasks initially. The result of the first experiment helps to discuss the algorithm
logically, because the number of these test agents and workloads are controlled.
Then, we exhibit the results of the algorithm on a practical MAS system with more
than 1,000 agents that was developed for decision-making training of leaders.

4.1 Experiments on test environment
4.1.1 Condition of experiments

We test the proposed algorithm on a test program with primitive agents. These
agents involve a task of simple calculation. In particular, we calculate the number
7 by placing a large number of random points and testing each point whether it is
in a 1/4 circle or not. A computer specification of the experiment is shown in Tab.
1.

The agent workloads are produced using a random function that follows the math-
ematical distribution shown in Fig. 8, with its specification shown in Tab. 2. We
used the following two patterns for agent workload.

1. Agent workloads follow an exponential distribution.

2. Agent workloads generally follow an exponential distribution, but a small
number of agents have extremely large workloads.

The second situation assumes the case that includes small numbers of special agents
that have much bigger workloads than other agents.

4.1.2  Experimental results

We now show that results of the experiments. Fig. 9 shows the relationship between
number of threads and cycles per second for each algorithm. The horizontal and
vertical axes represent the number of threads and cycles per second respectively.
Bigger number is better for the cycles.

The values are the average outputs of 25 executions. The figure indicates that dy-
namic algorithms are superior to static algorithms, and estimation is efficient in
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Table 1: Experimental Environment.

Items Value
CPU Intel Corei7 4771 3.5 GHz
Memory DDR3 32 GB
oS Ubuntu 14.04
Java VM Java7 OpenJDK 7u75

Exponential Distribution
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Figure 8: Agents’ workload distribution.

Table 2: Experimental Condition.

Items Value
Num. of agents | 1000
Ave. workload | 4656
Max. workload | 30419
Min. workload 1

both of cases that dynamic and static. In addition, there is no significant difference
between the two dynamic algorithms.
Subsequently, we tested cases in which there are agents with extremely large work-

loads. We changed 10 normal agents to big agents and prepared four workload
patterns. In all of the patterns, all big agents have same size of workloads. The
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Figure 9: Relationship between simulation cycles per second and number of threads
(1/3).

patterns are 50k, 250k, 500k, and 1,000k points for pseudo-simulation.

The results are shown in Fig. 10. The performance tendency shows that as the dif-
ference in workload among agents’ increases, the difference of performance widens
between estimated and non-estimated algorithms.

If these big agents are gathered in one or two threads, the threads’ workloads be-
come too large, and other threads must wait for them. In such a situation, workload
estimation becomes more important than in the case of flatter workloads. Con-
versely, the difference between estimated algorithms is almost independent of the
workload size of big agents. According to the results of the test program, it is
proved that workload estimation and dynamic job distribution is efficient. How-
ever, those results are output of a test program, with each agent’s workload being
very stable. Substantiating the usefulness of our proposed method requires testing
on a practical simulation.

4.2 Experiments on practical simulation

We described experiments on primitive agents and the results in the previous sec-
tion. In this section, we describe another set of experiments using a practical MAS
system.
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Figure 10: Relationship between simulation cycles per second and number of
threads (2/3).

The MAS for these experiments is a simulation developed for decision-making
training of leaders containing heterogeneous agents with various workloads. The
simulation system has an autonomous mode on which we run the simulation during
the experiments. The appearance of the simulation is shown in Fig. 11 and 12.

The simulation models a fire extinguishing operation in an urban area, with its
agents’ roles shown in Tab. 3. H.Q., leader, fire fighter, and evacuee simulate
human beings and can move and send information. Fire is a very simple agent
whose role is to burn a structure at the specified position and spread to neighboring
cells.

The H.Q. and leader agents command subordinates, with workloads much heavier
than those of fire fighter, evacuee, and fire. In addition, in contrast to the test
program, each agent’s workload changes depending on the situation around the
agent. Testing our algorithm on such a practical simulation environment provides
an appropriate examination of the effectiveness of workload estimation.

The results of the experiments are shown in Fig. 13, each value being the aver-
age of 25 executions. They are similar to those of the test program and show that
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Figure 11: Screenshot of the simulation program.
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estimation of workload is effective even in a practical situation. Similarly to the
experiments with the test program, estimation works to improve simulation perfor-
mance and output, with dynamic algorithms being superior to static algorithms. In
addition, the results are similar to that of individual and clustered fetching which
do not differ significantly.

In conclusion, our load-balancing scheme using estimation can improve simulation

performance in practical conditions. The important points are using estimation
and allocating jobs dynamically. Although we expected a significant effect from

clustering, the experiments did not confirm that expectation.

Table 3: Types of Simulation Agents.

Name of
agent

Number

Features

H.Q.

Receive reports from subordinates and evacuee
agents

Send commands to leaders to move or scout on the
field

Leader

10

Send information to H.Q.
Move to a place ordered by H.Q.

Behave as a fire engine and transport subordinate
fire fighters

Load and unload fire fighters
Receive information from subordinate fire fighters

Guide fire fighters to fires that are out of fire fight-
ers’ sight

Fire
Fighter

50

Ride on to its leader and then get off at destination
Extinguish fires

Send information to its leader

Evacuee

1000

Send information to H.Q.

Move to nearest safe place

Fire

Not fixed

Burn buildings and roads

Be extinguished by fire fighters
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Figure 13: Relationship between simulation cycles per second and number of
threads (3/3).

5 Discussion

We elucidated the advantage of using workload estimation and dynamic load-balancing
to improve performance of MAS. Since our algorithm is simple, using only previ-
ous workload of each agent, integration into existent simulation framework is easy
and places no extra load on simulation developers.

It is disappointing that the clustering process shows no significant effect. It is sus-
pected that our estimation of job fetching time might be excessive for the condi-
tions, and number of CPU cores of the experimental computer might be too little
to utilize clustering part of our scheme. We believe that the matter deserves further
investigation.

6 Conclusion and future work

We described a load-balancing scheme specialized for the MAS framework. The
method estimates next workload from previous workload and performs dynamic
load-balancing. We demonstrated its effectiveness through experiments. In first
experiments, we evaluated our scheme on the test program that is given a simple
task, and then we confirmed that workload estimation by using previous workload
each agent works effectively.
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In second experiments, we adopted more practical and complicated MAS appli-
cation program that includes huge number and multiple kinds of agents. In this
program, each of agents has its own role and makes decision depending on each
situation. As a result, workloads of agents are changing because their situations
also change. In the case of the experiments, our scheme showed superior results
and was confirmed its effectiveness on the practical MAS application.

Our next plan is to introduce our scheme on larger multi-core systems which ex-
pected to show the effectiveness of the combination of workload estimation and
job clustering algorithm. Moreover, combining our method with various types of
distributed systems is also our future work. Our proposed method focuses on pro-
cessing on a single computer, and there are number of load-balancing methods for
multiple networked computers. This will create a synergetic effect and will be
linked to developing new resource-efficient methods for distributed MAS systems.
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