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An Improved Technique to Generate Rogue Waves in
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Abstract: This paper presents an improved technique to generate rogue (freak)
waves embedded in random sea based on the approach proposed by Kribel and
Alsina (2000). In this method, a part of the wave energy is focused using the
temporal-spatial focusing approach to generate an extreme transient wave and the
rest behaves randomly. By introducing a correction term, the improved technique
removes the numerical.ly spurious fluctuations of the spectra in the existing ap-
proach. Various effects of the correction are investigated numerically by using the
second-order wave theory and two existing numerical. methods based on the fully
nonlinear potential theory (FNPT), including the improved Spectral Boundary In-
tegral (SBI) method and the Quasi Arbitrary Lagrangian- Eulerian Finite Element
Method (QALE-FEM). The discussions are mainly focused on (1) the effectiveness
of the correction on retaining the features of the specified wave spectrum; and (2)
the effects of the correction on the probability of the maximum wave heights.

Keywords: Rogue waves, random sea, 2nd order wave theory, FNPT, improved
SBI, QALE-FEM.

1 Introduction

The rogue (freak) waves are extraordinarily large water waves in ocean and have
been recognized as significant threats to the safety of offshore structures [Kharif
and Pelinovsky (2003, 2009)]. It is commonly defined as the wave with a maximum
wave height exceeding 2 times of significant wave height (Hs) and/or its maximum
wave amplitude exceeding 1.25 Hs [e.g. Skourup, et al., (1996); Adcock and Taylor
(2014)]. Their occurrence is in fact more frequent than rare [Liu and Pinho (2004)],
due to various possible mechanisms, including special-temporal focusing, wind-
wave interaction, wave-current interaction and modulation instability, as reviewed
by, for examples, Kharif and Pelinovsky(2003) and Adcock and Taylor (2014) .
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Many experimental and numerical investigations have been carried out to study
the generation and propagation of rogue waves [e.g. Ma (2007); Adcock and Yan
(2010); Adcock et al., (2011)], and their interaction with wind [e.g. Touboul et
al., (2006); Yan and Ma (2010a, 2011)] and/or current [e.g. Wu and Yao (2004);
Touboul et al., 2007; Yan and Ma (2010b)]. In most of the studies, the rogue
waves were generated by using spatial-temporal focusing approach, in which the
entire wave energy was fully focused at the same time and the same location. Such
studies significantly contributed to the wave kinematics and dynamics associated
with the giant wave during a short window of time near its occurrence, but did
not reflect the real. situation that the observed rogue waves are al.ways embedded
with the random waves. It has been reported that the rogue waves generated in
such a way show an unreal.istic sea state, which is out of the range of val.ues in
any filed observations of rogue waves [Kriebel and Alsina (2000)]. Alternatively, a
direct random sea simulation may well reflect the statistic features of the real rogue
waves. However, it may need a long duration of simulations, covering more than
103 ∼ 105 individual waves to observe the possible occurrence of rogue waves,
which usually have exceedance probabilities ranging from 10−3 to 10−5 [Adcock
and Taylor (2014)]. More importantly, the occurrence of the rogue waves generated
in this way is random and unpredictable in a time domain numerical simulations or
experiments.

In order to overcome the above problem, various deterministic methods for gen-
erating rogue waves in random seas at a specified time and location have been
suggested. One of them is so-called the constrained NewWave method proposed
by Taylor et al. (1997). In their approach, a deterministic wave profile is assembled
with the random wave in such a way that (1) both the mean and the covariance of
the random process are equal to the leading order terms in the exact solution of
the expected profile of the maxima of wave height by Lindgren (1970); and (2) in
the region of constraint, the number of variances is minimised so that it is as de-
terministic as possible to approximate asymptotic forms of extreme wave profiles
that are indistinguishable from a purely random occurrence of that particular crest
[Taylor et al. (1997)]. The ensemble statistics of the constrained realization by
this approach matches those of purely random occurrences of large waves. Clauss
and Steinhagen (2000) developed a Sequential Quadratic Programming method to
optimize the location and time instant of the maximum crest in space and time do-
main for the purpose of re-producing an expected asymmetric wave profile. They
considered a random phase spectrum, which is ignored in Gaussian random wave
model, and concluded that the random character of the optimized sea state is not
completely lost. Funke and Mansard (1982), Zou and Kim (2000) and Kim (2008)
suggested a method to deform the largest crest/trough wave in order to produce
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an asymmetric profile of the free surface in a constrained region of a random time
history, which was obtained through specifying random phases. However, one com-
mon point of these methods is that a targeted local wave profile or a tailored time
history, as the constrained condition, must be specified a prior. This feature limits
their application to the situations that the local wave profiles or their parameters are
known or can be guessed. In addition, a stationary wave spectrum is usually as-
sumed by using the above approaches. This means that the local and rapid spectral.
changes following the evolution of large ocean waves [e.g. Baldock et al., (1996);
Gibson and Swan (2007)] cannot be fully considered during the locally constraint
process.

In addition to the methods mentioned above, Kriebel and Alsina (2000) developed
another approach to generate rogue waves in random seas. Based on the success
in generating temporal-spatial focusing extreme waves in laboratory or numerical
investigations [e.g. Baldock et al., (1996)], Kriebel and Alsina (2000) proposed to
divide the specified spectrum into two parts: the phases of wave components in one
part (referred to as the focusing part) are carefully assigned leading to a spatial-
temporal focusing wave group; those of the second part (referred to as the random
part) are randomly assigned to form the random background. This approach re-
flects the fact that not all wave energy is focused at the same location and time.
This approach does not need a pre-determined local wave profile or tailored time
history to constrain the occurrence of the rogue wave. In addition, it may allow
to study what the wave profile and their dynamics would be by specifying differ-
ent proportion of wave energy to be focused. As a result, it may be employed
to investigate the nonlinear evolution of the rogue waves and the associated wave
spectrum. The experimental investigation by Kriebel and Alsina (2000) demon-
strated that a spatial-temporal focus of 15% spectral wave energy (the remaining
part still behaves as a random sea) may lead to the occurrence of the rogue waves in
a real.istic sea, i.e. the highest wave height is about 2.24 Hs (the largest wave am-
plitude reaches 1.18Hs) and the probability distribution of wave amplitudes largely
follows the Rayleigh distribution with an abnormal.ity representing the occurrence
of the rogue wave.

Unlike the constrained NewWave theory, Kriebel and Alsina (2000)’s approach
adopted deterministic wave amplitudes and random phase spectra, which may lead
to the loss of some randomness unless sufficiently large number of wave compo-
nents is adopted, according to Tucker et al. (1984). Nevertheless, it may be prac-
tical. for deterministic or short-term statistic studies. It is al.so worth noting that
there is not limit to Kribel and Alsina (2000)’s approach on specifying the wave
amplitudes and phases randomly with right number of variances, the problem with
the loss of randomness in Kribel and Alsina (2000)’s approach can be solved.
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However, the linear analysis indicates that the approach developed by Kriebel and
Alsina (2000) numerically modifies the specified spectrum unless the phases of
the random part satisfying a certain condition. This typically results in a signif-
icantly spurious fluctuation of the spectrum. This paper proposes an improved
technique by introducing a correction term to overcome the spurious fluctuation
problem in the existing approach of Kriebel and Alsina (2000). Its effectiveness is
tested by the 2nd order wave theory and two numerical methods based on the fully
nonlinear potential theory (FNPT), i.e. the improved Spectral Boundary Integral
method (SBI) and the Quasi Arbitrary Lagrangian-Eulerian Finite Element Method
(QALE-FEM), in two-dimensional (2D) numerical wave tanks (NWT).

2 Improved technique to generate rogue wave in random sea state

2.1 Summary of Kriebel and Alsina’s approach

For unidirectional waves, the wave elevation η can be represented by the Fourier
series with N wave components as,

η(x, t) =
N

∑
n=1

An cos(knx−ωnt +θn) (1)

whereAn, kn, ωn and θ n are the wave amplitude, the wave number, the wave fre-
quency and the phase shift of nth wave component, respectively. kn and ωn are
related to each other through the linear wave dispersion relation. The wave ampli-
tude is estimated by the spectrum, i.e., An =

√
2S (ωn)∆ω , in which S(ω) is the

specified wave spectrum and is discretised by even interval, ∆ω . In the approach
suggested by Kriebel and Alsina (2000), the wave elevation η’(x,t) is split into two
parts, i.e., the random (ηR) and the focusing (transient) part ( ηT ) by,

η
′(x, t) =

N

∑
n=1

ARn cos(knx−ωnt +θRn)+
N

∑
n=1

AT n cos(knx−ωnt +θT n) (2)

where subscripts ‘T ’ and ‘R’ refer to the focusing part and the random part, re-
spectively, ARn =

√
2PRS (ωn)∆ω and AT n =

√
2PT S (ωn)∆ω , where PR and PT

are the energy ratios of the random and focusing parts, respectively, with PR +PT

=1, leading to

S(ωn) =

(
A2

Rn +A2
T n
)

2∆ω
(3)

The phase shift θT n of the nth component in the focusing part is assigned to be
−knx f +ωnt f , based on the spatial-temporal focusing mechanism [see Ma (2007)
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for details] where x f and t f are the expected focusing location and focusing time
according to the linear wave theory. θRn are randomly assigned. If the two terms of
Eq. (2) are assembled and re-written in the form as Eq. (1), one has

η
′(x, t) =

N

∑
n=1

A
′
n cos

(
knx−ωnt +θ

′
n

)
(4a)

where

A
′
n =

√
A2

Rn +A2
T n +2ARnAT n cos(θRn−θT n) (4b)

θ
′
n = arctan

[
ARn sinθRn +AT n sinθT n

ARn cosθRn +AT n cosθT n

]
(4c)

Thus, the spectrum corresponding to ωn, resulted from Eq. (4), is,

S′(ωn) =
A2

Rn +A2
T n +2ARnAT n cos(θRn−θT n)

2∆ω
(5)

From Eq .(3) and Eq. (5), it is clear that S′(ωn) 6= S(ωn)as cos(θRn−θT n) 6= 0 due
to the fact that θT n = −knx f +ωnt f but the θRn is random. That means that the
spectrum of the waves given by Eq. (4a) is not generally the same as the spec-
ified spectrum by Eq. (3). For each component corresponding to ωn, the dif-
ference between the specified value S(ωn) and the one obtained using Eq. (5) is
2ARnAT n cos(θRn−θT n)

2∆ω
which is randomly fluctuated due to the random value of θRn. As

a result, the spectrum S′(ω) in the existing approach by Kriebel and Alsina (2000)
shows random fluctuations, as demonstrated by the curve marked by ‘Observed
(Eq.2), in Fig.1(a), in which a Bretschneider spectrum with significant wave height
Hs=0.061m and peak frequency 0.6Hz, the maximum frequency 2Hz, N=240, x f

=15.2m, t f =89s and PT =40% is used to generate the wave in a water depth of
1.5m. The observed spectra shown in Fig.1(a) are obtained using the wave time
histories of 120s recorded at the expected focusing point by the linear wave theory.
The fluctuations here are spurious but not physical.

2.2 Improved approach

In order to embed the rogue waves into random sea, as well as reserve the feature
of the specified spectrum without spurious random fluctuations, a correction term
is proposed to be introduced in this paper and the new expression of the wave
elevation, replacing Eq. (2), becomes,

η”(x, t) = η
′(x, t)+ηc(x, t) (6a)
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Figure 1: Comparison of observed wave spectra at the focusing point and the spec-
ified spectrum using linear wave theory (Bretschneider spectrum, d = 1.5m, Hs =
0.061m, peak frequency 0.6Hz, maximum frequency 2Hz, N=240, x f =15.2m, t f

=89s and PT =40% )

ηc(x, t) =
N

∑
n=1

AC
n cos

(
knx−ωnt +θ

′
n

)
(6b)

AC
n =

√
A2

Rn +A2
T n−

√
A2

Rn +A2
T n +2ARnAT n cos(θRn−θT n), (6c)

where η ′(x, t) is still given by Eq. (2). The spectrum of the waves resulted from

Eq. (6a) corresponding to ωn is (A2
Rn+A2

T n)
2∆ω

. Therefore, the observed wave spectrum
is identical to the specified spectrum S(ω). This is confirmed by Fig.1(a). It should
be noted that due to the involvement of the correction term ηc(x, t) in Eq. 6, the
real energy ratio of the random and focusing parts have been changed. PR and PT

in Eq.(6) only provide a reference value for the wave generation.
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Tucker et al. (1984) pointed out that the use of deterministic amplitudes was not
appropriate and might lead to the loss of randomness. Actually, the amplitudes
and the phase θRn in Eq. (2) and Eq. (6) can be determined by using a Gaussian
random process as described in Tucker et al. (1984) and Taylor et al. (1997). Fig.1
(b) compares the observed spectra at the focusing point obtained by using Eq. (2),
Eq. (6) and the specified spectrum using the method by Tucker et al., (1984) and
Taylor et al. (1997). As expected, the correction term ηc(x, t) in Eq. (6) ensures
that the resultant spectrum after assembling the focusing part and the random part
is identical to the specified spectrum; whereas the original approach (Eq. 2) by
Kriebel and Alsina (2000) leads to a spectrum that is significantly different from
the specified one.

3 Summaries of numerical methods

After showing that it is necessary to include the correction terms in Eq. (6), more
effects of the correction term will be investigated by numerical tests. As dis-
cussed above, significant nonlinearities may be involved following the formation
of the rogue waves, especially the second-order ‘bound’ wave leads to set-down
and possible set-up of the wave elevation [Adcock and Taylor (2014); Adcock et
al. (2011)], which influences the formation of the rogue waves. It is also widely
accepted that the nonlinearity of a large transient wave event is not restricted to
second order; there are not only bound nonlinearities at third order and above, but
also resonant nonlinearities [Gibson and Swan (2007)]. According to the knowl-
edge, two numerical methods based on the fully nonlinear theory (FNPT), i.e. the
improved SBI [Wang and Ma (2015)] and the QALE-FEM [Ma and Yan (2006);
Yan and Ma (2010)], are employed for the numerical tests on the effects of the
correction term. For comparison, the 2nd order wave theory [e.g. Dalzell (1999);
Schäffer (1996)] is also implemented. The details of the FNPT methods can be
found in the cited papers. For completeness, the summaries of the improved SBI
and QALE-FEM are given herein.

3.1 The Improved SBI method

The improved SBI method is developed based on the original SBI method proposed
by Clamond et al. (2005), Fructus et al. (2005) and Grue (2010). In the SBI, the
Neumann operator is introduced and expressed in terms of the free surface and the
velocity potential. The kinematic and dynamic boundary conditions are reformu-
lated into the skew-symmetric form after applying the Fourier transform. The free
surface and velocity potential are updated through integrating the equations with
respect to time, which requires the velocity on the free surface. The velocity on the
free surface is decomposed into convolution parts and integration parts. Convolu-
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tion parts are evaluated by the FFT, and the integration parts have kernels decaying
quickly along the distance between the source and field points but their integrands
are weakly singular. The distinguishing features of the improved SBI [Wang and
Ma (2015)] include (1) a de-singularity technique to accelerate the evaluation of
the integrals with weak singularity; (2) an anti-aliasing technique to overcome the
aliasing problem associated with Fourier Transform or Inverse Fourier Transform
with a limited resolution; and (3) a technique for determining a critical value of
the slope of the free surface, under which the integrals can be neglected to fur-
ther accelerate the computation. In the computational domain of the improved SBI
method, a Cartesian coordinate system is selected with the oxy plane on the mean
free surface, the x-axis pointing to the right end and the z-axis being positive up-
wards. The origin of the x-axis locates at the centre of the tank, where a pneumatic
wave maker is applied to generate the waves. Damping zones are located at both
ends to absorb the progressive waves to prevent the refection. Pre-tests are car-
ried out to make sure that the resolution and time step size are sufficient and no
considerable reflected waves are involved.

3.2 QALE-FEM

In the QALE-FEM, the flow is determined by solving a boundary val.ue prob-
lem for velocity potential, which satisfies the Laplace’s equation, using a finite
element method (FEM). The unstructured computational. mesh is moving dur-
ing the calculation by using a novel methodology based on the spring analogy
method but purpose-developed for fully nonlinear water waves including over-
turning waves. The fully nonlinear free surface conditions are given in arbitrary
Lagrangian-Eulerian forms. In addition, this method is also equipped with other
purpose-developed techniques: (1) a three-point method or modified SFDI (sim-
plified finite difference interpolation) scheme [Xu et al., (2015)] for computing
the velocity on the free surfaces; and (2) special technique for coping with wave
overturning and impacting. These techniques ensure high robustness of the QALE-
FEM. The coordinate system for this method is similar to that used by the improved
SBI except the origin of x-axis is located in the left end where there a wavemaker
is. The waves are generated by using a wavemaker (piston, flap or hinged) based on
either linear or 2nd order wavemaker theory. A numerical wave absorber based on
the self-adaptive wavemaker theory [Schäffer and Jakobsen (2003)] is employed at
the right end.. Its efficiency has been demonstrated in Ma et al. (2015) and will not
be discussed here.
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3.3 Accuracy

The accuracies of these two numerical methods on modelling fully nonlinear water
waves have been demonstrated in our previous publications, e.g., Wang and Ma
(2015), Ma and Yan (2006) and Yan and Ma (2010). Necessary comparisons with
the experimental results using the cases for extreme waves are presented here to
shed light on their accuracies.

(a) Time histories of the wave elevation.

(b) Wave spectra.
Figure 2: Comparisons between the numerical results and experimental data for
(a) the time histories of the wave elevation and (b) the wave spectra recorded at
13.889m from the wave paddle(d = 2.93m, JONSWAP spectrum, Hs = 0.103, peak
period of 1.456s).

The experiment was carried out in the 3D wave basin at the Plymouth University.
The wave basin is 35 m long and 15.5m wide. The mean water depth (d) used
to perform the experiments is 2.93m. Flap wave paddles are installed to generate
3D waves. JONSWAP spectrum with a peak period of 1.456s and significant wave
height of 0.103m is used to generate the unidirectional focusing wave using spatial-
temporal focusing approach similar to that in Ma (2007). The waves are expected
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to be focused at 13.886m from the wave paddle. The details of the experiments can
be found in Ma et al. (2015). Fig. 2(a) shows the time histories of the wave eleva-
tion recorded at the expected focusing location. It is clear that both the QALE-FEM
and the Improved SBI produce numerical results which agree well with the experi-
mental data. The comparison of the wave spectra displayed in Fig.2(b) also verifies
the FFT procedure used in the data analysis for processing the wave spectrum.

4 Numerical Results and Discussions

The preliminary studies shown above demonstrated that the new technique pro-
posed here ensures that the feature of the specified spectrum can be retained and
the spurious fluctuations in the spectrum in the existing techniques [Kriebel and
ALsina (2000)] can be removed. In this section, we aim to answer the following
questions: (1) How the wave spectrum is affected if not applying the correction
in Eq. (6) but just smoothing the spectrum to remove the spurious fluctuations?
(2) How does the correction term affect the statistics of maximum wave heights
(Hmax)? (3) How does the nonlinearity affect the wave spectrum? We are aware
that some publications have investigated the effects of nonlinearity on the wave
spectrum of normal random waves or focusing wave groups [e.g. Bal.dock et al.,
(1996); Gibson and Swan (2007); Ning et al., (2009)] but no publications looks at
the similar questions for rogue waves embedded in a random sea.

Although the preliminary study shown in Fig. 1(b) has demonstrated a feasibility
of using the improved technique in the Gaussian random process for determining
the amplitudes, the deterministic amplitude spectra are employed in the rest of the
paper. That is because the use of the deterministic amplitude spectra is sufficient
and more convenient to answer the three questions listed above. The wave spectra
adopted here are the same as that used in Fig. 1, i.e., Bretschneider spectrum with
significant wave height Hs=0.061m and peak frequency 0.6Hz. The cut-off high
frequency is 2Hz and N = 240, yielding a mean frequency interval of 0.00833Hz.
This means that the time history of the wave elevation obtained by linear and 2nd

order wave theories behaves periodically with a longest period of 120s. Similar
to Fig. 1, x f =15.2m, t f =89s are specified. The length of computational domain
for the improved SBI is 136m. Because the symmetrical boundary conditions are
imposed at the two ends of the domain for the improved SBI, the effective length
is 68m. The length of the computational domain for the QALE-FEM is 30m and
a 2nd order piston wavemaker [Schäffer (1996); Sriram et al., (2013)] is installed
at the left end and a self-adaptive wavemaker is installed at the other end to absorb
the wave. In the fully nonlinear modelling, the initial free surface is the mean free
surface (similar to the physical experiments). It takes about 40s for the wave com-
ponents with highest wave frequency (2Hz) to reach the expected focused location.
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Based on this, the simulation duration is assigned to be 160s and the time histories
at the duration 40∼160s are used for the FFT analysis to obtain the wave spectra.
Unless mentioned otherwise, all spectra presented in the paper are obtained without
implementing any smooth techniques.

4.1 Effectiveness of the correction technique

The most essential question (corresponding the first question raised above) to be
answered is the effectiveness of the correction term ηc(x, t), which forms the basis
of the present research. It should be noted that in the theoretical analysis presented
in Section 2, x f and t f , are assigned aiming to achieve a phase coherent of the
focusing part at x= x f and t = t f according to the linear wave dispersion. In the
2nd order wave theory, the wave dispersion follows the linear relation, and so the
phase coherent of the fundamental harmonics of the focusing part occurs at the
same time and location as for the linear theory. However, the phase coherent of all
the components in the focusing part may not happen due to the nonlinearity [Ma
(2007)], mainly because the linear dispersion may be invalid in the highly nonlin-
ear cases. Both experiments and the numerical investigations have confirmed that
the nonlinearity (mainly the 3rd and higher order harmonics) shifts the location
where the maximum wave crest occurs [e.g., Ning et al., (2009)]. Furthermore,
the appearance of the random part obviously influences the wave evolution in the
spatial-temporal domain. Therefore, the wave recorded at x = x f may not represent
the maximum wave in the fully nonlinear simulation. Similar to our previous in-
vestigations, e.g., Yan et al. (2010, 2011), we concentrate on the location where the
maximum wave crest occurs in each case. For simplicity, this is referred to as the
real. focusing location (X f ), which may be significantly different from the linear
focusing location x f [Ning et al., (2009); Schäffer (1996); Sriram et al., (2013)]. In
the same content, the time corresponding to the occurrence of the maximum wave
crest is referred to as the real focusing time (Tf ).

In the first case considered here, PT =20%. For the purpose of comparison, the
same random series have been used in both the 2nd order and the fully nonlinear
simulations when specifying the phase shifts of the random part. It is observed that
in the simulations adopting the present technique with correction term, i.e. Eq.(6),
X f = 15.2m and Tf = 89s are predicted by the 2nd order theory; Whereas X f =
15.864m and Tf = 89.39s are obtained by both the improved SBI and the QALE-
FEM. The wave time histories recorded at x = X f are illustrated in Fig.3. It is clear
that the result by the improved SBI agrees well with that by the QALE-FEM.

Similar agreement has also been found in the simulations adopting the original.
technique without considering the correction term, i.e. Eq. (2), as demonstrated
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Figure 3: Wave time histories near the focusing time recorded at x = X f predicted
by different numerical models using Eq.(6) (PT =20%, X f = 15.2m and Tf = 89s
in the 2nd order modelling; X f = 15.864m and Tf = 89.39s in the fully nonlinear
simulations, respectively).

in Fig. 4. The relative errors defined by using
∫ 160

40 |η2
i −η2

q |dt∫ 160
40 η2

i dt
, in which the super-

scripts of η i and ηq represent the wave elevations recorded in the improved SBI
and QALE-FEM modelling, are approximately 1% and 5% for the results shown in
Fig.3 and Fig.4, respectively. Such agreement between two fully nonlinear models,
together with the experimental validation shown in Fig. 2 for focusing waves, shall
give sufficient confidence on their accuracies. It is also found that the correspond-
ing 2nd order results seem to be visibly different from others. This will be discussed
later. Another point needed to be pointed out is that the maximum wave crest (Fig.
4b) without considering the correction term is significantly larger than the one (Fig.
3b) with the correction term.

The spectra corresponding to the data shown in Figs. 3-4 are presented in Fig.
5. From Fig. 5 (b), it is clear that by using the original. approach, i.e. Eq. (2)
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Figure 4: Wave time histories near the focusing time recorded at x = X f predicted
by different numerical models using Eq.(2) (PT =20%, X f = 15.2m and Tf = 89s
in the 2nd order modelling; X f = 15.864m and Tf = 89.31s in the fully nonlinear
simulations, respectively).

without the correction term, the spectra suffer from significant fluctuations, being
very different from the originally specified one; whereas the technique using Eq.
(6) with the correction term leads to the spectra (Fig. 5(a)), which are very close
to the specified spectrum. It is clearer in Fig. 6(a), which compares the spectra
obtained using the original technique and the present one by the improved SBI.
This is consistent with the linear analysis in Section 2.

One may argue that such fluctuations could be artificially removed through smooth-
ing technique as demonstrated in Fig. 6(b), in which only the spectrum from
the case adopting the original technique is smoothed 100 times using a five-point
smoothing technique [Ma and Yan (2006)]. Although the smoothed spectrum seems
to be less fluctuated, the analysis on the total spectral energy suggests a significant
energy loss at a level of 8% (the total spectral energies obtained by the original
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Figure 5: Wave Spectra recorded at x = X f in the cases (PT =20%).

technique is 2.33 ×10−4ρg and 2.15×10−4ρg in those shown in Fig. 6(a) and Fig.
6(b), respectively), which is undesirable in the spectral analysis. More importantly,
the shape of the smoothed spectrum is visibly different from the specified one at
the frequency range of 4∼7 rad/s. Even in a location where the nonlinearity may
be ignored, e.g., near the wavemaker, a similar difference can be found between
the smoothed spectrum and the originally specified one, as evidenced by Fig. 7,
which compares the spectra at x = 5m. In such a location, the nonlinear effect has
yet developed and, therefore, the spectrum should be very close to the originally
specified spectrum, as will be discussed later. Clearly, the difference between the
smoothed spectrum by using the original technique without the correction and the
original spectrum may deliver a misleading signal that there is an energy transfer
between harmonics due to nonlinearity.

Similar phenomena are also found in the cases with other values of PT ranging
from 40% to 80%. The wave spectra recorded at the focusing location in the cases
with different values of PT are illustrated in Fig. 8. For clarity, only the numerical
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Figure 6: Wave Spectra recorded at the focusing location (PT =20%, numerical
results are obtained by using the improved SBI. Only the spectrum obtained by the
original technique (Eq. (2) is smoothed in (b)).

Figure 7: Wave Spectra recorded at x = 5m (numerical. results are obtained by
using the improved SBI).
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Figure 8: Wave Spectra recorded at the focusing location in the cases with different
PT (numerical results are obtained by using the improved SBI).

results by the improved SBI are presented. Again, the effectiveness of the correc-
tion term on retaining the features of the specified spectrum without suffering from
significant fluctuations in the spectrum is confirmed within the entire range of the
investigations.
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One may also notice that minor fluctuations are detected in the spectra obtained
by the present technique in Fig. 6 and Fig. 8. Such minor fluctuations are caused
by the nonlinearity, as evidenced in Fig. 7 that shows a consistent smoothed spec-
trum obtained using the present technique at the location where the nonlinearity
is not significant. Similar observation is also confirmed experimental.ly for focus-
ing waves without random waves. More discussions on the nonlinear behaviour of
spectral development in the cases with a rogue wave embedded in random waves
will be given in the following section.

4.2 Nonlinear effects on wave spectra

In the results presented above, some nonlinear effects have been revealed. In this
section, it will be discussed in more details. Many researchers have explored non-
linear evolution of the wave spectra in the cases with focusing wave groups, e.g.
Baldock et al., (1996) and Ning et al., (2009), without the background random
waves. They concluded that the nonlinearity transfers the wave energy to both
lower and higher harmonics. However, no publications look at the similar issue for
rogue waves embedded in random seas. Due to the significant fluctuation of the
spectra and/or considerable energy loss if smoothing the spectra in the cases adopt-
ing the original technique, we address this issue by using the present technique with
the correction term for generating waves.

For the spectra obtained using the present technique (Eq. 6), e.g., from Fig. 8(c),
one may find that the spectrum at higher harmonics, e.g., ω>7rad/s, recorded at
the focusing location is considerably higher than the specified spectrum, but those
at the range between 4∼7 rad/s are significantly lower than the specified spectrum.
This suggests an energy transfer from the fundamental harmonics to higher har-
monics due to the nonlinear wave-wave interaction during the wave propagating. It
may be better explained through the comparison of the wave spectra obtained at dif-
ferent location along the direction of the propagation, which are illustrated in Fig.
9 for the cases with PT =60% and PT =80%. As can be seen, near the wavemaker,
e.g., x=5m, the wave spectrum is close to the specified one. The spectrum within
the range around 4-7 rad/s become lower and the wave energy in higher harmonics,
i.e. ω>7rad/s, becomes more significant, as the distance from the wavemaker be-
comes longer until the focusing location, i.e., 15.864m, following the occurrence of
the rogue waves. The numerical results also reveal that after the focusing location,
the spectral energy seems to transfer from the higher harmonics back to the funda-
mental harmonics as evidenced in Fig. 10, which illustrates the spectra recorded at
different locations including the one after the focusing point in the case with PT =
80%. This observation is very similar to the existing publications on the focusing
wave groups without the random background.



280 Copyright © 2015 Tech Science Press CMES, vol.106, no.4, pp.263-289, 2015

Figure 9: Spectra recorded at different locations with different values of PT (nu-
merical results are obtained by using the improved SBI).

What is more interesting here is how the random part affects the nonlinear be-
haviour of the spectral development. For this purpose, Fig.11 is presented, which
compares the spectra at focusing location in the cases with different PT . From
this figure, it is clear that the wave spectrum at higher harmonics, e.g., ω>7rad/s,
increases considerably (evidencing more wave energy is transferred to higher har-
monics) as PT increases, although the difference between the case with PT =60%
and PT =80% is less significant. Additionally, the difference between the case with
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Figure 10: Spectra recorded at different locations with PT = 80% (numerical results
are obtained by using the improved SBI).

Figure 11: Spectra recorded at focusing location with different PT (numerical re-
sults are obtained by using the improved SBI).

PT =80% and other cases with lower PT values is that the spectral energy near the
peak frequency is considerably higher. This may suggest the energy transfer to
lower harmonics. Based on this, one may draw a conclusion that more wave en-
ergy is transferred to lower and higher harmonics as PT increases, as more wave



282 Copyright © 2015 Tech Science Press CMES, vol.106, no.4, pp.263-289, 2015

energy are expected to be focused at the focusing location leading to much higher
wave steepness and thus stronger nonlinearity.

The discussions following Figs. 8-11 show a significant nonlinearity associated
with the rogue waves embedded in the random waves. However, in the design
practices, the 2nd order wave theory is very popular for random sea analysis. Ex-
periments have confirmed that it may be inadequate for modelling focusing waves
under extreme sea states [Ning et al., (2009); Gibson and Swan (2007)]. Neverthe-
less, due to the split of the wave energy discussed in this paper, the expected rogue
waves may have lower degree of nonlinearity than the fully focusing wave with
the same spectrum. From Figs. 3-4 for the cases with PT =20%, it is found that
the 2nd order predictions on the wave time histories seem to be different from the
fully nonlinear results, however, the maximum wave height observed is very close.
The spectral. results shown in Fig. 5 also confirm a good agreement between the
2nd order results and the fully nonlinear predictions. This implies that 2nd order
theory may be applied to such cases with acceptable accuracy. However, with the
increases of the PT , the wave height increases, so does the local. wave steepness.
The 2nd order wave theory may not give acceptable predictions. Therefore, the
suitability of the 2nd order theory may need to be assessed. This is related to the
Question (3) stated in the beginning of this section. We are not trying to fully ad-
dress this issue but to shed some light on the suitability of the 2nd order theory on
modelling rogue waves embedded in the random waves. Two specific parameters,
i.e., the maximum wave height and the wave spectrum are concentrated. Other non-
linear features for rogue waves, such as the low frequency set-down/set-up [Adcock
and Taylor (2014)] and the local steepness related to the wave breaking are also of
interest, but they will be discussed in future.

Fig. 12 compares the wave spectrum at the focusing location obtained by using the
improved SBI with that obtained by using the 2nd order wave theory. The present
technique with the correction term, i.e., Eq.(6), is employed to generate waves. As
pointed out by Janssen (2009), the main effect from the second order is a shift of
the low-frequency part of the wave spectrum towards higher frequencies, while at
high frequencies there is an increase in spectral levels. This is confirmed again by
Fig. 12, in which the evolution of the spectrum obtained by using both the second
order wave model and the improved SBI is consistent with Janssen’s conclusion.
Meanwhile, it is clear that with PT =40% (Fig.12(a)), the 2nd order result is fairly
close to the fully nonlinear results; but their results are significantly different when
PT =60% (the 2nd order wave theory over-estimate the spectrum at the range be-
tween 3.5-7rad/s but under-estimate that when frequency higher than 7rad/s). In
such cases, the 2nd order wave model is unable to give a correct prediction of the
spectrum.
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Figure 12: Comparison of wave spectra recorded at focusing location between the
improved SBI and the 2nd order wave theory (Eq.(6) is used to generate the waves).

Consideration is also made to the maximum wave heights (Hmax) in the cases with
different values of PT . Some results are shown in Fig.13. It confirms that the results
of different methods are very close when PT = 20%. As expected, with increase in
PT , the difference between the improved SBI and the 2nd order theory becomes
more significant. It is also interesting to see that Hmax obtained by the 2nd order are
higher than that by the fully nonlinear simulation for PT > 20%.

It is also found from Fig. 13 that for higher val.ues of PT , i.e.,≥60%, the maximum
wave heights obtained by using the original technique and the present one are quite
close. This is because the random wave energy takes lower percentage of energy,
and so the correction term in Eq. (6) becomes small in these cases. Based on the
results shown in Figs. 12-13, one may agree that for the specific wave condition,
the 2nd order wave theory may be considered to be acceptable for PT < 40% in term
of maximum wave heights. However, it shal.l be noted that the validity of the 2nd

order wave theory may also be affected by other parameters such as the local. wave
steepness of the rogue wave. The threshold value 40% may only be suitable for the
specific wave spectrum and condition discussed here.
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Figure 13: Comparison of maximum wave height recorded at focusing location
between the improved SBI and the 2nd order wave theory.

4.3 Statistics of Hmax and ηmax

In the experiments by Kriebel and Alsina (2000), who adopted Eq. (2) to generate
the waves without considering the correction term, some results for the statistics of
Hmax and ηmax with different values of PT are discussed. In this section, we will
look at how the correction term affects the statistical. val.ues of Hmax and ηmax.
To do so, 100 cases with different random series but the same val.ue of PT are
investigated using the 2nd order wave theory.

Fig. 14 displays the probability density of the maximum wave height recorded at
the linear focusing location x f . Both the original. technique of Kriebel and Alsina
(2000) without the correction term and the present technique with the correction
term are used for comparison. As can be seen in Fig. 14, the maximum wave
heights (Hmax) show a significant difference between the results for the original and
the present techniques. Within 100 samples, the difference may reach to 2.5∼3
Hs. It is noted that the experimental results obtained by Kriebel and Alsina (2000),
i.e., 2.21 and 2.48Hs corresponding to PT =15% and 20%, respectively, are within
the range shown in Fig. 14(b). The corresponding probability densities are 0.78
and 0.68, respectively. As can be seen, if the original technique without correction
(Eq.(2)) is used, most probable Hmax continuously increases with the increase of PT .
However, for the present technique with correction (Eq.(6)), the most probable Hmax

does not change significantly for smaller value of PT , e.g., ≤20%, but increases
with further increases of PT from 30%. The direct comparison between the results
obtained by using the two techniques is given in Fig. 15. From this figure it appears
that without the correction term, the most probable maximum wave heights are
significantly overestimated, by approximately 1.2Hs.
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Figure 14: Probability density of the maximum wave height recorded at x = x f

using 2nd order wave theory.

5 Conclusions

In this paper, an improved technique for generating rogue waves in random sea us-
ing the method of Kribel and Alsina (2000) is suggested with introducing a correc-
tion term. The effectiveness of the proposed technique is investigated by numerical.
tests using the 2nd order wave theory, and the QALE-FEM and the improved SBI
methods based on FNPT. The investigations suggest that the improved technique
effectively retains the features of the specified wave spectrum and removes spuri-
ous fluctuations in the existing method. The statistical studies on the most probable
maximum wave heights indicate that the original technique without the correction
term can artificially over-predict the probability of the occurrence of the maximum
wave heights for a given wave spectrum.

This paper has focused on the 2D problems but the technique can be extended
to model 3D crossing random sea state. The relevant work will be left to future
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Figure 15: Comparison of most probable Hmax recorded at x = x f (2nd order wave
theory, 100 individual case studies).

publications.
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