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Analytical Method for Simulation of Buckling and
Post-buckling Behaviour of Curved Pates
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Abstract: Ships, ship-shaped offshore structures, land-based structures and
aerospace structures typically consist of various curved plate components. It is dif-
ficult to simulate the buckling and post-buckling of curved thin and/or thick plates
that have characteristics of nonlinear structural mechanics, such as nonlinear be-
haviour when loading is applied. The elastic post-buckling behaviour of a curved
plate is very complex, and accompanied by mode changes due to the occurrence of
secondary buckling behaviour. Therefore, it is very important to clarify the elastic
post-buckling behaviour when subjected to axial loading. The aim of this study was
to derive an analytical calculation based on the formulation of the total potential en-
ergy, and a mathematical solution to simulate the elastic buckling and post-buckling
behaviour of cylindrically curved plates under axial compression. The accuracy of
the proposed method with the aforementioned modelling techniques was verified
through comparison with finite element analyses of various curved plate configura-
tions.
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m, n Maximum half-waves number of the assumed added deflection function
in the x and y directions, respectively

R Radius of curvature of cylindrically curved plate
ri Arc length at step i
t, tp Plate thickness
w Added deflection of plate due to action of external loads
w0 Initial deflection of plate
x,y,z Principal axes
β Plate slenderness ratio (= b/t

√
σY/E)

εcl Strain of flat plate
εcr Strain of curved plate
εxb, εyb Bending strains in the x and y directions, respectively
σcl Elastic buckling strength of flat plate
σcr Elastic buckling strength of curved plate
σx Normal stress in the x direction (compressive stress)
σxb, σyb Bending stresses in x and y directions, respectively
σY Yield stress
τ = τxy Shear stress
ν Poisson’s ratio

1 Introduction

Curved plates are used in various parts of ships and offshore structures (deck plating
with a camber, fore and aft parts, bilge parts, gunwale parts, etc.) and in various
civil engineering structures (web panels in horizontally curved steel plates, box
girder bridges, etc.). In ship structural design, accurate prediction of the structural
behaviour of curved plates is a most important step, as the shape of the hull is
critical to the overall strength performance of a ship. The structural performance
of a curved plate is influenced by different types of failure modes, and the ultimate
and buckling strength and structural behaviour must be investigated for structural
design.

A number of researchers have made important contributions in this area by devel-
oping numerical, experimental and analytical approaches for investigating struc-
tural behaviour [Maeno, Yamaguch, Fujii, and Yao (2004); Park, Kohei, Shin-
suke, Iijima, and Yao (2006); Park, Iijima, and Yao (2008); Kwen, Park, Paik,
and Lee, (2004); Cho, Park, Kim, and Seo (2007); Levy (1943); Dai, Paik, and
Atluri (2011)]. Buckling behaviour associated with the plastic collapse behaviour
of unstiffened and stiffened curved plates is also well documented in the literature
[Park (2008)].
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The elastic post-buckling behaviour of curved plates sometimes occurs as sec-
ondary buckling behaviour. Simulation of this phenomenon is highly complex us-
ing a nonlinear analytical solution accompanied by mode change. This occurrence
is related to thin rather than thick plates, according to previous research [Kim, Kim,
and Lee (2004); Hao, Cho, and Lee (2000)]. In ship structures, the curved plates
tend to be thick, so that plastic buckling takes place but elastic buckling does not.
However, recent design concepts tend to favour bigger ships with optimised struc-
tural scantling for greater lightness and speed. This means that thick plates can be
treated as thin plates from a geometrical point view; thus it is necessary to simulate
the elastic post-buckling behaviour, which is considered to be secondary buckling
when subjected to axial loads.

During the motion of a ship through extreme waves, bending of the hull girders
can produce axial loading on the curved plates. It is well known that curvature
increases the buckling strength of a circular cylinder subjected to axial loading. At
the same time, plates with curvature are expected to increase not just the buckling
strength but also the ultimate strength. To simulate the influence of curvature on the
buckling and post-buckling behaviour of cylindrically curved plates, the structural
phenomena must be identified through a series of elastic large deflection analyses
and elastic eigenvalue analysis. At the beginning, elastic eigenvalue analysis should
be performed on a cylindrically curved plate under axial compression to clarify the
influence of curvature on elastic buckling strength. To develop an analytical formu-
lation, fundamental equations should be derived involving elastic large deflection
analysis.

Some researchers have successfully simulated the geometrically nonlinear post-
buckling behaviour of unstiffened cylinders, stiffened cylindrical panels and lam-
inated composite double curved shells using commercial finite element (FE) code
and a semi-analytical solution [Guggenberger (1995); Buermann, Rolfes, Tessmer,
and Schagerl (2006); Kundu and Shinha (2007)]. However, although the finite el-
ement analysis (FEA) method is a powerful tool for simulating the behaviour of
complex structures under extreme loads, this may require a great deal of modelling
and computational effort. Moreover, there is limited information for developing
an analytical method to simulate both snap-though and snap-back post-buckling
behaviour accompanied by mode change.

The paper proposes to clarify these issues. Fundamental equations are derived for
elastic large deflection analysis to simulate the elastic buckling and post-buckling
behaviour of cylindrically curved plates under axial compression. An explicit buck-
ling solution is obtained from a formulation of the total potential energy for cylin-
drically curved plates. The accuracy of the proposed method is verified by compar-
ing its results with that of FEA code.
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2 Elastic large deflection analysis of cylindrically plates by the energy
method

The system examined, shown schematically in Figure 1 is a beam of variable cross
section, This study reports an accurate energy method-based solution for the elastic
post-buckling behaviour of cylindrical plates subjected to axial compression. The
analytical method uses Kirchhoff’s thin plate theory with the following assump-
tions: (a) the material is linear elastic, homogeneous and isotropic; (b) the plate is
a perfect plane and stress free; (c) the thickness “t” of the plate is small compared
to its other dimensions; (d) the in-plane actions pass through its middle plane; (e)
the transverse displacements “w” are small compared to the thickness of the plate;
(f) the slopes of the deflected middle surfaces are small compared to unity; (g) the
deformations are such that straight lines, initially normal to the middle plane, re-
main straight and normal to the deflected middle surface; (h) the stresses normal to
the thickness of the plate are of negligible magnitude; and (i) the distortion due to
transverse shearing can be ignored.

The method developed and proposed here derives and expresses an explicit solu-
tion for the simulation of post-buckling behaviour. For this purpose, the method
derivation is combined with the arc-length increment method.

2.1 Initial deflection mode

The cylindrically curved plate shown in Figure 1 is considered. All edges are as-
sumed to be simply supported and kept in a straight line when subjected to in-plane
movements. The initial deflection of the following form of the Fourier series is
assumed.

wo = ∑
m

∑
n

Womn sin(
mπx

a
)sin(

nπθ

χ
) (1)

The total deflection under axial compression is assumed to be represented by the
same components as those of the initial deflection, that is

w = ∑
m

∑
n

Wmn sin(
mπx

a
)sin(

nπθ

χ
) (2)

where b = Rχ, y = Rθ

The coordinate system and dimensions of a curved plate under axial compression
are shown in Figure 1. Here u, v, w denote the displacement components in the
x, y and z directions, respectively, at the middle surface, and wo denotes the initial
deflection. According to Timoshenko and Gere (1961), the in-plane strain compo-
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Figure 1: Cylindrically curved plate under axial compression.

nents due to small displacements are represented as

εx =
∂u
∂x

, εy =
1
R

∂v
∂θ

+
w
R
, εxy =

1
R

∂u
∂θ

+
∂v
∂x

κx =
∂ 2w
∂x2 , κy =

1
R2

(
∂v
∂θ

+
∂ 2w
∂θ 2

)
, κxy =

1
R

(
∂v
∂x

+
∂ 2w

∂x∂θ

) (3)

These expressions are the same as the well-known expressions for the case of a flat
plate, with the addition of w/R to the expression for εy. This term is due to the
change in radius, which produces the strain.

R+w
R
−1 =

w
R

(4)

2.2 Equilibrium and compatibility equations

The fundamental equations governing the deflection of thin curved plates were de-
veloped by Donnell (1934). By differentiation and combination of the equations,
the compatibility equation becomes

∂ 4F
∂x4 +2

∂ 4F
∂x2∂y2 +

∂ 4F
∂y4

=
E
R

(
∂ 2w
∂x2 −

∂ 2w0

∂x2

)
+E

((
∂ 2w
∂x∂y

)2

− ∂ 2w
∂x2

∂ 2w
∂y2 −

(
∂ 2w0

∂x∂y

)2

+
∂ 2w0

∂x2
∂ 2w0

∂y2

)
(5)

where E is the Young’s modulus, F is Airy’s stress function and y = Rθ : ∂

∂y =
1
R

∂

∂θ
.
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The in-plane stress components are derived as follows.

σxp =
∂ 2F
∂y2 , σyp =

∂ 2F
∂x2 , τxyp =−

∂ 2F
∂x∂y

(6)

Assuming the plane stress state, the in-plane strain components are derived as fol-
lows,

εxp =
1
E
(σxp−νσyp) =

1
E

(
∂ 2F
∂y2 −ν

∂ 2F
∂x2

)
(7)

εyp =
1
E
(σyp−νσxp) =

1
E

(
∂ 2F
∂x2 −ν

∂ 2F
∂y2

)
(8)

γxyp =
2(1+ν)

E
(τxyp) =−

2(1+ν)

E
∂ 2F
∂x∂y

(9)

where E is the Young’s modulus and ν is the Poisson’s ratio.

2.3 Bending strain and stress components

The bending strain components are expressed in the following forms.

εxb =−z
∂ 2

∂x2 (ω−ω0) =
π2z
a2 ∑

m
∑
n

m2 (Wmn−W0mn)sin
mπx

a
sin

nπθ

χ
(10)

εyb =−z
∂ 2

∂y2 (ω−ω0) =
π2z

χ2R2 ∑
m

∑
n

n2 (Wmn−W0mn)sin
mπx

a
sin

nπθ

χ
(11)

γxyb = 2z
∂ 2

∂x∂y
(ω−ω0) =−

2π2z
aχR ∑

m
∑
n

mn(Wmn−W0mn)cos
mπx

a
cos

nπθ

χ
(12)

The bending stress components are

σxb =
E

1−ν2

(
εxb +νεyb

)
=

π2zE
1−ν2∑

m
∑
n

(
m2

a2 +
νn2

χ2

)
(Wmn−W0mn)sin

mπx
a

sin
nπθ

χ

(13)

σyb =
E

1−ν2

(
εyb+νεxb

)
=

π2zE
1−ν2 ∑

m
∑
n

(
νm2

a2 +
n2

χ2R2

)
(Wmn−W0mn)sin

mπx
a

sin
nπθ

χ

(14)

τxyb =
E

2(1+ν)
γxyb =−

π2zE
aχR(1+ν) ∑

m
∑
n

mn(Wmn−W0mn)cos
mπx

a
cos

nπθ

χ
(15)
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2.4 In-plane strain displacement relationships

Given that large deflections are considered, nonlinear strain displacement relation-
ships are used [von Karman and Tsien (1941)]. The membrane strain can be written
as Equation (16), where w and wo are the additional and initial out-of-plane deflec-
tion of the curved plate, respectively. Denoting displacements in the x, y and z
directions as u(x,y,z), v(x,y,z) and w(x,y,z), respectively, the in-plane strain dis-
placement relationships are expressed as follows.

εx =
∂u
∂x

+
1
2

(
∂w
∂x

)2

− 1
2

(
∂wo

∂x

)2

εy =
∂v
∂y
− w

R
+

1
2

(
∂w
∂y

)2

− 1
2

(
∂wo

∂x

)2

=
1
R

∂v
∂θ
− w

R
+

1
2

(
1
R

∂w
∂θ

)2

− 1
2

(
∂wo

∂x

)2

τxy =

(
1
R

∂u
∂θ

)
+

∂v
∂x

+

(
∂w
∂x

1
R

∂w
∂θ

)
where,

∂v
∂y

=
1
R

∂v
∂θ

(16)

Where Equation (16) takes the derivative with respect to x, the end-shortening dis-
placement is obtained as follows

u =
1

Rχ

∫ a

0

∫ Rβ

0

{
εxp−

1
2

(
∂ 2w
∂x2

)
+

1
2

(
∂ 2wo

∂x2

)}
dxdy

=− a
E

σ − π2

8a ∑
m

∑
n
(W 2

mn−W 2
omn)m

2
(17)

where aRχ is (m-k=0 and n-l=0) and 4aRχ/mnπ2 is (m, n = odd numbers).

The average in-plane strain in the loading direction is evaluated by dividing Equa-
tion (17) by length a, and given as follows.

ε =− 1
E

σ +
π2

8a2 ∑
m

∑
n

∑
k

∑
l

[
m2 (2Wmn∆Wmn +∆W 2

mn
)

δ∆ū =−π2

4a ∑
m

∑
n

∑
k

∑
l

[
m2 (Wmn +∆Wmn)δ ∆Wmn

(18)

2.5 Application of the principle of virtual work

To derive the average stress and average strain relationship coefficients, the princi-
ple of virtual work is applied in an incremental form. Here, it is assumed that the
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plate is in an equilibrium state with stress components (σxp +σxb),
(
σyp +σyb

)
and(

τxyp + τxyb
)

under the average stress σ . The coefficient of the deflection compo-
nents in this equilibrium state is wm. Here, the average stress is increased by ∆σ ,
and the increments of the stress components (∆σxp +∆σxb),

(
∆σyp +∆σyb

)
and(

∆τxyp +∆τxyb
)

are produced with increments of the deflection coefficient ∆wm.
The virtual work by the external load is represented as follows.

δ∆We =−Rχt (σ +∆σ)δ∆u

δ∆We =−Rχt (σ +∆σ)δ∆u

=
π2Rχt

4a
(σ +∆σ)∑

m
∑
n
(Wmn +∆Wmn)m2

δ∆Wmn

=
π2Rχt

4a ∑
m

∑
n

m2(σWmn +∆σWmn +σ∆Wmn)δ∆Wmn

(19)

However, the virtual work by the internal force is expressed as

δ∆Wi =
∫ a

0

∫ b

0

∫ t
2

− t
2


(σxp +σxb +∆σxp +∆σxb)δ (∆εxp +∆εxb)
+
(
σyp +σyb +∆σyp +∆σyb

)
δ
(
∆εyp +∆εyb

)
+
(
τxyp + τxyb +∆τxyp +∆τxyb

)
δ
(
∆τxyp +∆τxyb

)
dzdydx

(20)

δ∆We =
π2Rχ

4a ∑
m

∑
n

m2 (σwmn +∆σwmn +σ∆wmn +∆σwAmn)δwAmn (21)

δ∆Wi =t ∑
m

∑
n

∑
k

∑
l

∑
p

∑
q

∑
r

∑
s

(WmnWkl−WomnWokl +Wmn∆Wkl +∆Wkl∆Wmn){
(Wpq +∆Wpq)δ∆Wrs +(Wrs +WArs)δWApq

}
H(m,n, p,q,r,s)+

π2DaRχ

4 ∑
m

∑
n

(
m2

a2 +
n2

R2χ2

)2

(Wmn−Womn +∆Wmn)δ∆Wmn

(22)

In this manner, adoption of the principle of virtual work is written in the following
form.

δ∆We = δ∆Wi (23)
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Equation (24) can be represented as follows.

δ∆Wi =t ∑
m

∑
n

∑
k

∑
l

∑
p

∑
q

∑
r

∑
s

(WmnWkl−WomnWokl +Wmn∆Wkl +∆Wkl∆Wmn){
(Wpq +∆Wpq)δ∆Wrs +(Wrs +∆Wrs)δ∆Wpq

}
H(m,n, p,q,r,s)+

π2DaRχ

4 ∑
m

∑
n

(
m2

a2 +
n2

R2β 2

)2

(Wmn−Womn +∆Wmn)δ∆Wmn

− π2Rχ

4a ∑
m

∑
n

m2 (σWmn +∆σWmn +σ∆Wmn +∆σ∆Wmn)δ∆Wmn = 0

(24)

Where coefficients H (m, n, k, l, p, q, r, s) represent the dimensions of the plate,
elastic modulus, half waves number, these are functions from m to s. In the previous
equation, we derived the relationships of the coefficients of bending ∆Wmn and the
increment of the average compressive stress. This relationship can be represented
by inducing a first order equation about the bending coefficient of the increments

[K]{∆Wmn}= ∆σ {R}+{Q} (25)

where {∆W} represents the increment of bending

{∆W}= b∆W11 ∆W12 ∆W13 · · · · ∆WmncT (26)

∆σ {R} is the external increment and {R} is a function of the deflection coefficients
Wmn and Womn, respectively. The term {Q} is used to modify the unbalanced force
induced by linear approximation during the increment.

2.6 Increments using the arc-length method

Step i-1 can be represented as

[K(Wi−1)]
{

∆W 0
i
}
−∆σ

0
i {R(Wi−1)}= {Qi−1} (27)

Then the arc length must satisfy the following relation,

‖∆W‖2 +
(
∆σ

0
i
)2

= r2
i (28)

whereri is the arc length at step i, and the first increment of the arc length at step
i
{

∆W 0
i ,∆σ0

i

}
separately, the two parameters have the same direction, so can be

linearised as{
l

∑
m=0

∆W m
i−1

}T {
∆W 0

i
}
+

l

∑
m=0

∆σ
m
i−1∆σ

0
i = r2

i (29)
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Figure 2: Arc-length increment method.

As a linear system we get Equations (30) and (32), and then
{

∆W 0
i

}
and ∆σ0

i can
be calculated as in equation (33). K(Wi−1) −R(Wi−1)

l
∑

m=0
∆W mT

i−1

l
∑

m=0
∆σm

i−1

{ ∆W 0
i

∆σ0
i

}
=

{
Qi−1

r2
i

}
(30)

During the repeat and convergence calculations of step n, we can represent the
stiffness matrix equation as[

K(Wi−1 +
n

∑
m=0

∆W m
i )

]
{∆W n

i }−∆σ
n
i

{
R(Wi−1 +

n−1

∑
m=0

∆W m
i )

}
=
{

Qn−1
i

}
(31)

where
{

Qn−1
i

}
represents the non-parallel force shown in Equation (32).

The arc length (ri) needed to satisfy the same length can be represented as∥∥∥∥∥n−1

∑
m=0

∆W m
i +∆W n

i

∥∥∥∥∥
2

+

(
n−1

∑
m=0

∆σ
m
i +∆σ

n
i

)2

= r2
i (32)
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Equation (32) can be linearised as shown.{
n−1

∑
m=0

∆W m
i

}T

{∆W n
i }+

n−1

∑
m=0

∆σ
m
i ∆σ

n
i = 0 (33)

A system of linearisation produces Equations (31) and (33), and then {∆W n
i } and

∆σn
i can be calculated as K(Wi−1 +

n−1
∑

m=0
∆W m

i ) −R(Wi−1 +
n−1
∑

m=0
∆W m

i )

n−1
∑

m=0
∆W mT

i−1

n−1
∑

m=0
∆σm

i−1

{ ∆W n
i

∆σn
i

}
=

{
Qn−1

i
0

}
(34)

In this calculation, equation (34) is repeated until the non-parallel force {Qi} is
equal to zero.

3 Verification of the analytical method

3.1 Investigation of curvature and slenderness ratio of commercial ship struc-
tures

Before calculation, we investigated the curvature and slenderness ratios for actual
ship structures. Figure 3 shows the curvature and slenderness ratios from investi-
gations of several kinds of ships. The bilge structure of a tanker and bulk carrier
has a curvature ranging from 2,000 to 2,500 mm. However, container ships have a
larger curvature due to the increased length of these ships, ranging from 3,500 to
6,500 mm. The slenderness ratio ranges from 1.4 to 3.0 around the bilge structure
and midship section. In the present paper, the range of design parameters for the
calculations were based on the investigation of real data.

3.2 Verification of the analytical method

To demonstrate the accuracy and validity of the proposed analytical method, the
elastic buckling strength of curved plates was computed using both the proposed
energy method and FEA programs [ANSYS (2013)]. For the elastic large deflection
analyses, the FEM code ANSYS was used with the shell 181 element, which is
suitable for analysing thin to moderately thick shell structures. This element is a
four-noded Reissener-Mindlin shell element with six degrees of freedom at each
node and is applicable to simulate large strain behaviour. The arc-length method
was applied in conjunction with the modified Newton-Raphson method in both
standard and modified forms.
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Figure 3: Investigation of curvature and slenderness ratios in ship structures.

To examine the rationality of the proposed model, a series of calculations was car-
ried out changing the aspect ratio, slenderness ratio and curvature. Typical average
stress–average strain relationships are shown in Figures 4 and 6 (A), (B), (C) and
(D), respectively. The solid line with symbols indicates the results of FEM and
the isolated solid line shows the results of the analytical method. Figure 4 shows
the relationships between average stress and average strain of a curved plate with
flank angles of 5 and 20 degrees and varying plate thickness under axial compres-
sion. The unloading behaviour of a thin-walled curved plate with a flank angle of
5 degrees showed a change of deflection after primary buckling under axial com-
pression, as indicated in Figures 4 (A) and 6 (A), respectively. When small load
increments are applied to the curved plate, the middle surface compressive stress
builds up and then suddenly releases the internal strain energy in the form of ex-
ternal work done, causing secondary buckling behaviour. The secondary buckling
is generally accompanied by snap-through or snap-back buckling phenomena with
changing deflection shape. This is the most difficult problem in nonlinear structural
analysis. For most practical problems, it is unnecessary to find such uncertain loads
and deflection paths. In most cases, the analysis of buckling and post-buckling be-
haviour using FEM can follow the unloading path using the arc-length method.
However, using the analytical method it did not occur, so slightly different buck-
ling stress is shown. The post-buckling behaviour shows good correlation between
the FEM and analytical methods. Figure 4 (B) shows an increase in thickness with
the same flank angle. Increasing the plate thickness also rapidly increases buckling
strength, and unloading behaviour was not observed. When the increased flank
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angle, elastic buckling strength also increased and cylindrical buckling deflection
took place at the loading edges, as shown in Figures 4 (C) and 6 (B), respectively.
Figure 4 (D) shows a thick curved plate with almost perfectly linear elastic buckling
behaviour.

between the FEM and analytical methods. Figure 4 (B) shows an increase in thickness with the 

same flank angle. Increasing the plate thickness also rapidly increases buckling strength, and 

unloading behaviour was not observed. When the increased flank angle, elastic buckling strength 

also increased and cylindrical buckling deflection took place at the loading edges, as shown in 

Figures 4 (C) and 6 (B), respectively. Figure 4 (D) shows a thick curved plate with almost 

perfectly linear elastic buckling behaviour. 
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Figure 4: Comparison of calculated results (a/b=3.0, flank angle = 5 degrees) Figure 4: Comparison of calculated results (a/b=3.0, flank angle = 5 degrees).

Figure 5 shows the relationship between the average stress and average strain curves
for elastic large deflection analysis under axial compression. The plate thickness
is taken as 10 and 20 mm, the aspect ratio considered is 3.5, and the maximum
magnitude of initial deflection is 0.1% of plate thickness. Two kinds of calculation
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are compared for validation. The pre-buckling behaviour of the cylindrically curved
plate is approximately linear just before buckling occurs. The curved plate with a
flank angle of 5 degrees shows slightly different post-buckling behaviour around the
occurrence of primary buckling, but the overall behaviour appears similar to that
indicated in Figures 6 (A) and 6 (C), respectively. The pre-buckling behaviour of
the cylindrically curved plate is approximately linear just before buckling occurs. It
is interesting to see that the buckling and post-buckling behaviour is well predicted
by both the analytical and FEM methods.
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Figure 7: Relationships between elastic buckling stress and flank angle at varying plate 

thicknesses; comparison of FEM and analytical methods (a/b=3.0) 

Figure 6: Comparison of buckling deflection at each check point obtained by FEM
(a/b=3.0), (left) t = 10 mm, flank angle = 5 degrees, (right) t = 10 mm, flank angle
= 20 degrees.

Figure 7: Relationships between elastic buckling stress and flank angle at varying
plate thicknesses; comparison of FEM and analytical methods (a/b=3.0).
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Figure 7 shows the distribution of elastic buckling stresses against varying flank
angles for a cylindrically curved plate subjected to axial loading. When the flank
angle increases, buckling stress increases to almost linear behaviour. Although
some differences are observed in the case of a thin curved plate with a small flank
angle, the agreement between results calculated by the proposed analytic method
and FEM is considered satisfactory. This is evidence that the analytical formulation
is sufficiently accurate compared to the FEM method.

4 Conclusions remarks

This paper proposed to clarify the simulation of elastic buckling and post-buckling
behaviour with secondary buckling. Fundamental equations were derived for elas-
tic large deflection analysis to simulate the elastic buckling and post-buckling be-
haviour of cylindrically curved plates under axial compression. An explicit buck-
ling solution was obtained from a formulation of the total potential energy for cylin-
drically curved plates. The accuracy of the proposed method was verified by com-
paring its results with those of FEA code.

The calculated results found that the elastic primary buckling strength of a cylin-
drically curved plate increases with an increase in flank angle. After the occur-
rence of primary elastic buckling, buckling deformation increases with reduced
axial rigidity. Secondary buckling then follows. After the secondary buckling, the
equilibrium path is unstable, so that both axial load and displacement decrease with
changes in buckling shape. This equilibrium path can be simulated by applying the
arc-length method.

The analytical method derived here can be adopted as a basis for an advanced the-
oretical method to predict the nonlinear buckling strength of a curved plate with
varying flank angles and thickness configurations. It is recommended that this so-
lution be used to determine the elastic and post-buckling strength of curved plates,
with no need for more complex FEA programs.
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