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Probability Density Transitions in the FitzHugh-Nagumo
Model with Lévy Noise

Xu Yong1,2, Feng Jing1, Xu Wei1 and Gu Rencai1

Abstract: In this paper, bifurcation analysis and numerical simulations are per-
formed on the FitzHugh-Nagumo system in the presence of Lévy stable noise. The
stationary probability density functions are obtained to examine the influences of
noise intensity and stability index. Results show that under the influences of noise
intensity and stability index, the dynamic of the FitzHugh-Nagumo model can be
well characterized through the concept of stochastic bifurcation, consisting in qual-
itative changes of the stationary probability distribution. Then, the mean passage
time between the resting and action state is investigated as functions of noise inten-
sity and stability index of the external signal by means of numerical simulations.
Dependences of the results on the parameters of Lévy noise are discussed to find
the different mechanisms compared with Gaussian case.

Keywords: Lévy noise, FitzHugh-Nagumo model, firing time, stochastic bifur-
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1 Introduction

The investigation about influences of various external perturbations on complex
system dynamics has attracted large attention over the past decade. A number of
issues have emphasized the constructive role of noise sources [Hennequin (2004);
Ushakov et al. (2005); Mankin et al. (2006)]. Starting from the need to un-
derstand how nonlinear systems evolve in the presence of noise, varieties of dif-
ferent phenomena have been discovered [Bondareva, Zmievskaya and Levchenko
(2008); Ghosh, Barik and Ray (2005); Xu et al. (2014); Yue, Xu and Yuan (2013)].
Stochastic bifurcation, which has been developed to study the changes of existence
and stability of limiting distributions, is one of the interesting phenomena induced
by noise. Nowadays, large number of investigations has been devoted to study
changes in the dynamics of nonlinear systems through the concept of stochastic
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bifurcations [Chiarella et al. (2008); Zakharova et al. (2010)]. The mean first
passage time (MFPT), which is defined as the average time that the walker used
to reach some given final node for the first time from a given initial node [Risken
(1996)], has also received a considerable amount of attention. As a basic quantita-
tive measure of the transportation efficiency, it is widely applied to describe various
dynamic features such as exit problems, switching time, activation rates and so on
[Hofmann and Ivanyuk(2003); McKenzie, Lewis and Merrill (2009)].

In neuronal systems, noise arises from kinds of different sources in neurons. Under-
standing how the noise influences the dynamical property is very important for one
to comprehend biological characters in theoretical neuroscience. A broad spectrum
of phenomena due to noise has been discovered in different neuronal networks [Jia
et al. (2012); Kitajima and Kurths (2005); Tuckwell, Rodriguez and Wan (2003);
Wu et al. (2013)]. One of the most famous neuronal models is the FitzHugh-
Nagumo (FHN) model for the conduction of electrical impulses along a nerve fiber
[FitzHugh (1961)]. As a simplification of the Hodgkin–Huxley model proposed
by Hodgkin and Huxley in 1952, FHN model was developed to investigate the re-
sponse of cylindrical cells to external electric fields. The investigation of effects of
various external perturbations in FHN system has attracted large attention in these
years. In [Pikovsky and Kurths (1997)], the dynamics of the excitable FHN system
under external noisy driving was examined. The response time of a neuron in the
presence of a strong periodic driving in the stochastic FitzHugh–Nagumo model
was studied in [Pankratova, Polovinkin and Spagnolo (2005)]. The FHN neural
model driven by two multiplicative noises and one additive noise was also investi-
gated [Tang et al. (2008)]. It can thus be seen, that fluctuation plays a significant
role in neurons.

Despite the broad interest of this problem, few people paid attention to the ef-
fects of non-Gaussian noise in the FHN system. Stochastic fluctuations associated
with an FHN system were always assumed to be Gaussian cases, since the distri-
butions of most random excitation can be approximated by Gaussian distribution
with the foundation of central limit theorem. However, Gaussian noise can only
model those small fluctuations and many experimental results offer strong evidence
that noise source which is more frequently encountered in practice could be non-
Gaussian in distribution. The Lévy stable distribution with 0 < α < 2 is a more ap-
propriate choice when one considers realistic phenomena, where complexity, non-
uniformity and long-range correlations play a role [Dybiec, Gudowska-Nowak and
Sokolov (2007); Edwards et al. (2007); Chechkin et al. (2006); Dubkov, Spagnolo
and Uchaikin (2008)]. Recently, effects of non-Gaussian Lévy noise in nonlinear
systems have attracted growing attention in physics, biology, engineering, natural
science and social science [Bartumeus et al. (2005); Krlín, Paprok and Svoboda
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(2008); Majumdar and Zi (2008); Ponomarev, Denisov and Hänggi (2011); Xu et
al. (2013); Xu et al. (2015); Zeng and Xu (2010)]. Despite that, an FHN model
with Lévy noise has never been discussed in the literature and we aim to fill up
the research gap in this paper. With this in mind, the purpose of the present paper
is to study the stochastic bifurcation in the FHN system with non-Gaussian Lévy
noise. Besides, we will focus on transport properties of the FHN system which can
be obtained as the average of first passage times.

2 The system model

Consider the following one-dimensional FHN neural system [Alarcón, Pérez-Madrid
and Rubí (1998)] driven by Lévy stable noise

dv
dt

= v(a− v)(v−1)− b
γ

v+ζ (t), (1)

where v is the variable representing the neuron membrane voltage, 0 < a < 1 is
essentially the threshold value, b and γ are positive constants, ζ (t) is Lévy stable
noise, which is derivative of the Lévy stable motion L(t) and L(t) can be see a
generalized Wiener processes.

Lévy distributions Lα,β (ζ ;σ ,µ) correspond to a four-parametrical family of the
probability density functions characterized by their Fourier transforms Φ(k) (char-
acteristic functions of the distributions), that is Φ(k) = F(Lα,β (ζ ;σ ,µ)) =

∫ +∞

−∞

dζ eikζ Lα,β (ζ ;σ ,µ)[Janicki and Weron (1994)], then

Φ(k) = exp
[
−σ

α |k|α
(

1− iβ sgn(k) tan
πα

2

)]
, (2)

forα ∈ (0,1)∪ (1,2] and

Φ(k) = exp
[
−σ |k|

(
1+ iβ sgn(k)

2
π

ln |k|
)]

. (3)

for α = 1. Here the parameter α(0 < α ≤ 2) characterizes the asymptotic tail
of the Lévy distribution Lα,β (ζ ;σ ,µ) for α < 2 as Lα,β (ζ ;σ ,µ) ∼ |ζ |−α−1 with
|ζ | << 1. The parameter β (−1 ≤ β ≤ 1) is the skewness parameter defining
the degree of asymmetry of the distribution, µ (−∞ ≤ µ ≤ ∞) is the center or
location parameter which denotes the mean value of the distribution when α > 1.
σ represents the generalized diffusion coefficient and D = σα is the noise intensity.
The probability distributions for different values of α and β are given in Fig. 1
(a). Fig. 1 (b) shows a sample trajectory generated by McCuUoch algorithm with
α = 1.75,β = 0.0,µ = 0.0,σ = 1.0. In this paper, we consider the symmetric Lévy
distribution case with β = 0.0, µ = 0 and 1≤ α ≤ 2.
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Figure 1: (a) Probability density function of Lévy stable noisefor fixed values of  and  , and 

different values of  and  ；(b) A sample trajectory of Lévy stable noise ( 1.75, 0.0   ). 
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Figure 2: The potential ( )U v for 0.5, 0.04, 1.0a b    . 

The potential function of system (1) is 
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Figure 1: (a) Probability density function of Lévy stable noisefor fixed values of
σandµ , and different values of αand β ; (b) A sample trajectory of Lévy stable
noise (α = 1.75,β = 0.0).
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Figure 2: The potentialU(v)fora = 0.5,b = 0.04,γ = 1.0.

The potential function of system (1) is

U(v) =
1
4

v4− a+1
3

v3 +
a+b/γ

2
v2. (4)

If b
γ
<
(a−1

2

)2, the potential function have two stable points v1 = 0, v2 =
a+1+
√

(a−1)2−4b/γ

2
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and an unstable state vu =
a+1−
√

(a−1)2−4b/γ

2 . In Fig.2, we show the potential whose
shape varies with the parameters. In our paper, we set a = 0.5,b = 0.04,γ = 1.0
and it can clearly see that the potential has two stable states. The positions of the
potential minima, corresponding to v1 and v2, are regarded as the resting state and
the excited state of the neuron, respectively.

3 Phase transitions in the FHN system with Lévy stable noise

The corresponding fractional Fokker-Plank equation (FFPE) of system (1) is [Ben-
son, Wheatcraft and Meerschaert(2000)]:

∂

∂ t
P(v, t) =− ∂

∂v
F(v)P(v, t)+D

∂ αP(v, t)
∂ |v|α

, (5)

where F(v) = v(a− v)(v−1)− b
γ
v =−v3 +(a+1)v2− (a+ b

γ
)v. The Riesz space

fractional derivative ∂ α/∂ |x|α is defined through the Weyl fractional operator as
[Risken (1996)]:

∂ αP(v, t)
∂ |x|α

=−
Dα
+P(v, t)+Dα

−P(v, t)
2cos(πα/2)

, (6)

where

Dα
+P(v, t) =

1
Γ(2−α)

d2

d2x

∫ x

−∞

P(η , t)dη

(x−η)α−1 , (7)

and

Dα
−P(v, t) =

1
Γ(2−α)

d2

d2x

∫
∞

x

P(η , t)dη

(x−η)α−1 . (8)

Concerning the exact analytical solution of Eq. (5) is very difficult to get, we esort
to the Grünwald-Letnikov scheme [Zeng and Xu (2010)] to numerically solve Eq.
(5). In our simulation, we set the time step ∆t = 0.01 and the initial conditions
P(v,0) = δ (v). In another way, the numerical solutions could also be obtained by
order-4 stochastic Runge-Kutta algorithm as the following form:

k1 = ∆t ·F(vn),k2 = ∆t ·F(vn + k1/2),

k3 = ∆t ·F(vn + k2/2),k4 = ∆t ·F(vn + k3),

vn+1 = vn +(k1 +2k2 +2k3 + k4)/6+∆t1/α ·ζn,

(9)

where ζn is Lévy distributed random variable with noise intensity D and stability
index α . Take the initial conditions t0 = 0,v(0) = 0.0 and the time step ∆t = 0.01
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Runge-Kutta algorithm as the following form: 
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Figure 3: The probability density ( , )P v t  at different times for 1.75, 0.05D    of the noisy FHN 

neural system. (a) from using Grünwald-Letnikov scheme to solve the spatial FFPE (5)；(b) Monte 

Carlo experiments results from Eq.(1)． 

The probability density functions ( , )P v t  at different times for 1.75, 0.05D    of the 

noisy FHN neural system with system parameters 0.5, 0.04, 1.0a b     are given in 

Fig.3. Where Fig.3 (a) is obtained by using Grünwald-Letnikov scheme to solve Eq.(5), while 

the Monte-Carlo simulation results are depicted in Fig.3 (b). It is clear that the presented 

results demonstrate an excellent agreement between the two different approaches, which 

shows the validity of the Grünwald-Letnikov scheme. From Fig.3, we can found that all the 

systems preserve the states after the time 20t s . Therefore, it can be regarded as stable, i.e. 

( ) ( ,20)stP v P v . 

We demonstrate the stationary probability density ( )stP v  versus different noise intensity D  

in Fig.4. One can observe that, for fixed 1.8   in Fig.4(a), the probability distribution has 

two peaks for small noise intensity, at the rest state and the excited state, respectively. The 

peak on the left is much higher, indicating that the neuron system stays at the rest state most 

Figure 3: The probability density P(v, t) at different times for α = 1.75,D= 0.05 of
the noisy FHN neural system. (a) from using Grünwald-Letnikov scheme to solve
the spatial FFPE (5); (b) Monte Carlo experiments results from Eq.(1).

in numerical calculations, and then the probability density function p(v, t) can be
obtained by Monte-Carlo method with simulation times N = 105.

The probability density functions P(v, t) at different times for α = 1.75,D = 0.05
of the noisy FHN neural system with system parameters a = 0.5,b = 0.04,γ = 1.0
are given in Fig. 3. Where Fig. 3 (a) is obtained by using Grünwald-Letnikov
scheme to solve Eq. (5), while the Monte-Carlo simulation results are depicted in
Fig. 3 (b). It is clear that the presented results demonstrate an excellent agreement
between the two different approaches, which shows the validity of the Grünwald-
Letnikov scheme. From Fig. 3, we can found that all the systems preserve the states
after the time t = 20s. Therefore, it can be regarded as stable, i.e. Pst(v) = P(v,20).

We demonstrate the stationary probability density Pst(v) versus different noise in-
tensity D in Fig. 4. One can observe that, for fixed α = 1.8 in Fig. 4(a), the
probability distribution has two peaks for small noise intensity, at the rest state and
the excited state, respectively. The peak on the left is much higher, indicating that
the neuron system stays at the rest state most of the time. When we increase the
value of noise intensity D, both the peak values of probability distribution Pst(v)
will decrease, and the stationary probability density Pst(v) gradually undergoes a
succession of a phase transition from bimodal to unimodal. Finally, the system can
only be found at the rest state and we can say that the system is locked at the rest
state. We come to the same conclusion in Fig.4(b) when α = 1.6 and we can say
that the noise intensity of Lévy noise plays a negative role in firing neurons.

The stationary probability density Pst(v) versus different stability index is shown in
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Figure 4: The probability density ( )stP v of the noisy FHN neural system versus different value of noise 

intensity D (a) 1.8  (b) 1.6  ． 

The stationary probability density ( )stP v  versus different stability index is shown in Fig.5. 
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Figure 4: The probability density Pst(v) of the noisy FHN neural system versus
different value of noise intensityD (a) α = 1.8 (b) α = 1.6.
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Figure 5: The probability density ( )stP v  of the noisy FHN neural system versus different value of 

stability index (a) 0.1D  ；(b) 0.5D  . 
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Figure 6: Bifurcation diagram of the system (1) in the parameter plane ( , )D  . The stationary 

probability density is bimodal in the tinted region and unimodal in the gap region. The line 

Figure 5: The probability density Pst(v) of the noisy FHN neural system versus
different value of stability index α (a) D = 0.1; (b) D = 0.5.

Fig. 5. In Fig. 5 (a), the intensity D is fixed at 0.1 and α changes. From which,
we note that Pst(v) is bimodal distribution but the gap between the left peak and the
right peak is not large for α = 2.0. Decreasing the stability index α , the bimodality
of Pst(v) does not change, which means there is no transition occurs. However, the
peaks of Pst(v) become more precipitous and the gap between two peaks becomes
much larger. Fix D = 0.5, the stationary probability density Pst(v) versus different
index α is shown in Fig. 5 (b). We could find that the probability distribution Pst(v)
is unimodal in the Gaussian case, see curve 1 in Fig.5(b); and for α = 1.1, Pst(v)
convert to bimodal distribution, as curve 3 in Fig. 5(b) shows. Therefore, there is a
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(1) in the parameter plane ( , )D   is given in Fig.6. The stationary probability density is 

bimodal in the tinted region and unimodal in the gap region. The line l  is the boundary of 

the tinted region, which corresponding to phase transition. One can clearly observe that both 

noise intensity and stability index could be regarded as relevant control parameters for phase 

transitions. ( )stP v  is unimodal for any value of   if 0.22D  . Increasing the 

intensity D , the bimodality region becomes broader. Similarly, ( )stP v  always presents a 

single peak for small values of stability index and the bimodality region appears 

when 1.44  . With the increase of the stability index, the bimodality region becomes 

broader and reaches the maximum in the Gaussian case. Additionally, it could be worth 

noticing that when the stationary probability density ( )stP v  is bimodal distribution, the left 

peak is large than the right peak, which is agree with the fact that cell neuron system keeps in 

the resting state in most time. 
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Figure 5: The probability density ( )stP v  of the noisy FHN neural system versus different value of 
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Figure 6: Bifurcation diagram of the system (1) in the parameter plane (D,α). The
stationary probability density is bimodal in the tinted region and unimodal in the
gap region. The line l corresponds to phase transition.

phase transition happens in the noisy FHN neural system during the stability index
α decrease from 2.0 to 1.1 and it also show compelling evidence that there are
noticeable differences in dynamics under Gaussian and non-Gaussian Lévy noise.

Form analyses above, we can get the conclusion that both the change of noise in-
tensity D and stability index α could induce phase transitions. The bifurcation
diagram of the system (1) in the parameter plane (D,α) is given in Fig.6. The
stationary probability density is bimodal in the tinted region and unimodal in the
gap region. The line l is the boundary of the tinted region, which corresponding to
phase transition. One can clearly observe that both noise intensity and stability in-
dex could be regarded as relevant control parameters for phase transitions. Pst(v) is
unimodal for any value of α if D < 0.22. Increasing the intensity D, the bimodality
region becomes broader. Similarly, Pst(v) always presents a single peak for small
values of stability index and the bimodality region appears when α > 1.44. With the
increase of the stability index, the bimodality region becomes broader and reaches
the maximum in the Gaussian case. Additionally, it could be worth noticing that
when the stationary probability density Pst(v) is bimodal distribution, the left peak
is large than the right peak, which is agree with the fact that cell neuron system
keeps in the resting state in most time.
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4 Mean First Passage Time

In this section, we focus on the passage time between the resting and action state.
The problem has been extensively studied for the Gaussian process. However, if
the stochastic driving obeys the general Lévy stable distribution which different
from the Gaussian, the transport properties of these dynamic systems will also be
different.

For the purpose of analysis, we will compute the MFPT which is defined by the
first time of the particle jumps from one potential well to another and compare the
results. To evaluate how Lévy noise affects the activation time of the system, we
first use an approximation of the potential by a linear slope with a re?ecting barrier
placed at the resting state v1 and absorbing barrier at action v2 to obtain the time
in forward direction. When the parameters a = 0.5, b = 0.04, γ = 1.0, v1 = 0,
v2 = 0.9. Taking the time step ∆t = 0.001, and average over N = 10000 different
noise realizations. Then, we compute the MFPT from v2 to v1 in order to study the
influences of Lévy noise on the time that is used to transport from action state to
resting state. The simulative results of MFPT and some analyses are presented as
follows.

 

 

l corresponds to phase transition. 

 

4 Mean First Passage Time  

In this section, we focus on the passage time between the resting and action state. The 

problem has been extensively studied for the Gaussian process. However, if the stochastic 

driving obeys the general Lévy stable distribution which different from the Gaussian, the 

transport properties of these dynamic systems will also be different.  

For the purpose of analysis, we will compute the MFPT which is defined by the first time of 

the particle jumps from one potential well to another and compare the results. To evaluate 

how Lévy noise affects the activation time of the system, we first use an approximation of the 

potential by a linear slope with a reflecting barrier placed at the resting state 1v  and 

absorbing barrier at action 2v  to obtain the time in forward direction. When the 

parameters 0.5, 0.04, 1.0a b    , 1 20, 0.9v v  . Taking the time step 0.001t  , and 

average over 10000N   different noise realizations. Then, we compute the MFPT from 2v  

to 1v  in order to study the influences of Lévy noise on the time that is used to transport from 

action state to resting state. The simulative results of MFPT and some analyses are presented 

as follows. 

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D

lo
g

1
0
M

F
P

T

(a)

 

 

=2.0

=1.75

=1.5

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D

lo
g

1
0
M

F
P

T

(b)

 

 

=2.0

=1.75

=1.5
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Figure 7: Mean first passage time as a function of D for α = 2.0,1.75 and 1.5.(a)
v1→ v2; (b) v2→ v1. The mean first passage time decrease with the increase of the
noise intensity in two directions.

In Fig. 7(a) and 8(a), it can be seen that the mean activation time decreases due to
the increases of noise intensity and stability index. That means the two parameters
could facilitate the transition from the resting state to the action one. Therefore,
they can speed up the activation of the system. As shown in Fig. 7(b) and 8(b), we
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find that when the system is initially at action state, the transition from the action
state to the rest one would become much easier with the increase of both noise
intensity and stability index.
easier with the increase of both noise intensity and stability index.  
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Figure 8: Mean first passage time as a function of α for D = 0.1,0.2 and 0.3. (a)
v1 → v2; (b) v2 → v1. Incresaing the stability index, the mean first passage time
decreases in two directions.

Looking at the Fig. 8 in more detail, both the time in two directions reach minimum
for the Gaussian case corresponds to α = 2.0. That is to say, as α → 2.0, large
jumps gradually disappear and the mean first passage time becomes smaller. The
analysis reveals that large jumps play negative roles in the transitions of the system
(1).

From Fig. 7 and Fig. 8, one can notice that the changing relation of log10 MFPT
and α is nearly linear, while the changing relation of log10 MFPT and D is nonlin-
ear, and the decreasing rate of MFPT gradually decrease as noise intensity increas-
ing. Therefore, both the reduction of noise intensity D and stability index α could
make the MFPT decline, but there are quilt different.

5 Conclusions

The paper has discussed the phase transitions and the mean first passage time of
the one-dimensional FHN neural system driven by Lévy stable noise. We have
investigated the interaction mechanism of noise intensity and stability index. The
stationary probability density functions are obtained by the technique of Grünwald-
Letnikov scheme, and the Monte Carlo method is used to test the validity of the
numerical scheme, which indicates the effectiveness of the numerical method. Ac-
cording to the change of the stationary probability density Pst(v), the transition
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behaviors are researched, and bifurcation diagram of the system in the parameters
plane (D,α) is given in the paper. We find that the decrease of the stability index
α of Lévy noise can make the peak value of probability density increases, even can
make Pst(v) split from unimodal to bimodal distribution. That is to say, not only the
noise intensity D but also the stability index α can be seen as bifurcation parameter.

In addition, the effects of D and α on MFPT of the system in two directions are
studied. The results demonstrate that when α is fixed, the MFPT decreases with
the increase of D. Thus, the increase of noise intensity can shorten the change-over
time of the cell neurons resting and excited state and accelerate neurons discharge
rhythms. Therefore, the existence of the Lévy stable noise has the positive sense to
the transmission of Neurons information. Besides, if α is fixed, the MFPT presents
increasing trend with the decrease of α . That is, the decrease of Lévy stable index
α can make the transition of cell neurons between two states be more difficult,
which is bad for the transition of cell neurons. So, if we want to speed up the
transmission speed of cell neurons information, we should avoid rather fluctuant
external stimuli.
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