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Abstract: Particle swarm optimization algorithm based particle filter is trapping
in local optimum easily, it is not able to satisfy the requirement of modern inte-
grated navigation system. In order to solve the problem, A novel particle filter
algorithm based on hybrid adaptive particle swarm optimization(HPSO-PF) is pre-
sented in this paper. This improved particle filter will conduce to finding the ideal
solution domain by making use of the global convergence of artificial fish swarm
and enhancement of fusion precision by guiding particles to move toward the high
likelihood area through particle swarm optimization. Finally different models are
used for simulation and the experiment results show that this new particle filter
improves the precision of integrated navigation system.

Keywords: dynamic, particle filter, integrated navigation, hybrid adaptive.

1 Introduction

The measurement error of global positioning system is not accumulated over the
time, but the system is prone to disturbance despite the high measurement accu-
racy [e.g. Bhatt, Aggarwal and Devabhaktuni (2012)]. By comparison, however,
integrated navigation system is free from external disturbance due to the use of in-
dependent navigation mode, but the measurement error is accumulated over time
[e.g. Soon, Scheding and Lee (2008)]. GPS/INS integrated navigation system has
upgraded the overall performance significantly [e.g. Hu, Gao and Zhong (2015)]
Provided global positioning system receiver is capable of receiving the information
sent by at least 4 satellites, GPS can offer solution position information, and inertial
navigation system will measure the position and attitude information of the aircraft
by means of angular rate sensor and linear acceleration
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In the indirect estimation on the integrated navigation system, navigation parame-
ter error equation constitutes the main part of integrated navigation system’s state
equation. However, considering that there is a small error, the rules of integrated
navigation parameter error will be described by Kalman filter and first-order ap-
proximation equation in case of the requirement for low accuracy and the model
error is not high.

However, we have made an increasingly higher demand [e.g. Cho (2014)] on the
accuracy of integrated navigation in recent years, because of which the model error
resulting from the use of low-order approximation cannot be ignored. Additionally,
measurement noise and system noise may be the non-Gaussian noises Particle filter
(PF) [e.g. Zhou, Yang, and Mi (2012)] is a statistic filtering based on Monte Carlo
Method it is widely applied to positioning and navigation of non-linear system
and non-Gaussian noise field [e.g. Wang Haynes Huang Dong and Atluri (2015)]
as its state function and observation function has no non-linear and non-Gaussian
hypothesis. Nevertheless, particle filter may confront with the problem of weight
degradation which if solved by resampling method may result unavoidable particle
impoverishment.

Particle filter based on intelligent optimization conduces to significant improve-
ment of particle degradation in Particle filter and great enhancement of precision.
Particle filter based on particle swarm optimization (PSO-PF) is a typical represen-
tative of intelligent optimized particle filter which introduces particle swarm opti-
mization into particle filter. Through introduction of the latest observation value to
the sample distribution, along with the utilization of particle filter for sampling pro-
cess optimization and constantly update of particle speed, the sample distribution
is inclined to move to the true area with higher posterior probability. Particle filter
based on particle swarm optimization improves the particle degradation of article
filter. However, PSO-PF is a process of iterative optimization which will prolong
the calculation time because of the high iterative frequency, and thus is hard to
meet the needs of real-time target tracking by radar in actual practices. Moreover,
particle filter based on particle swarm optimization will be easily trapped into local
optimization [e.g. Chen, Bo Wu and Zhou (2013)].

This paper presents a new hybrid adaptive optimization algorithm based on artificial
fish swarm algorithm (AFSA) and particle swarm optimization algorithm. This new
algorithm finds satisfied particle range by artificial fish swarm, and then performs
quick local searching by PSO, accordingly updating the information of corrected
particles and enhanced the local searching speed of particles and showing global
convergence property In this way, the locating precision of integrated navigation
system was improved.
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2 Particle filter

Particle filter (PF) is an approximate calculation of Bayes estimation based on sam-
pling theory. Combining Monte Carlo Method and Bayesian Theory, PF follows the
thought that to gain a group of sample for approximation of posterior probability
density, replace the infinitesimal calculus in light of posterior probability density
function by sample mean value, and thus acquire the minimal estimate of variance
[e.g. Jian Xu and Yin (2010)].

3 AFSA algorithm

Artificial fish swarm algorithm is an optimization algorithm by simulation of be-
haviors of shoals of fish swarm, which starts from behaviors of the animals in sim-
ple structures and ends up with highlighting global optimized value in the group by
means of optimization for behaviors of individual artificial fish. The algorithm is
described as follows: Assuming the state of individual artificial fish be expressed
as vector X = (x1,x2, · · ·,xn), wherein xi(i = 1, · · ·,n) signifies variables to be op-
timized; the density of artificial fish is localized is Y = f (X), wherein, Y indicates
the objective function value; the distance between individual artificial fish is ex-
pressed as di, j =

∥∥Xi−X j
∥∥, and visual represents the conception range for artificial

fish; δ is congestion factor; and step is expressed as the length of moving step. The
behavior of artificial fish is described as follows:

(a) Foraging behavior. Upon detection of food, artificial fish would swim towards
the gradually-increasing food areas. Set the current state of fish is Xi, randomly
select a state X j within the conception range (di, j < visual), and calculate the fitness
function. When Yi < Yj, Xi steps towards X j; otherwise with random step-forward,
a new state will be entered into, i.e.:

If Yi < Yj,Xinext = Xi + r · s ·
X j−Xi∥∥Xi−X j

∥∥ ; Else Xinext = Xi + r · s (1)

Wherein, s is the maximum step length; r indicates a random number between 0
and 1.

(b) Swarm behavior. To ensure their own survivals free from harmfulness, artificial
fish naturally swarms together. Fish Xi searches for the numbers of partners n f and
central position Xc within the field of view. When Yc/n f > δ ·Yi, there is adequate
food among the artificial fish and it would not be so packed, thus Xi steps forward;
else, perform foraging behavior.

If Yc/n f > δ ·Yi, Xinext = Xi + r ≤ ·s · Xc−Xi∥∥Xc−X j
∥∥ ; (2)
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4 PSO-PF algorithm

The sampling process of particle filter is suboptimal, whereas the incorporation of
particle swarm optimization can optimize the sampling process of particle filter,
allow the weight sets are more inclined to high likelihood area [e.g. Hwang Sung
(2013)], accordingly solving the problem of impoverishment, and conducing to re-
duction of particle numbers required by particle filter. particle swarm optimization
thought is fused with particle and the key lies in utilizing the optimized state value
Ppbest experienced by the particles and the state value Pgbest of the maximum par-
ticle with the greatest fitness function value, and updating the particles’ speed and
position through equation (3) and (4), accordingly forcing the particles to be closer
to the real state.

V i
k = |Randn|× (Ppbest−X i

k−1)+ |randn|× (Pgbest−X i
k−1) (3)

X i
k = X i

k−1 +V i
k−1 (4)

Where |Randn| and |randn| are positive Gaussian distribution random numbers.

5 Building of GPS/INS Integrated Navigation Model

5.1 State and Measurement Equations

The application of particle filter to integrated navigation system is ultimately in-
tended for a more accurate parameter [e.g. Chen Z.M, Bo Wu and Yu (2012)], and
the selection of filter state normally resorts to indirect process, i.e., the error ∆X
of navigation parameter outputted by a certain system is taken as particle filter’s
estimated value. While indirect process is used for estimation, the estimated state
of PF will be the combination of various errors in integrated navigation system.
Therefore, the estimation process of PF should be independent of the computation
of the integrated navigation parameters, and the INS will have the strength of high
update frequency fully revealed [e.g. Hide Moore and Smith (2003)].

Supposing the combination mode of integrated navigation system relies on the com-
bination between attitude and velocity, integrated navigation system’s measurement
can be divided into two values, namely, difference value of position and that of ve-
locity [e.g. Ding, Wang and Rizos (2007)]. Difference value of position means
that the difference between the position information rendered by inertial navigation
system and the information of relevant position calculated by global positioning
system receiver is figured out as measurement information. Difference value of
velocity measurement means that the difference between the information rendered
by inertial navigation system and the information of relevant velocity offered by
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global positioning system receiver is worked out as another type of measurement
information.

The error state equation of integrated navigation system is shown as follows:

XXX(t) = FFF(t)XXX(t)+GGG(t)WWW (t) (5)

Where, X(t) = [φE φN φU δvE δvN δvU δL δλ δh εbx εby εbz εrx εry εrz ∇x ∇y ∇z ]
T
18×1

The position measurement of inertial navigation system will be expressed as the
sum of true value and corresponding error under the geographic coordinate system. LI

λI

hI

=

 Lt +δL
λt +δλ

ht +δh

 (6)

The position measurement offered by global positioning system receiver can be
expressed as the difference between true value and corresponding error under the
geographic coordinate system. LG

λG

hG

=

 Lt − NN
RM

λt − NE
RN cosL

ht −Nh

 (7)

Where λt , Lt , and ht are actual location, and NE , NN , and NU for the errors of global
positioning system receiver in the eastward, northward and skyward directions.

The position measurement vector is defined as follows:

Zp(t) =

 (LI−LG)RM

(λI−λG)RN cosL
hI−hg

=

 RMδL+NN

RNδλ cosL+NE

δh+NU

≡ HHH p(t)XXX(t)+VVV p(t)

(8)

Where, HHH p =
[

03×6
... diag[RM RN cosL 1]

... 03×9

]
3×18

VVV p = [NN NE NU ]
T

The variances of measurement noise are σ2
pN , σ2

pE , and σ2
pU .

σpN = σp ·HDOPN

σpE = σp ·HDOPE

σpU = σp ·HDOP
(9)

Where, σp stands the pseudo-range measurement error.
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The velocity measurement information of inertial navigation system can be ex-
pressed as the sum of true value and corresponding velocity error under the geo-
graphic coordinate system. vIN

vIE

vIU

=

 vN +δvN

vE +δvE

vU +δvU

 (10)

Where vE , vN , and vU represent the true velocities along eastward, northward and
skyward axes under geographic coordinate system.

The velocity measurement of global positioning system can be also expressed as
the difference between true value and corresponding velocity measurement error
under the geographic coordinate system vGN

vGE

vGU

=

 vN−MN

vE −ME

vv−MU

 (11)

Where MN , ME and MU constitute the components of velocity measurement errors
of GPS receiver along three axes, namely, northward, eastward and skyward axes.

Below is the definition of velocity measurement vector:

Zp(t) =

 vIN− vGN

vIE − vGE

vIU − vGU

=

 δvN +MN

δvE +ME

δvU +MU

≡ Hv(t)X(t)+Vv(t) (12)

Where,Hv =
[

03×3
... diag[1 1 1]

... 03×12

]
, Vp = [MN ME MU ]

T

Assuming the measurement velocity of pseudo-range rate ρ̇ of global positioning
system receiver is σ2

ρ̇
, the standard deviations of the eastward, northward and sky-

ward velocity errors resulting from pseudo-range rate is:
σvE = HDOPE ·σρ̇

σvN = HDOPN ·σρ̇

σvU =V DOP·σρ̇

(13)

The combination of position vector with velocity vector can obtain the measure-
ment equation of position and speed integration system:

Z(t) =
[

Zp(t)
Zv(t)

]
=

[
Hp

Hv

]
X(t)+

[
Vp(t)
Vv(t)

]
= H(t)X(t)+V (t) (14)
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5.2 Discretization of State and Measurement Equations

Following result can be obtained through the state equation (3) and measurement
equation (14):

XXXk = ΦΦΦk,k−1XXXk−1 +ΓΓΓk−1WWW k−1 (15)

ZZZk = HHHkXXXk +VVV k (16)

Where , ΦΦΦk,k−1 =
∞

∑
n=0

[F(tn)T ]n/n!, ΓΓΓk−1 =

{
∞

∑
n=1

1
n! [F(tk)T ]

n−1
}

G(tk)T

As required by filter, the system and measurement noises of state and measurement
equations should be equipped with following characteristics:

E
{

W (t)W T (τ)
}
= Q(t)δ (t− τ) (17)

E
{

V (t)V T (τ)
}
= R(t)δ (t− τ) (18)

E
{

WkW T
j
}
= Qkδk j (19)

E
{

VkV T
j
}
= Rkδk j (20)

Where, δk j =

{
1 k = j
0 k 6= j

{
Qk = Q(t)/T
Rk = R(t)/T

.

6 HPSO-PF Algorithm

HPSO-PF searches for optimization by use of hybrid intelligent optimization algo-
rithm to obtain the high likelihood value.

The algorithm steps are listed as follows:

(1): When k=0, take N particles {xi
0:k, i = 1, ...,N} as samples from importance

function at the initial time. The importance density function is expressed in equa-
tion (21):

xi
k ∼ q(xi

k|xi
k−1,zk) = p(xi

k|xi
k−1) (21)

Where p(·) is probability density function, q(·) is importance density function [e.g.
Ding, Wang and Rizos (2007); Wang and Qian (2012); Zhang Xin and Yang (2013);
Yang and Sun (2013)].

Fitness function:

Y = exp[− 1
2Rk

(zNew− zPred)] (22)
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Where Rk represents observation noise zNew represents the latest observation value,
zPred represents the estimated observation value

(2): Calculate the weight:

wi
k = wi

k−1 p(zk|xi
k−1) = wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1,zk)
= wi

k−1 p(zk|xi
k) (23)

(3) Make random initialization within feasible area for the size of fish swarm N,
initial position of each fish, vision is visual, crowded degree factor isδ , maximum
repeated attempts is trynummber, acceleration factors is c1 andc2

(4) Calculate the fitness of each fish, and make comparisons with the state on bul-
letin board. If the former state is better, then assign it onto the bulletin board.

(5) Each fish updates its own position through foraging behavior, clustering behav-
ior, piling up behavior, and random behavior.

(6) Artificial fish swarm termination conditions. In case of attainment of preset
evolution algebra, then update the optimized value. Turn to step (7), or else step
(4).

(7) Re-initialize the position and velocity of each artificial fish, or assign particle
information upon maximum evolution algebra of artificial fish to swarm particle
information.

(8) Assign the optimized position and value information on the bulletin board to
pbest and gbest.

(9) Evaluate the fitness of each artificial fish

(10) Make comparisons of the fitness function value with that in the optimized
position pbest of each particle [e.g. Zhang Xin and Yang (2012); Xian Long and
Li (2014); Li Bai and Zhang (2010); MirHassani and Abolghasemi (2011)]. If the
former is better, take it as the currently optimized position pbest.

(11) Make comparisons of the fitness value with that in the globally optimized
position pbest of each particle. If the former is better, update the globally optimized
position gbest.

(12) Update the speed and position of artificial fish according to formula (16) and
(17).

(13): When the optimized value of particle complies with the initially-set threshold
value ε , it is indicated that the particles have been already distributed around the
true values, the initially-set threshold value is set as 0.15. Additionally, when the
improved algorithm reaches the maximum iteration number, the iteration will be
terminated. In the simulation, the maximum number of iterations is set as 25. By
now particle optimization should be stopped. Or Et = Et−1,Gt = Gt−1, and execute
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step (4).

(14): Calculate the importance weight of the particles after optimization and per-
form normalization.

wi
k = wi

k/
N

∑
i=1

wi
k (24)

(15): State output:

x̃ =
N

∑
i=1

wi
kxi

k (25)

7 Experimental simulation

7.1 Simulation test of basic algorithm performance

Choosing a univariate nonstationary growth model, and the process model and mea-
surement model are given as follows:

x(t) = 0.5x(t−1)+
25x(t−1)

1+[x(t−1)]2
+8cos[1.2(t−1)]+w(t) (26)

z(t) =
x(t)2

20
+ v(t) (27)

Where, w(t) and v(t) are zero-mean Gaussian noise. This system is highly non-
linear and the likelihood function presents bimodal [e.g. Li and Wang (2012)].

η =
rST EP− temp

rST EP
(28)

Where, η is the optimization success rate, calculation marking variable is temp,
sampling time is rSTEP.

By using PF, PSO-PF, HPSO-PF, state estimation and tracking of this non-linear
system are performed, and the formula of root-mean-square error is

RMSE = [
1
T

T

∑
t=1

(xt − x̂t)
2]1/2 (29)

(1) Giving the number of particles N = 100, and process noise variance Q= 10,
measurement noise variance R=1, the simulation result is presented in figure 1 and
figure 2. After 200 times of Monte-Carlo simulation, the result is given in Table 1.

(2) Giving the number of particles N = 100, and process noise variance Q = 20,
measurement noise variance R=1, the simulation result is presented in figure 3 and
figure 4. After 500 times of Monte-Carlo simulation, the result is given in Table 1.
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Figure 1: State estimation of different algorithm (Q = 10).

Figure 2: RMSE of different algorithm (Q = 10).
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Figure 3: State estimation of different algorithm (Q = 20).

Figure 4: RMSE of different algorithm (Q = 20).
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Table 1: Comparison of simulation parameters.

Parameters Algorithms η/% RMSE Operation time
Q = 10,N = 200 PF / 3.5892 0.6684
Q = 10,N = 50 PSO-PF 97.83 2.4563 0.5821
Q = 10,N = 50 HPSO-PF 99.34 1.4663 0.5033

Q = 20,N = 200 PF / 5.9635 0.6854
Q = 20,N = 50 PSO-PF 97.72 4.2155 0.5915
Q = 20,N = 50 HPSO-PF 98.79 2.5182 0.5367

As shown by the experimental result, the error of the integration with particle swar-
m optimized particle filter is significantly lower than that of PF, and the integration
is in fact the particle optimization process of particle swarm optimization that can
improve particle quality. The algorithm use the global convergence of artificial
fish swarm algorithm and the local convergence of particle swarm optimization the
quality of particle swarm was heightened.

7.2 Simulation test of performance in integrated navigation system

Let the latitude and longitude of the initial position of state vector be 32˚and 118˚,
respectively; the random and constant drift errors of the gyroscope be 0.05˚/h re-
spectively; the random and constant bias errors of the gyroscope be 50 µg and
100 µg, respectively; the update cycle of inertial navigation be 0.01s; the cycle of
Kalman filtering be 1s; and the simulation time be 500s. In this paper, an analysis
is implemented on the position and velocity error curves along northward, eastward
and skyward directions before and after the integrated filter correction, 500 times
simulations have been made to obtain the average value.

As illustrated by the figure, the system faces rapid divergence prior to the appli-
cation of integrated filter, but the parameter errors of the system are correctly ef-
fectively upon the use of improved particle filter algorithm. The reason thereof is
that although the current algorithm may lead to more significant errors when locat-
ing for satisfied value range due to interference from environmental factors during
the process of global optimization in artificial fish swarm algorithm stage, in the
afterward particle swarm optimization stage, particles can constantly update their
values through individual information and swarm information, thus improving the
accuracy of system.
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Figure 5: Position error in different directions(northward, eastward, skyward).

Figure 6: Velocity error in different directions(northward, eastward, skyward).
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8 Conclusion

This paper, by integrating artificial fish swarm algorithm together with particle
swarm optimization for application to integrated navigation model, and by use of
desirable global convergence of AFSA in addition to the fastness of convergence
with PSO, enjoys higher searching efficiency and convergence accuracy as com-
pared to the previous methods The experimental results show that the improved
algorithm in this paper improves the precision and thus of high applicable value in
GPS/INS integrated navigation system.
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