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Approaches for Computation of 2D Structural Dynamics

on Arbitrary Quadrilateral Grids
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Abstract: In this study, cell-centered (CC) and cell-vertex (CV) finite volume
(FV) approaches are applied and assessed for the simulation of two-dimensional
structural dynamics on arbitrary quadrilateral grids. For the calculation of bound-
ary nodes’ displacement in the CC FV approach, three methods are employed. The
first method is a simple linear regression of displacement of boundary nodes from
the displacement of interior cell centers. In the second method, an extrapolation
technique is applied for this purpose and, in the third method; the line boundary
cell technique is incorporated into the solution algorithm in an explicit manner. To
study the effects of grid irregularity on the results of CC and CV FV approaches,
different grid types are used ranging from regular square grids to irregular ones,
including random perturbations of the grid nodes. A comparison between the CC
and CV FV approaches is made in terms of accuracy and performance by simu-
lating some benchmark test cases in structural dynamics on different grid types.
The present study demonstrates the suitability of using CC FV approach for the
simulation of structural dynamics problems and that the results obtained by careful
implementation of the CC FV can be comparable with those of the CV FV. On ir-
regular grids, the CC FV approach employing the extrapolation technique fails to
obtain accurate results in the most cases studied, however, two other techniques,
namely the linear regression and boundary cell methods provide reasonable results.
It is indicated that the CV and CC approaches are equivalent in terms of accuracy
and convergence rate on regular grids, though, the CV approach is more efficient in
term of computational costs. The results obtained by these two approaches for the
problems considered here are in good agreement with the analytical solutions.
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1 Introduction

Traditionally, finite element method (FEM) has been the main tool in computa-
tional structural dynamics (CSD) [Zienkiewicz & Taylor (1989)] and finite vol-
ume method (FVM) in the field of computational fluid dynamics (CFD) [Patanker
(1980)]. Over the last two decades, new attention has given to FVM to solve prob-
lems in structural dynamics. The advantage of FVM over FEM is its local conser-
vation properties which also guaranty the global conservation of variables. Note
also that, FEM creates large block-matrices, usually with high condition numbers,
and therefore its solution is based on direct solvers while FVM provides diagonally
dominant matrices well-suited for iterative solvers and thus, this approach is more
efficient in terms of computational costs. As a result, coupling a FV code for the
simulation of structural dynamics with a proper CFD code enables engineers to
model complicated multiphysics problems in an accurate and efficient manner.

In CSD, similar to CFD, FVM has been classified into two approaches, namely,
cell-centered (CC) [Demirdžić and Martinović (1993); Demirdžić and Muzaferija
(1994); Demirdžić, Muzaferija, and Perić (1997); Fallah (2004, 2006); Giannopa-
pa (2004); Greenshields, Weller, and Ivankovic (1999); Hattel and Hansen (1995);
Henry and Collins (1993b); Jasak and Weller (2000); Papadakis and Giannopapa
(2006); Wheel (1996, 1997, 1999)] and cell-vertex (CV) approaches [Bailey and
Cross (1995); Fryer, Bailey, Cross, and Lai (1991); Lv, Zhao, Huang, Xia, and Su
(2007); Oñate, Cervera, and Zienkiewicz (1994); Slone, Bailey, and Cross (2003);
Slone, Pericleous, Bailey, Cross, and Bennett (2004); G. A. Taylor (1996); G. A.
Taylor, Bailey, and Cross (2003); G. Xia and Lin (2008); G. H. Xia, Zhao, Yeo,
and Lv (2007)]. The CC FV approach has been the common method in CFD and
it can efficiently support most of the CFD codes for the simulation of fluid flows
in an accurate and efficient manner. A continuum field which undergoes motion
is governed by the Cauchy’s equation which is valid for both structural and fluid
dynamics. The fact that the form of equations of Stokes flows is similar to the
form of equations of isotropic incompressible linear elastic solids has motivated
many researchers to implement CFD methods, developed for the solution of in-
compressible fluid flows, for modeling displacement in solids. Henry and Collins
(1993b) used the SIMPLEC algorithm [Patanker (1980)] for the simulation of smal-
l axisymmetric deformation of linear elastic incompressible materials. To prevent
volumetric locking in incompressible limit, they used the pressure as an addition-
al variable, similar to the hydrostatic pressure in fluid flows. They later modeled
fluid-structure interaction problem of arterial flow by incorporating FLOW3d com-
mercial code [Henry and Collins (1993a)]. Similarly, Demirdzic and Muzaferija
(1994) used the CC FV approach for the analysis of linear elastic structures and
later, they employed the CC FV structure solver with a FV-based flow solver to sim-
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ulate some fluid-structure interaction problems [Demirdžić and Muzaferija (1995)].
Their method is based on the solution of the integral form of momentum balance e-
quation, where the surface tractions are computed from the surface strains using the
constitutive relationship. To compute the surface strains, the displacement of con-
nected nodes is needed in addition to adjacent cell centers. In the boundary regions
where Neumann boundary conditions are specified, the boundary fluxes are added
to the source term, while the displacement values at the boundary are obtained by
extrapolating displacement values from the interior of the solution domain. Wheel
(1996) suggested a new boundary condition for the boundary nodes which does not
require an extrapolation technique. He used special line and point boundary cells
which are able to transfer the applied boundary conditions on to the internal cells.
This strategy causes additional degrees of freedom into the analysis. Note that the
displacements along boundary edges are automatically calculated as part of the so-
lution procedure. For a benchmark problem studied in Ref. [Wheel (1996)], Wheel
showed that the FV method achieves greater accuracy than the FE method. Apply-
ing Reissner-Mindlin plate theory, Wheel (1997) analyzed the bending deformation
of thick and thin plates and later, he introduced a mixed finite volume formulation
for determining the small strain deformation of incompressible materials [Wheel
(1999)]. Similar to the study performed Wheel (1996), Fallah (2004) showed that
FVM is more accurate than FEM for the test cases he considered. CC approach has
also been applied by Hattel and Hansen (1995) for CSD problems using structured
grids and by Jasak and Weller (2000) for unstructured grids.

Unlike CC approach, the origin of CV approach in CSD is from traditional FEM,
which uses shape functions for spatial discretization. In this approach, the solu-
tion points are the vertices of the numerical grid and the control volumes enclosing
them are the median duals of the mesh. Early CV FV codes developed by Fallah
(2006), Fryer at al. (1991), Oñate et al. (1994), Baily and Cross (1995), Slone
et al. (2003), Slone et al. (2004) and Taylor et al. (2003) all used shape func-
tions for spatial discretization. Xia et al. (2007) developed and validated a new
CV unstructured approach which does not utilize shape functions. They have also
used this algorithm to study fluid-structure interaction problems [Lv et al. (2007);
G. Xia and Lin (2008)]. The Meshless approach is another strategy that has been
combined with the FV method for efficient simulation of continuum mechanic-
s. Using the Meshless Local Petrov-Galerkin (MLPG) “Mixed” approach, Atluri,
Han, and Rajendran (2004) developed the Meshless Finite Volume Method (M-
FVM) to efficiently solve elasto-static problems. Moosavi and Khelil (2008) used
such a strategy that combines the formulation of the FV method with the MLPG
approach (FVMLPG) to solve elasto-static problems and they demonstrated that
FVMLPG is more accurate and efficient than FEM for the most cases simulated.
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The FVMLPG method has also been implemented to analyze the static and dynam-
ic problems with large deformation [Han et al. (2005)] and a good performance was
reported for this method. Later, the Meshless Local Petrov-Galerkin (MLPG) col-
location method has been presented by Atluri, Liu and Han (2006) which is easier
to implement and more efficient compared to FVMLPG. Successful applications of
the MLPG mixed collocation method were examined by simulating different cases
such as structural-topology optimization problems [Li and Atluri (2008)] and in-
verse problems of linear elasticity [Zhang et al. (2014)]. A more discussion about
Mixed FV methods was performed by Atluri (2005) and Dong et al. (2014).

Although CV FV and CC FV methods have been developed in literature, there are
no extensive investigations in literature on the assessment of these two different
approaches in terms of accuracy and performance. The only work on this subject
in CSD is Fallah’s study [Fallah (2004)]. He made a comparison between the CC
and CV approaches in the plate bending analysis and he indicated the superiority
of the CC approach over the CV approach in term of accuracy for such a class of
the problems. There are also a few studies on the assessment of CV and CC FV
methods in CFD; the computation of shallow water free surface flows on different
grid types [Delis, Nikolos, and Kazolea (2011)] and the calculation of inviscid
and viscous fluxes for some fluid flow problems [Boris, James, Eric, Jeffery, and
Hiroaki (2009)].

The main objective of this study is the development of the CC FV version of the
method presented by Xia et al. which does not need to use the segregated solution
procedure and then to assess the accuracy and performance of the developed CC FV
method with those of the CV FV method applied. For the computation of boundary
nodes’ displacement in the CC FV method, three methods are employed. The first
method is a simple linear regression of displacement of boundary nodes from the
displacement of interior cell centers. In the second method, an extrapolation tech-
nique is applied for this purpose while, in the third method the line boundary cell
technique introduced by Wheel [Wheel (1996)] is incorporated into the solution
algorithm in an explicit manner. To assess the accuracy and performance of the
CC FV approach developed, the CV FV approach is also applied and they are both
implemented on arbitrary quadrilateral meshes. To study the effects of grid irreg-
ularity on the results of CC and CV FV approaches, different grid types are used
ranging from regular square grids to irregular ones, including random perturbations
of the grid nodes. A detailed comparison between the CV and CC FV approaches is
made in terms of accuracy and performance of the solution by simulating different
benchmark test cases in structural dynamics on different grid types. Such a detailed
assessment presented herein about these two different numerical treatments has not
been investigated in literature for structural dynamics problems.



Assessment of Cell-centered and Cell-vertex Finite Volume Approaches 399

The paper is structured as follows. In Section 2, the governing equations of struc-
tural dynamics are presented in brief with a description of constitutive relationship
and boundary conditions. The formulation of the CC and CV approaches is then
presented in Section 3 and the time integration method is described in Section 4. In
the last section, the results obtained by applying the CC and CV FV approaches for
selected benchmark test cases are compared with each other and with the analytical
solutions. Finally, some conclusions are given regarding this study.

2 Problem formulation

2.1 Governing equations

Any continuum undergoes motion is governed by Cauchy’s equation of motion
which can be written in two-dimensions as follows:

ρ
∂ 2dx

∂ t2 = bx +
∂σxx

∂x
+

∂σxy

∂y

ρ
∂ 2dy

∂ t2 = by +
∂σyx

∂x
+

∂σyy

∂y

(1)

where ρ is the material density, dx and dy are the components of displacement
vector in Cartesian coordinates, bx and by are the components of body force in
Cartesian coordinates and σxx, σxy and σyy are the components of stress tensor of
continuum field, either fluid or solid medium. This system of equations can be
written more succinctly as:

ρ
∂UUU
∂ t

= bbb+∇.σσσ i j (2)

where UUU = (∂dx/∂ t,∂dy/∂ t) is the velocity vector and bbb = (bx,by) is the body
force vector. To alleviate energy growth in the system, an ideal linear damper,
which is a common device in structural mechanics, is incorporated to the equation
of motion to give:

ρ
∂UUU
∂ t

= bbb+∇.σσσ i j − cU (3)

where c is the viscous damping coefficient. Therefore, the damping force, which is
proportional to the velocity, is in the opposite direction of the structural displace-
ment.

2.2 Constitutive relationship and displacement formulation

Assuming linear elastic behavior and ignoring initial strain and stress in the struc-
ture, the relationship between stresses and strains will be linear in the following
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form:

σσσ = DDDεεε (4)

where DDD is the constitutive elasticity matrix containing the appropriate material
properties [Zienkiewicz and Taylor (1989)]. For an isotropic homogeneous material
in two dimensions, the above equation takes the form: σxx

σyy

τxy


︸ ︷︷ ︸

σσσ

=

 E
(1+ν)(1−2ν)

 1−ν ν 0
ν 1−ν 0
0 0 1−2ν


︸ ︷︷ ︸

DDD

 εxx

εyy

γxy


︸ ︷︷ ︸

εεε

(5)

where E is the Young’s modulus and ν is the Poisson’s ratio. The final form of
Cauchy’s equations of motion can be obtained by the substitution of Eq. (4) into
Eq. (3):

ρ
∂UUU
∂ t

= bbb+∇.(DDDεεε)− cUUU (6)

For the problems undergoing nonlinear deformations, strains can be computed from
the displacement field by using Green-Lagrange tensor as:

 εxx

εyy

γxy

=


∂dx
∂x + 1

2

[(
∂dx
∂x

)2
+
(

∂dy
∂x

)2
]

∂dy
∂y + 1

2

[(
∂dx
∂y

)2
+
(

∂dy
∂y

)2
]

1
2

[
∂dx
∂y +

∂dy
∂x +

(
∂dx
∂x

)(
∂dx
∂y

)
+
(

∂dy
∂x

)(
∂dy
∂y

)]

 (7)

or in the following compact form:

εi j =
1
2

(
∂di

∂x j
+

∂d j

∂xi
+

∂dk

∂xi

∂dk

∂x j

)
(8)

2.3 Boundary conditions

Boundary conditions for Eq. (6) can be considered in two types; the displacement
vector is set or the traction vector is prescribed:

i. ~ddd −~dddp = 0 (9)

ii. TTT (DDDεεε)−~tp = 0 (10)

In the above equation, T is the matrix of outward normal operators which is a 2×3
matrix of the form:

TTT =

(
nx 0 ny

0 ny nx

)
(11)

where nx and ny are the components of outward unit vector, normal to the boundary.
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3 Spatial discretization

Here, both the CV and CC FV approaches are used for the spatial discretization
of the Cauchy’s equations of motion on arbitrary quadrilateral grids. The CV FV
approach used is a straightforward extension of the method for triangular grids
presented in [G. H. Xia et al. (2007)] to quadrilateral ones while the CC FV method
is developed here to make a comparison between these two approaches in terms of
accuracy and performance. In this section, spatial discretization based on the both
CV and CC approaches are given.

3.1 Cell-vertex finite volume approach

In this approach, Eq. (6) is discretized on each vertex and the control surface is
constructed using the median dual of the neighboring cells, as shown in Fig. 1.
In this figure, C1 to C4 are the centroids of the quadrilateral elements which form
the control surface of the node P. E1 to E4 are the mid points of the edges of the
control surface and N1 to N8 are the neighboring nodes of the node P. In the CV
FV approach, the variables are stored at the vertices while the shear stresses are
computed on the centroids of cells.
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Figure 1: Control volume of node P in cell-vertex FV approach 

  

Figure 1: Control volume of node P in cell-vertex FV approach.

To perform spatial discretization, Eq. (6) is integrated over the control surface of
the node P to get:∫ ∫

CS
ρ

∂UUU
∂ t

dA =
∫ ∫

CS
[bbb+∇.(DDDεεε)− cUUU ]dA (12)
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Using Green’s theorem, the surface integral of the stress term on the right-hand side
of Eq. (12) can be simplified to a line integral of the form:

∫ ∫
CS

∇.(DDDεεε)dA =
∮

SCS

(DDDεεε).n̂nndl =
nedge

∑
i=1

[(DDDεεε).n̂nn∆lEC]i (13)

where, nedge is the number of edges surrounding the control surface of the node P,
∆lEC is the length of the edges and n̂ is the unit normal vector to it.

From Fig. 1, the length of each edge, ∆lEC, of the control surface is approximately
quarter of the sum of the lengths of opponent edges of the quadrilateral grid, i.e.
∆lE1C1 = (∆lN1N2 +∆lN8P)/4, thus:

nedge

∑
i=1

[(DDDεεε).n̂nn∆lEC]i =
1
4

nedge

∑
i=1

[(DDDεεε).n̂nn(∆lNN +∆lNP)]i =
nedge

∑
i=1

[
(DDDεεε).n̂nn∆lNN

]
i (14)

Now, by substituting Eq. (14) into Eq. (12) and rearranging it, one can obtain:

ρ
∂UUUn+1

∂ t
−bbb+ cUUU − 1

A

nedge

∑
i=1

[
(DDDεεε).n̂nn∆lNN

]
i = 0 (15)

where A is the area of control surface of each node and ∆lNN = (∆lNN +∆lNP)/4.

In the CV algorithm, the value of Dε is calculated at the center of the quadrilateral
cells connected to the node P. Therefore, this value is constant over the surface of
each cell. On the boundary nodes where the traction vector is prescribed, the stress
tensor is calculated from Eq. (10) instead. Note that on the boundaries where the
displacement is prescribed there is no need to solve the equation of motion. The
computation of the strain rate tensor (εεε) can be done by using Green’s circulation
theorem for the calculation of the displacement differential terms in Eq. (7). For
example:

∂dx

∂x
=

[∫
N1N2PN8

∂dx

∂x

]
/AN1N2PN8 = [(dxN1

+dxN2
)∆yN1N2+

(dxN2
+dxP)∆yN2P +(dxP +dxN8

)∆yPN8 +(dxN8
+dxN1

)∆yN8N1 ]/2AN1N2PN8

(16)

Note that the position of the cell centers and mid-edge points do not appear in
the CV approach formulation and there is no need to compute them. Thus, the
cell vertex FV approach seems to be efficient because of less computer resources
needed.
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3.2 Cell-centered Finite volume approach

In this approach, which is developed here based on the CV FV approach presented
in the previous section; Eq. (6) is discretized on each center point of the quadri-
lateral cells (the control surfaces), as shown in Fig. 2. In this approach, like the
CV FV approach, the stress term in Eq. (12), which is a surface integral, can be
converted to a line integral by using Green’s circulation theorem:

∫ ∫
CS

∇.(DDDεεε)dA =
∮

SCS

(DDDεεε).n̂nndl =
nedge

∑
i=1

[(DDDεεε).n̂nn∆lNN ]i (17)

where ∆lNN is the length of each edge of the certain cell and n̂ is the unit nor-
mal vector to it and nedge is equal to the number of edges of quadrilateral cells,
(here nedge = 4). Note that there is no difference between the boundary and non-
boundary cells in the standard form of CC FV approach. Integrating Eq. (6) over
each control surface and substituting the stress term from Eq. (17), the discretized
form of the governing equations can be obtained as follows:

ρ
∂UUUn+1

∂ t
−bbb+ cUUU − 1

A

nedge

∑
i=1

[(DDDεεε).n̂nn∆lNN ]i = 0 (18)

which is similar to Eq. (15) for the CV FV approach.

The components of strain rate tensor (εεε) on the non-boundary edges of each control
surface, can be calculated by using Green’s circulation theorem for the computation
of the displacement differential terms of Eq. (7). For example:

∂dx

∂x
=

[∫
C2N1C1N4

∂dx

∂x

]
/AC2N1C1N4 = [(dxC2

+dxN2
)∆yC2N1+

(dxN1
+dxC1

)∆yN1C1 +(dxC1
+dxN4

)∆yC1N4 +(dxN4
+dxC2

)∆yN4C2 ]/2AC2N1C1N4

(19)

where the control surface C2N1C1N4 around the edge N1N4 is shown in Fig. 2.
The computed values of displacement differential terms are used to calculate the s-
train rate tensor via Eq. (7) which if multiplied by the constitutive elasticity matrix
(DDD) results in the stress tensor. For the boundary edges, where the traction vector
is prescribed, the components of stress tensor can be computed from the boundary
condition of Eq. (10). On the boundaries where the displacement vector is pre-
scribed, boundary conditions are applied to the boundary vertices instead of the
solution points.

As seen in Eq. (19), in addition to the displacement vector of the cell centers, which
are the solution points, the displacement vector of the vertices should be calculated,
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Figure 2: Control volume of cell C1 in cell-centered FV approach 

  

Figure 2: Control volume of cell C1 in cell-centered FV approach.

which means that, the CC FV approach needs an additional memory overhead com-
pared to the CV FV approach. The main problem with the CC FV approach is that,
the vertices displacements should be calculated from the solution points by a suit-
able way. Linear interpolation usually exhibits unsatisfactory results, especially on
distorted or irregular grids and thus, the functions used for the interpolation must
be carefully selected. In addition, especial treatment is needed for the boundary
nodes where their displacements must be calculated from the interior domain.

3.2.1 Interpolation technique for cell-centered approach

Following Wheel (1996, 1999), a multiple linear regression approach is applied for
calculating the displacement of the vertices (nodes). In this approach, the displace-
ment vector of each node is related to the displacement of neighboring cell centers
by crossing a plane from them. If a specific cell is formed by Ñ nodes, then, the u
displacements of the cell center is given by the following system of equations


u1
u2
...

uÑ

=


x1 y1 1
x2 y1 1
...

...
...

xÑ yÑ 1


 ã

b̃
c̃

 (20)
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and in the compact form:

[uuuC] = [xxxC]
[
ÃAA
]

(21)

where uuuC, xxxC and ÃAA are the vector of u displacements, the matrix containing the
Ñnode coordinates and the vector of the coefficients of the distribution, respective-
ly. Contrary, if a specific node joins C̃ cells, then it follows that

[uuuN ] = [xxxN ]
[
ÃAA
]

(22)

where uuuN and xxxN are the vector of u displacements, the matrix containing the C̃ cell
coordinates, respectively and ÃAA is again the vector of the coefficients of the distri-
bution. If a node joins only three cells then only one plane crosses the neighboring
cell centers. However, if a node joins more than three cells, the plane obtained by
this method is approximately crosses the neighboring cell centers. Assuming that
the distribution vector, ÃAA, is constant over the domain formed by the neighboring
cell of the specific node, then it is possible to eliminate ÃAA from Eqs. (21) and (22)
to obtain

[uuuN ] = [xxxN ]
(
[xxxC]

T [xxxC]
)−1

[xxxC]
T [uuuC] (23)

which relates the displacement at the specific node to the displacement of C̃ sur-
rounding cell centers. It is possible to express the v displacements in a similar
manner.

3.2.2 Boundary nodes treatment

There are two issues related to the boundaries in the CC FV approach. The first
one is how to apply boundary condition to the boundary cells and the second is
how to calculate the displacement of boundary nodes from the interior domain. If
the displacements of boundary nodes are specified, the displacements are set on the
fictitious cells adjacent to the boundary and the displacements of boundary nodes
are set from this boundary condition, instead of the interior domain. Since the
method applied here is iterative, thus, the values of the displacement of boundary
nodes are updated at each iteration and the correct results are obtainable. If the
traction vector is prescribed on the boundaries, then, the stress tensor of the adjacent
edge is calculated from Eq. (10) and their computed values are considered directly
in Eq. (18). In the remaining of this part, the second issue, which is the extraction of
boundary node displacement from the interior domain, will be discussed in details.

Most of the boundary nodes join no more than two cells where it is impossible to
generate coefficient vector ÃAA with two points. Even, if a boundary connects more
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than two cells, it will be outside the region enclosed by them and therefore, the
coefficients matrix become inaccurate. In this case, especial treatment is needed
for the boundary nodes, not to affect the accuracy of the solution. Here, three
methods are used for this purpose and will be discussed in details.

The first one is the extension of the multiple linear regression approach presented in
the previous part. If it is impossible to generate coefficient vector ÃAA for the bound-
ary nodes, but it is possible to use the coefficient vector of the closest interior node,
instead. Abbreviating this method with CC-R (which stands for Cell-Centered Re-
gression approach), the results obtained show that this method is suitable in the test
cases studied here.
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Figure 3: Extrapolation technique used for cell-centered FV approach 

 

  

Figure 3: Extrapolation technique used for cell-centered FV approach.

As the second method, a simple extrapolation technique is employed. In this
method, the displacement vector of a boundary node like Q in Fig. 3, is com-
puted from the points E and P where their displacements are interpolated from
neighboring cells:

dQ =
dEQP−dPQE

QP−QE
(24)

Abbreviating this method with CC-E (which stands for Cell-Centered Extrapola-
tion approach) the results obtained show this approach is appropriate for nearly
orthogonal grids and not suitable for irregular ones.
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The third method is inspired from the method presented by Wheel (1996, 1999),
but in an explicit way. In Wheel’s method, additional solution points are introduced
in the midpoint of boundary edges, where the displacements of midpoints are ob-
tained as a part of solution. Abbreviating this method with CC-BE (which stand for
Cell-Centered Boundary Edge approach), the line cells in this method possess two
characteristics; first, transmission of boundary conditions into the interior domain
and second, calculation of the displacement of boundary vertices. The priority of
this method compared to other works relies on the fact that, the displacements of
boundary points are obtained as a part of solution while in other works they have
to be evaluated subsequently. CC FV approach along with this method for bound-
ary condition implementation obtains more accurate results compared to CV FV
approach, as mentioned by Fallah (2004). Here, the solution method is explicit and
the original method by Wheel is not applicable. But, it is possible to use Wheel’s
method in the step where the displacements of boundary points are to be calculated
from the interior domain.
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Figure 4: A typical line boundary cell 

  

Figure 4: A typical line boundary cell.

In Fig. 4 a typical line cell, B, lying next to the internal cell P, is illustrated. If stress
boundary conditions are applied, which mean that the values of external stresses
σN and τT are specified, then the following relationships exist between the internal
stress components, σxxB, σxyB and , σyyB and the external stresses:

σN = σxxB cos2
αB +σyyB sin2

αB +2σxyB sinαB cosαB (25)
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and

τT = (σyyB −σxxB)sinαB cosαB +σxyB(cos2
αB − sin2

αB) (26)

The internal stresses are related to the displacement of nodes N1 and N2 and also,
the displacement of cells B and P via the constitutive relationship. Replacing the
displacements in the above equations and rearranging them, the displacement of the
point B is obtained. Note that, the procedure is similar to extrapolation techniques;
each time step after the computation of the displacements of the interior domain by
solving Cauchy’s equation of motion, the computed displacements are transferred
to the boundary nodes by solving Eqs. (25) and (26) for boundary edge cells.

Although the implementation of the CC-BE approach used here differs from the
original work by Wheel, the results obtained show the priority of this method over
the CC-R and CC-E approaches in terms of accuracy (see the numerical results
section.)

4 Time integration

In this research, an implicit backward differencing method of second-order accu-
racy is applied for the temporal discretization of the time-dependent term in Eqs.
(15) and (18) which yields

ρ

(
1.5UUUn+1 −2UUUn +0.5UUUn−1

∆t

)
−bbb+ cUUUn+1 − 1

An+1

nedge

∑
i=1

[
(DDDεεε).n̂nn∆lNN

]
i = 0

(27)

where ∆lNN for the CV FV approach is equal to (∆lNN +∆lNP)/4 and for the CC
FV approach is equal to ∆lNN . The solution points for the CV FV approach are
the centroids of the cells and for the CC FV approach they are the vertices of the
computational grid.

Adding a pseudo time derivative term to Eq. (27), it is possible to convert the
implicit time integration to explicit one which is matrix-free and computationally
more efficient:

ρ
dUUUn+1

dτ
=−

{
ρ

(
1.5UUUn+1 −2UUUn +0.5UUUn−1

∆t

)
−bbb+ cUUUn+1 − 1

An+1

nedge

∑
i=1

[
(DDDεεε).n̂nn∆lNN

]
i

}
=−R

(
UUUn+1) (28)

The above equation can be integrated in the pseudo-time τ using any standard time-
stepping methods like the fourth-order Runge-Kutta scheme. Also, the acceleration
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techniques like local time-stepping or residual smoothing can be applied for speed-
ing up the convergence rate. When the computation reaches to steady-state solution
in the pseudo-time, it means that the right hand-side of Eq. (28) approaches to zero
and therefore, the solution in the physical time level n+ 1 is obtained. Integrat-
ing from the velocity vector in the physical time, the displacement vector can be
calculated as follow:

1.5dddn+1 −2dddn +0.5dddn−1

∆t
=UUUn+1 (29)

thus

dddn+1 =
2
3

(
UUUn+1

∆t +2dddn −0.5dddn−1
)

(30)

4.1 Calculation of local and global time step sizes

An estimation of time step size can be obtained by using the wave propagation
velocity, c, as follow:

∆τ =
∆l
c

(31)

For solids, c =
√

E/ρ(1−υ2) and ∆l is a characteristic length scale. In the CV
FV approach it is equal to the minimum length of the edges connected to a vertex
while in the CC FV approach it is the minimum length of sides forming a control
surface. Incorporating CFL stability condition, the following relationship can be
obtained [Lv et al. (2007)]:

∆τ =CFL.
∆l
c

=CFL.
∆l√

E/ρ(1−υ2)
(32)

For time accurate calculations, the real global time step size, ∆t is equal to the
minimum local time step size, ∆τ , of all the control surfaces:

∆t = min(∆τ1,∆τ2, ...) (33)

thus, it is different from fluid mechanics where the global time step size is indepen-
dent of the local time steps.

5 Results and discussion

A number of benchmark problems concerned with the deformation of structures
under external forces are selected to validate and assess the FV formulations pre-
sented in the previous sections, including CV (cell vertex), CC-BE (cell-centered
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boundary edge), CC-R (cell-centered regression) and CC-E (cell-centered extrapo-
lation) approaches. The study has indicated for the problems considered here the
inclusion of the nonlinear terms has negligible effects on the results and they can
be ignored from the formulation. The results of different approaches are compared
with the analytical solutions in terms of accuracy. In addition, the efficiency of
different approaches in using computer resources is compared.

5.1 Deformation of a square plate under pure shear stress

The first problem that is a patch test case, is a 2D square plate whose sides have
length 20 meters and is subjected to a pure external shear stress, τExt = 1MPa. This
test case is interesting in that it does not apply the boundary condition of Eq. (9).
Note that, it only deals with the shear stress, σxy, and the generation of the normal
stresses, σxx and σyy is a sign of errors in the solution. Another interesting feature of
this test case is that the problem is symmetry which results in the symmetry of the
solution. Any asymmetry in the solution is also a sign of error. The square plate and
its external shear stress are illustrated in Fig. 5. In this figure, the points "O", "A"
and "B" are marked which are used for the calculation of the numerical shear strain,
γ . Young’s modulus of elasticity, E, Poisson’s ratio, ν , and the density , ρ , of the
plate are 10 MPa, 0 and 2,600 kg/m3, respectively. To perform a grid independent
study, different grid sizes are applied for the simulation of test case 1, which are
shown in Fig. 6. A perturbed grid is also used to examine the effects of irregularity
and skewness of the grid on the results of the CV and CC FV approaches.

Obviously, as the shape of square plate changes to rhombus, the right angle be-
tween edges "OA" and "OB" decreases the shear strain, γ . In Tab. 1, the computed
values of γ are presented. For the structural parameters stated before, the analytical
solution of the shear strain, γ , is 0.1 and the maximum percentage error for different
approaches with respect to the analytical solution is about 0.3% which shows the
accuracy of the approaches in calculating the shear strain. Since the displacement
field for this test case is a linear function of coordinates and that all the approaches
used converge nearly with second-order accuracy, they are not sensitive to the grid
size. Note that both the CV and CC approaches are sensitive to the grid irregularity
and it causes a decrease in the accuracy of the solution (see Tab. 1).

In Fig. 7, the resultant rhombus obtained by the CV approach is depicted for grid
numbers 2 and 4. It is shown that the results of the CV approach are not sensi-
tive to grid irregularity. A same trend has been observed for the CC-BE and CC-R
approaches, not given here for the sake of brevity. The results of the CC-E ap-
proach are presented in Fig. 8, where the resultant position of the rhombus for grid
number 4 is inaccurate and it has slightly rotated, while the symmetry of the prob-
lem indicates the symmetry of the solution. The study shows that the extrapolation
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Figure 5: Schematic of test case 1 

  

Figure 5: Schematic of test case 1.

Table 1: Comparison of the shear strain, γ , for different approaches.

Mesh CV CC-BE CC-R. CC-E
1 0.0996685 0.099669 0.099669 0.099669
2 0.0996685 0.099669 0.099669 0.099669
3 0.0996685 0.099669 0.099669 0.099669
4 0.0996465 0.099647 0.099644 0.099625

technique applied is not suitable on irregular grids (see also Tab. 1).

The convergence history of the solution of this test case on uniform grids is depict-
ed in Fig. 9 which shows that the CV and CC approaches have nearly the same
performance on regular grids. As the grid size is refined, the convergence rate of
the solution is decreased. In Fig. 10, the convergence history of the solution for the
perturbed grid (grid number 4) is presented. This grid type has the same number of
grid points as the unperturbed one (grid number 2). Comparing Figs. 9 and 10, it is
indicated that the convergence rate of the solution of the perturbed grid is slightly
slower than that of the unperturbed one and it can be elongated abnormally for the
CC-E approach.

In Tab. 2, a comparison between the CPU time and memory usage of different ap-
proaches on different grids is made which shows the efficiency of the CV approach
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Figure 6: Grids used for the study of test case 1; (1) 6 6  elements; (2) 20 20  

elements; (3) 40 40  elements; (4) perturbed 20 20  elements  

  

Mesh 2

Mesh 4

Mesh 1

Mesh 3

Figure 6: Grids used for the study of test case 1; (1) 6× 6 elements; (2) 20× 20
elements; (3) 40×40 elements; (4) perturbed 20×20 elements.

in using computer resources compared with the CC approaches on both regular and
irregular grids. The CC FV approach using different treatments of calculation of
boundary nodes’ displacement has nearly the same performance on regular grids.
On irregular grids, the CC-BE and CC-R approaches have better performance than
the CC-E approach.

5.2 Deformation of a fixed-free cantilever supporting an external load at free
end

One of the benchmark problems in structural mechanics is a fixed-free cantilever
which supports an external load at the free end [Augarde and Deeks (2008); Lv
et al. (2007); Slone et al. (2003); Slone et al. (2004); G. H. Xia et al. (2007)].
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Figure 7: Grid numbers 2 (solid line) and 4 (dotted line) after deformation obtained 

by the CV approach  
Figure 7: Grid numbers 2 (solid line) and 4 (dotted line) after deformation obtained
by the CV approach.
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Figure 8: Grid numbers 2 (solid line) and 4 (dashed line) after deformation obtained 

by the CC-E approach 

  

Figure 8: Grid numbers 2 (solid line) and 4 (dashed line) after deformation obtained
by the CC-E approach.



414 Copyright © 2015 Tech Science Press CMES, vol.106, no.6, pp.395-439, 2015

  

34 

 

 

 

 

Figure 9: Comparison of convergence history of test case 1 for different approaches 

on grid numbers 1, 2 and 3 
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Figure 9: Comparison of convergence history of test case 1 for different approaches
on grid numbers 1, 2 and 3.
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Figure 10: Comparison of convergence history of test case 1 for different approaches 

on grid number 4 
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Figure 10: Comparison of convergence history of test case 1 for different approach-
es on grid number 4.

This test case problem involves a rectangular plate with L = 20m and b = 2m,
as depicted in Fig. 11, with the physical properties similar to that of the square
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Table 2: Comparison of CPU time and memory usage of test case 1 for different
approaches on different grids.

Mesh
CV CC–BE CC–R CC–E

CPU
time

(seconds)

Mem.
Usage
(MB)

CPU
time

(seconds)

Mem.
Usage
(MB)

CPU
time

(seconds)

Mem.
Usage
(MB)

CPU
time

(seconds)

Mem.
Usage
(MB)

1 0.23 1.69 1.01 1.77 0.85 1.708 0.68 1. 708
2 5.9 1.93 46.9 2.13 33.2 2.04 29.6 2.036
3 44.5 2.69 333.9 3.34 270.0 3.088 260.5 3.068
4 7.72 1.93 49.6 2.13 41.7 2.04 309.4 2.036

plate of the previous test case problem. Timoshenko and Goodier [Timoshenko
and Goodier (1982)] proved that the stress field in the cantilever is as follows:

σxx =
P(L− x)y

I
,

σyy = 0,

σxy =− P
2I

[
D2

4
− y2

] (34)

and, the displacement vector is given by:

ux =+
Py

6EI

[
(6L−3x)x+(2+ν)

[
y2 − D2

4

]]
,

uy = − P
6EI

[
3νy2(L− x)+(4+5ν)

D2x
4

+(3L− x)x2
]
,

(35)

In Ref. [Augarde and Deeks (2008)] it is stated that to obtain the stress and dis-
placement fields of Timoshenko’s solution throughout the cantilever, the boundary
conditions of the cantilever must be of the form depicted in Fig. 11. It means that
the external force P must be distributed according to the same parabolic law as the
shearing stress σxy of Eq. (34) and at the clamped-end the displacement vector
must follows Eq. (35). Selection of the boundary conditions in this way enables
to perform a perfect comparison of the accuracy of different approaches with the
analytical solution. Here, the value of 100 Pascal is selected for the external load
P. A set of numerical grids, ranging from coarse grids to fine grids and including
non-uniform and perturbed grids are considered here to perform a grid independent
study and to examine the effect of grid irregularity on the results of the CV and CC
approaches. The following six grids (which are shown in Fig. 12) are used for this
study:
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• Grid Number (1); 20×2 boundary edges, 63 nodes and 40 uniform square
cells

• Grid Number (2); 40×4 boundary edges, 205 nodes and 160 uniform square
cells

• Grid Number (3); 80×8 boundary edges, 729 nodes and 640 uniform square
cells

• Grid Number (4); 160×16 boundary edges, 2737 nodes and 2560 uniform
square cells

• Grid Number (5); 100×10 boundary edges, 734 nodes and 623 non-uniform
quadrilateral cells

• Grid Number (6); 80×8 boundary edges, 729 nodes and 640 non-uniform
cells (this mesh is obtained by perturbing the nodes of grid number 2)

  

37 

 

 

 

 

 

 

 

Figure 11: Schematic of test case 2: a fixed-free cantilever supporting an external 

shear force 

  

Figure 11: Schematic of test case 2: a fixed-free cantilever supporting an external
shear force.

In Fig. 13, the L1-norm error of the displacement field w.r.t the analytical solution
for the CV and CC approaches is compared for the uniform square grids. Obvious-
ly, the CV and CC–BE approaches obtain more accurate results than the other two
approaches for all the grid sizes, where their L1-norm errors are less than 0.0005 for
both the approaches. Contrary, the CC-R and CC-E approaches are more sensitive
to the grid size and they provide acceptable results only on finer grids. Figure 14
exhibits the L1-norms of the σxx component of the stress tensor w.r.t the analytical
solution, where the accuracy of different approaches are nearly second order.

In Tab. 3, the L1-norm error of the displacement field and the σxx component of the
stress tensor are presented for all the grid sizes. It is notable that, as the grid size is
refined, the accuracy of the approaches is increased. The order of accuracy of the
CV and CC-BE approaches is almost similar, while the CC-R and CC-E approaches
are less accurate. The study indicates that all the approaches are sensitive to the
grid irregularity, however, the CV and CC-BE approaches show better performance
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Figure 12: Grids used for the study of test cases 2 
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Figure 12: Grids used for the study of test cases 2.

Table 3: Comparison of L1-norm error of displacement field and σxx w.r.t the ana-
lytical solution.

Mesh
CV CC BE CC Reg. CC Extr.

Displacement
field error

σxx

error
Displacement
field error

σxx

error
Displacement
field error

σxx

error
Displacement
field error

σxx

error
1 2.13×10−4 1005 2.96×10−4 1027 6.80×10−3 1415 6.80×10−3 1415
2 7.58×10−5 302 9.41×10−5 307 3.61×10−3 633 3.61×10−3 633
3 6.68×10−5 84.22 6.69×10−5 84.78 1.35×10−3 215 1.35×10−3 215
4 6.54×10−5 22.58 6.53×10−5 22.61 5.21×10−4 70 5.21×10−4 70
5 1.49×10−4 100 1.28×10−4 122 1.27×10−3 225 1.65×10−4 377
6 1.71×10−4 140 9.64×10−5 141 9.76×10−4 207 5.46×10−3 745

than the other two approaches. It is demonstrated that the CV approach is less
sensitive to grid irregularity and it may be due to more uniformity of the control
volumes in this approach which are the median dual of the original mesh compared
with the control volumes considered in the CC approaches which are the primal
quadrilateral grids themselves. The results of the CC-R and CC-E approaches on
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Figure 13: Comparison of 
1
L -norm error of displacement field w.r.t the analytical 

solution for different approaches on uniform grids 
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Figure 13: Comparison of L1-norm error of displacement field w.r.t the analytical
solution for different approaches on uniform grids.
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Figure 14: Comparison of 
1
L -norm error of 

xx
 w.r.t the analytical solution for 

different approaches on uniform grids 
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Figure 14: Comparison of L1-norm error of σxx w.r.t the analytical solution for
different approaches on uniform grids.



Assessment of Cell-centered and Cell-vertex Finite Volume Approaches 419

regular grids are exactly the same whilst on irregular grids, the CC-R approach is
more accurate. Similar to the previous test case, the CC–E approach fails to obtain
accurate results on irregular grids, and it has a drastically large error. The results of
this approach on grid number 6 (the perturbed grid) are even worse than the results
of grid number 2 which has a coarser grid.

In Fig. 15, the contours of σxx for grid number 3 are compared with the analytical
solution for the steady condition which shows that the results of different approach-
es are almost identical. However, for grid number 6 it is different and as shown in
Fig. 16, the results are lumpy and for the CC-E approach it is unacceptable.
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Figure 15: Comparison of contours of 
xx

 (dashed lines) with the analytical solution 

(solid line) for different approaches on grid number 3 
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Figure 15: Comparison of contours of σxx (dashed lines) with the analytical solu-
tion (solid line) for different approaches on grid number 3.

The convergence rate of this test case to obtain the steady condition is depicted
in Figs. 17 and 18 for grid numbers 3 and 6, respectively. As it is obvious, the
convergence rates of different approaches are nearly similar for both the grid types,
except for the CC-E approach on the perturbed grid in which it has slower conver-
gence rate. Note that the CC-E approach converges to an incorrect position for the
beam although the time to reach a steady state solution is smaller in this approach.
Similar to the previous test case, the convergence rate of the CC-BE approach is
slower than the other approaches, which causes an increase in the CPU time. In
Tab. 4, the computer resources needed for the different approaches are compared
in terms of the CPU time and memory usage. It is observed that the CV approach is
the most efficient approach, because it does not apply the displacement of cell cen-
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Figure 16: Comparison of contours of 
xx

 for different approaches on grid number 3 

(dashed line) and grid number 6 (solid line) 
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Figure 16: Comparison of contours of σxx for different approaches on grid number
3 (dashed line) and grid number 6 (solid line).
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Figure 17: Comparison of convergence history of test case 2 for different approaches on 

grid number 3 
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Figure 17: Comparison of convergence history of test case 2 for different approach-
es on grid number 3.
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Figure 18: Comparison of convergence history of test case 2 for different approaches on 

grid number 6 
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Figure 18: Comparison of convergence history of test case 2 for different approach-
es on grid number 6.

ters in its solution procedure while the CC approaches apply the displacement of
vertices along with the cell centers displacement. Although the CC–BE approach
provides reasonable results comparable with the CV approach, it needs more com-
puter resources among the finite volume approaches studied.

Table 4: Comparison of CPU time and memory usage of different approaches for
test case 2.

Mesh
CV CC–BE CC–R CC–E

CPU
time

(seconds)

Mem.
Usage
(MB)

CPU
time

(seconds)

Mem.
Usage
(MB)

CPU
time

(seconds)

Mem.
Usage
(MB)

CPU
time

(seconds)

Mem.
Usage
(MB)

1 20 0.708 138 0.824 93 0.768 50 0.772
2 136 0.792 744 1.334 554 1.268 426 1.264
3 1098 1.128 5514 1.856 4233 1.756 3705 1.744
4 8088 2.416 49662 3.932 35107 3.676 32241 3.660
5 2458 1.224 14993 1.820 10723 1.752 8966 1.748
6 1885 1.128 11414 1.856 8040 1.756 7020 1.744

Now, the fixed-free cantilever is subjected to a periodic end shear stress which caus-
es a periodic motion in cantilever. The free end shear is equal to 100sin(Ωt) which
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is distributed uniformly at the free end and two different values of Ω = 0.05 and
Ω= 0.1 radians per seconds are selected for this study. In Fig. 19, the displacement
history of the free-end of the beam in the y-direction, obtained on grid number 3,
is compared with the analytical solution for the different approaches. This com-
parison is made for grid number 6 in Fig. 20. As it is obvious, all the approaches
are accurate enough on both the grid types, except for the CC-E approach on grid
number 6 which is not accurate.
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Figure 19: Comparison of the displacement history of the free-end of the clamped-

beam under periodic load obtained on grid number 3 for different approaches with 

0.1  and 0.05  
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Figure 19: Comparison of the displacement history of the free-end of the clamped-
beam under periodic load obtained on grid number 3 for different approaches with
Ω = 0.1 and 0.05.

The contours of σxx, obtained on the most refined grid (grid number 4) for different
positions of the beam obtained by the CV approach for Ω = 0.05 are presented in
Fig. 21. In Fig. 22, the contours of σxx obtained on grid number 3 (dashed lines)
and grid number 6 (solid lines) for Ω = 0.05 at the most lower position of the beam
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Figure 20: Comparison of the displacement history of the free-end of the clamped-

beam under periodic load obtained on grid number 6 for different approaches with 

0.1  and 0.05   
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Figure 20: Comparison of the displacement history of the free-end of the clamped-
beam under periodic load obtained on grid number 6 for different approaches with
Ω = 0.1 and 0.05.

are compared for the different approaches. It is seen that the CC-E approach does
not provide accurate results on irregular grids and the other CC approaches produce
the results that are comparable with the CV approach.

The pseudo-time convergence histories of the CV and CC approaches, obtained on
grid numbers 3 and 6, are compared in Figs. 23 and 24, respectively. Here, all the
simulations on different grid types for different approaches are executed with an
equal time step. The results indicate that among different approaches the CV FV
approach has a more uniform behavior for the different grid types studied. Also,
the CC-BE approach needs more iterations to converge in each physical time step
which increases its CPU time requirement compared to the other approaches.
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Figure 21: Contours of xx  at different positions of the clamped-beam under periodic 

load for the CV approach with 0.05  on grid number 4 

  

2

3

34
4

45
5

5

6
6 6

7

7
78 899

1
0

Level


xx:

1
-6000

2
-4800

3
-3600

4
-2400

5
-1200

6
0

7
1200

8
2400

9
3600

10
4800

11
6000

Most upper

1 22 33

4 4

5

5 5
5

6

6
6

7

7
78 8

899 10

1
011

Level


xx:

1
-600

2
-480

3
-360

4
-240

5
-120

6
0

7
120

8
240

9
360

10
480

11
600

Mid to upper

2 334 45

5
56

6 6

7

7 7
78

8
89

1
0

Level


xx:

1
-6000

2
-4800

3
-3600

4
-2400

5
-1200

6
0

7
1200

8
2400

9
3600

10
4800

11
6000

Most lower

11 22 334 4
45

5 5
56

6 6

7

7 7
7

8

8
89

9 1010 11

Level


xx:

1
-600

2
-480

3
-360

4
-240

5
-120

6
0

7
120

8
240

9
360

10
480

11
600

Mid to lower

Figure 21: Contours of σxx at different positions of the clamped-beam under peri-
odic load for the CV approach with Ω = 0.05 on grid number 4.

5.3 Deformation of an infinite plate with a circular hole under axial stress

As the third test case, an infinite plate with a circular hole under uniform tension in
one direction, as depicted in Fig. 25, is analyzed. The normal stress σ0 = 10kPa is
uniformly distributed along two edges of the plate with the physical properties of
E = 10MPa, ν = 0.3, and ρ = 7,854kg/m3. If the radius of the hole is sufficiently
small compared to the plate dimensions (for b > 4a, the error in σxx,max is less
than 6% [Demirdžić and Muzaferija (1994)], then the following analytical solution
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Figure 22: Comparison of contours of 
xx

 for the clamped-beam obtained on grid 

number 3 (dashed lines) and grid number 6 (solid lines) for different approaches with 

0.05  at the most lower position of the beam 
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Figure 22: Comparison of contours of σxx for the clamped-beam obtained on grid
number 3 (dashed lines) and grid number 6 (solid lines) for different approaches
with Ω = 0.05 at the most lower position of the beam.

  

51 

 

 

 

 

Figure 23: Comparison of convergence history of clamped-beam under periodic load for 

different approaches on grid number 3 
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Figure 23: Comparison of convergence history of clamped-beam under periodic
load for different approaches on grid number 3.



426 Copyright © 2015 Tech Science Press CMES, vol.106, no.6, pp.395-439, 2015

  

52 

 

 

 

 

Figure 24: Comparison of convergence history of clamped-beam under periodic load for 

different approaches on grid number 6 
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Figure 24: Comparison of convergence history of clamped-beam under periodic
load for different approaches on grid number 6.

exists for the components of stress field [Timoshenko and Goodier (1982)]:

σxx = σ0

[
1− a2

r2

(
3
2

cos2θ + cos4θ

)
+

3
2

a4

r4 cos4θ

]
σyy = σ0

[
−a2

r2

(
1
2

cos2θ − cos4θ

)
− 3

2
a4

r4 cos4θ

]
σxy = σ0

[
−a2

r2

(
1
2

sin2θ + sin4θ

)
+

3
2

a4

r4 sin4θ

] (36)

where r and θ are shown in Fig. 25. Also, the displacement field is:

u =
σ0a
8µ

[
r
a
(κ +1)cosθ +

2a
r
((κ +1)cosθ + cos3θ)− 2a3

r3 cos3θ

]
v =

σ0a
8µ

[
r
a
(κ −3)sinθ +

2a
r
((1−κ)sinθ + sin3θ)− 2a3

r3 sin3θ

] (37)

where µ = E/2(1+ν) and κ = 3−4ν . Eliminating the influence of the finite plate
dimensions, the analytical tractions calculated from Eq. (36) are imposed at the
boundaries BC and CD. Also, zero tractions are applied at the hole boundary AE,
while the solution is symmetric with respect to AB and ED lines.

The grids used for the study of this test case are presented in Fig. 26. A grid-
dependent test is performed on four systematically refined grids (grid numbers 1
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Figure 25: Schematic of test case 3: an infinite plate with a circular hole under axial 

stress 

  

Figure 25: Schematic of test case 3: an infinite plate with a circular hole under
axial stress.
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Figure 26: Grids used for the study of test cases 3; (1) uniform 160 elements; (2) 

uniform 640 elements; (3) uniform 2560 elements; (4) uniform 10240 elements; (5) non-

uniform 2736 elements; (5) perturbed 2560 elements 
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Figure 26: Grids used for the study of test cases 3; (1) uniform 160 elements; (2)
uniform 640 elements; (3) uniform 2560 elements; (4) uniform 10240 elements;
(5) non-uniform 2736 elements; (5) perturbed 2560 elements.

through 4), and two irregular grids are applied (grid numbers 5 through 6) to study
the effect of the grid irregularity on the accuracy and performance of the solution
obtained by applying different approaches. In Fig. 27, the contours of σxx are
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Figure 27: Comparison of contours of 
xx

 obtained by the CV approach (dashed line) 

with the analytical solution (solid line) on different grids 
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Figure 27: Comparison of contours of σxx obtained by the CV approach (dashed
line) with the analytical solution (solid line) on different grids.

shown for the CV approach on the different grids. It can be seen that grid numbers
3 through 6 are able to accurately follow the analytical solution while, the results
of grid numbers 1 and 2 are deviated from the analytical solution. In Fig. 28,
the variation of σxy along the circular cross-section r = 1.25a, obtained by the
CV approach, is compared for grid numbers 1 through 4, which shows that grid
numbers 1 and 2 are not suitable to obtain accurate results. In this figure, the results
of the finest grid (which has 24 points along the hole perimeter) is coincident with
the analytical solution. This comparison is made for grid numbers 3, 5 and 6 in
Fig. 29 which shows the acceptable accuracy of the CV approach on the irregular
(non-uniform and perturbed) grids.

In Fig. 30, the L1-norm error of displacement field w.r.t the analytical solution is
compared for grid numbers 1 through 4. It is observed that the CV approach is less
sensitive to the grid size, although, all the approaches achieve to acceptable accu-
racies on finer grids. Figure 31 exhibits the L1-norm error of the σxx component of
the stress tensor w.r.t the analytical solution where the different approaches nearly
converge with the second order accuracy. It is found that the CV approach gives
the most accurate results among the approaches applied. The study shows that the
performance of the CC-BE approach is better than two other CC approaches and it
provides the results comparable with the CV approach especially on finer grids. It
is also clear that the CC-R and CC-E approaches have nearly the same performance.



Assessment of Cell-centered and Cell-vertex Finite Volume Approaches 429

  

56 

 

 

 

 

Figure 28: Grid-dependent test using uniform grids for xy  obtained by the CV approach 

along the circular cross-section 1.25r a  
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Figure 28: Grid-dependent test using uniform grids for σxy obtained by the CV
approach along the circular cross-section r = 1.25a.
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Figure 29: Effect of grid irregularity on xy  obtained by the CV approach along the 

circular cross-section 1.25r a  
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Figure 29: Effect of grid irregularity on σxy obtained by the CV approach along the
circular cross-section r = 1.25a.

In Tab. 5, the L1-norm error of the displacement field and the σxx component of
the stress tensor are presented for all meshes. Similar to the previous test case, as
the grid size is decreased, the accuracy of all the approaches is increased. The ac-
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Figure 30: Comparison of 1
L -norm error of the displacement of point A (see Figure 

25) using different approaches on different grids w.r.t the analytical solution 
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Figure 30: Comparison of L1-norm error of the displacement of point A (see Figure
25) using different approaches on different grids w.r.t the analytical solution.

curacy of the CV and CC-BE approaches is nearly similar for the non-uniform and
perturbed grids, while the CC-R and CC-E approaches are less accurate. Similar to
the previous test case, the CV approach is less sensitive to grid irregularity among
the approaches studied.

Table 5: Comparison of L1-norm error of the displacement field and σxx w.r.t the
analytical solution for different approaches.

Mesh
CV CC BE CC Reg. CC Extr.

Displacement
field error

σxx

error
Displacement
field error

σxx

error
Displacement
field error

σxx

error
Displacement
field error

σxx

error
1 1.09×10−5 507.1 1.59×10−5 571.9 3.28×10−5 785.1 3.14×10−5 818.9
2 1.96×10−6 171.7 6.58×10−6 221.6 1.63×10−5 326.0 1.46×10−5 319.4
3 6.51×10−7 52.8 2.14×10−6 71.9 6.22×10−6 115.5 5.47×10−6 109.7
4 4.94×10−7 15.5 8.06×10−7 21.1 2.12×10−6 36.7 1.78×10−6 34.5
5 1.71×10−6 50.8 1.22×10−6 73.6 7.27×10−6 115.6 6.38×10−6 110.5
6 3.68×10−6 72.0 4.85×10−6 84.3 1.25×10−5 123.6 1.46×10−5 124.8

The variation of the σxy component of the stress tensor for the different approaches
along the circular cross-section r = 1.25a is compared in Fig. 32 for grid numbers 3
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Figure 31: Comparison of 1
L -norm error of xx  w.r.t the analytical solution for 

different approaches on different grids 
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Figure 31: Comparison of L1-norm error of σxx w.r.t the analytical solution for
different approaches on different grids.

through 6. As it is obvious, the most accurate result is obtained by the CV approach,
while the CC-BE approach stands on the second rank. It seems that increasing
the grid skewness affects the results of FVM, while the CC approaches are more
sensitive than the CV approach. Among the CC approaches, the CC-BE approach
is less sensitive to the grid distribution and it obtains similar results compared to
the CV approach. It can also be seen that, the CC-R and CC-E approaches coincide
on grid number 5 while, on grid number 6 their results are different, which supports
the results obtained for the previous test cases.

The accuracy of different approaches is assessed by comparing the calculated σxx

component of the stress tensor with the analytical solution in Fig. 33. This com-
parison, which is made on grid numbers 3 and 6, indicates that the CV and CC-BE
approaches properly follow the analytical solution for the entire region while the
results of the CC-R and CC-E approaches have acceptable accuracy far from the
hole boundary.

The convergence history of test case 3 on uniform grids is depicted in Fig. 34
which shows a similar trend of the CV and CC approaches for the convergence
of the solution. Similar to the previous test cases, the time step of the finest grid
is the smallest, and thus its convergence rate is also the smallest. In Fig. 35,
the convergence history of the non-uniform and perturbed grids is compared with
the unperturbed grid. It is shown that the convergence rate of the solution for the
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Figure 32: Comparison of xy  profile along the circular cross-section 1.25r a  

obtained by the CV and CC approaches on different grids 
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Figure 32: Comparison of σxy profile along the circular cross-section r = 1.25a
obtained by the CV and CC approaches on different grids.

perturbed grid is slower than that of the unperturbed and non-uniform grids. It is
found that the quality of the grid has a significant effect on the performance of the
solution algorithm.

6 Conclusions

In the present study, the cell-centered (CC) and cell-vertex (CV) finite volume (FV)
approaches are employed and assessed for simulation of 2D structural dynamic-
s on arbitrary quadrilateral grids. Three methods are used for the calculation of
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Figure 33: Comparison of contours of xx  obtained by the CV and CC approaches 

with the analytical solution (solid line) on grid number 3 (upper) and grid number 6 

(lower)  
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Figure 33: Comparison of contours of σxx obtained by the CV and CC approaches
with the analytical solution (solid line) on grid number 3 (upper) and grid number
6 (lower).

boundary nodes’ displacement in the CC FV approach; an extrapolation technique
(CC-E FV approach), a simple linear regression (CC-R FV approach) and the line
boundary cell technique (CC-BE FV approach). To examine the effects of grid ir-
regularity on the results of CC and CV FV approaches, different grid types are used
ranging from regular square grids to irregular ones, including random perturbation-
s of the grid nodes. A comparative study between the CV and CC FV approaches
is made in terms of accuracy and performance of these approaches by simulating
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Figure 34: Comparison of convergence history of test case 3 for different approaches 

on grid numbers 1 through 4 
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Figure 34: Comparison of convergence history of test case 3 for different approach-
es on grid numbers 1 through 4.
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Figure 35: Comparison of convergence history of test case 3 for different approaches 

on grid numbers 3, 5 and 6 
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Figure 35: Comparison of convergence history of test case 3 for different approach-
es on grid numbers 3, 5 and 6.

some benchmark test cases in structural dynamics on different grid types. Some
conclusions and remarks regarding the present study are as follows:
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1. The study shows that the results obtained by applying the CV and CC ap-
proaches for the problems considered herein are in good agreement with the
analytical solutions and all the approaches converge nearly with the second
order accuracy. It is observed that the CV approach is the most accurate ap-
proach among the approaches studied herein and it can provide reasonable
results on different grid types.

2. It is indicated that all the approaches are capable to obtain accurate results on
the regular fine grids. The study shows that on regular grids the accuracy and
performance of the CC-BE approach is better than two other CC approaches
and it can provide the results comparable with the CV approach. It is also
shown that the CC-R and CC-E approaches have nearly the same accuracy
and performance on regular grids.

3. It is observed that the CV approach is the most efficient approach in terms
of the CPU time and the memory required compared to the CC approach-
es, because it does not apply the displacement of cell centers in its solution
procedure while the CC approaches apply the displacement of vertices along
with the cell centers displacement. The CC FV approach using differen-
t treatments of calculation of boundary nodes’ displacement has nearly the
same convergence rate. Although the CC–BE approach provides reasonable
results comparable with the CV approach, it needs more computer resources
among the finite volume approaches studied.

4. It is found that the quality of the grid has a great effect on the accuracy and
performance of the solution obtained by applying both the CV FV and CC
FV approaches. It is demonstrated that the CV approach is less sensitive
to the grid irregularity and it may be due to more uniformity of the control
volumes in this approach which are the median dual of the original mesh.
Among the CC FV approaches, the CC BE approach is less sensitive to the
grid irregularity and it obtains almost identical results compared to the CV
approach. Although the CC-R and CC-E approaches give nearly the same
results on regular grids, the CC-E approach may fail to obtain accurate results
on irregular grids.

5. The present study demonstrates the suitability of using the CV FV and C-
C FV approaches for the simulation of 2D structural dynamics on arbitrary
quadrilateral grids. Note that the CC FV approach requires particular care
for the implementation and calculation of boundary nodes’ displacement to
achieve adequate results. The extension of the study performed herein to
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assess the CV FV and CC FV approaches for computing 2D structural dy-
namics on arbitrary triangular grids is straightforward to perform.

6. Since the CC FV is common method to use is fluid dynamics problems, based
on the present study that indicates the CC FV method can also provide ac-
curate and reliable results in structural dynamics problems, one can develop
and apply a unified formulation based on the CC FV method for an accurate
and efficient simulation of fluid-solid interaction problems.

Acknowledgement: The authors would like to thank Sharif University of Tech-
nology for the support of this research.
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