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Fast Generation of Smooth Implicit Surface Based on
Piecewise Polynomial
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Abstract: To speed up generating a scalar field g(xxx) based on a piecewise poly-
nomial, a new method for determining field values that are indispensable to gener-
ate g(xxx) has been proposed. In the proposed method, an intermediate for generating
g(xxx) does not required, i.e., the field values can directly be determined from given
point data. Numerical experiments show that the computation time for determining
the field values by the proposed method is about 10.4–12.7 times less than that of
the conventional method. In addition, on the given points, the accuracy of g(xxx) ob-
tained by using the proposed method is almost the same as that of the conventional
method. Furthermore, the computation time of the proposed method is almost not
affected by the number of given points for the case where the number of all cells is
large.
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1 Introduction

Meshless methods such as the element-free Galerkin method [Belytschko, Lu, and
Gu (1994)], the meshless local Petrov-Galerkin method [Atluri and Zhu (1998)],
the meshless radial point interpolation method [Wang and Liu (2002)], and the
boundary node method [Mukherjee and Mukherjee (1997)] have been investigated
as numerical methods to solve partial differential equations. In meshless methods,
elements representing a geometrical structure are not required; however, an anal-
ysis domain must be defined. To define the analysis domain, a scalar field g(xxx)
that contains the analysis domain is sometimes employed [Nakata and Sakamo-
to (2014); Hasegawa, Nakata, and Tanaka (2006); Sakamoto, Nakata, and Tanaka
(2012); Nakata, Hasegawa, and Tanaka (2009); Itoh, Saitoh, Kamitani, and Naka-
mura (2011)]. The scalar field g(xxx) can be obtained as a result of implicit surface
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modeling, and the boundary of the analysis domain is represented as an implicit
surface, g(xxx) = 0. One of the main purposes of the implicit surface modeling is sur-
face reconstruction from a set of surface points retrieved using three-dimensional
scanning devices. In the last two decades, a number of methods for generating s-
calar functions of implicit surfaces have been proposed. In addition, recent studies
such as reconstruction methods based on frequency analysis [Manson, Petrova, and
Schaefer (2008)], Poisson equation [Kazhdan and Hoppe (2013)], splines [Wang,
Yang, Jin, Deng, and Chen (2011)], radial basis functions (RBF) [Zagorchev and
Goshtasby (2012)] and partition of unity [Ohtake, Belyaev, Alexa, Turk, and Seidel
(2003)] have shown that accurate and detailed surfaces can be reconstructed from
millions of input points.

Recently, a new method for generating g(xxx) has been proposed [Nakata, Aoyama,
Makino, Hasegawa, and Tanaka (2012)]. By using the method, an implicit surface
can be rendered in real-time on graphical processing unit (GPU). In this method,
to enable a real-time rendering of an implicit function, g(xxx) is constructed as a set
of piecewise polynomials based on the B-spline. Note that, to generate g(xxx) in
this method, field values fi jk on N3 uniform grid points xxxi jk are indispensable. In
[Nakata, Aoyama, Makino, Hasegawa, and Tanaka (2012)], the field values fi jk are
obtained by evaluating a smooth scalar field f (xxx), that is generated by a method
such as RBF or multi-level partition of unity (MPU) method [Ohtake, Belyaev,
Alexa, Turk, and Seidel (2003)], on each of grid points xxxi jk. Namely, for generating
g(xxx), f (xxx) is required as an intermediate of g(xxx).

The purpose of the present study is to speed up generating a scalar field g(xxx) based
on a piecewise polynomial described in [Nakata, Aoyama, Makino, Hasegawa, and
Tanaka (2012)]. To this end, a new method for determining field values fi jk has
been proposed. In the proposed method, any intermediates for generating g(xxx) are
not required, i.e., the field values can directly be determined from given point data.

2 Smooth Implicit Surface Based on Piecewise Polynomial

In this section, we briefly describe procedures for generating a scalar field g(xxx)
based on a piecewise polynomial. An implicit surface is represented as g(xxx) = 0,
where xxx = [x,y,z]T. In addition, g(xxx) has properties as follows:

{
g(xxx)> 0 (inside of the surface),
g(xxx)< 0 (outside of the surface).

(1)

In the proposed method, a scalar field is generated, so that Eq. (1) is satisfied.
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2.1 Generation of Scalar Field

In this section, we consider generating a scalar field g(xxx) in a unit cube, [0,1)×
[0,1)× [0,1). Note that the unit cube is constructed by N3 uniform cubic cells,
where N is the number of cells for each direction. Here, we assume that the s-
calar field g(xxx) can be represented as the following linear combination of B-spline
bases [Nakata, Aoyama, Makino, Hasegawa, and Tanaka (2012)]:

g(xxx) =
N

∑
i=−1

N

∑
j=−1

N

∑
k=−1

ci jkbi(x)b j(y)bk(z), xxx = [x,y,z]T ∈ [0,1)× [0,1)× [0,1), (2)

where bi(t) is an uniform quadratic B-spline function defined as

bi(t) = b(t− i),

b(t)≡


(t +1)2/2 (−1≤ t < 0),
−t2 + t +1/2 (0≤ t < 1),
(t−2)2/2 (1≤ t < 2),
0 (otherwise).

(3)

In addition, ci jk are the coefficients determined to satisfy the interpolation con-
dition, g(xxxi jk) = fi jk. The local polynomial gi jk(xxx) in the (i, j,k)-th cell can be
retrieved from Eqs. (2) and (3) as follows [Nakata, Aoyama, Makino, Hasegawa,
and Tanaka (2012)]:

gi jk(xxx) =
2

∑
p=0

2

∑
q=0

2

∑
r=0

α
(p,q,r)
i jk xpyqzr, (4)

where α
(p,q,r)
i jk are the coefficients of the monomials, and i, j and k are indices of the

cells in the x-, y- and z-direction, respectively. It must be noted here that, to generate
g(xxx) in Eq. (2), field values fi jk on N3 uniform grid points xxxi jk are required. Here,
xxxi jk = [(i+ 0.5)/N,( j + 0.5)/N,(k + 0.5)/N]T that is contained in the (i, j,k)-th
cell. In next section, we describe how to obtain the field values fi jk.

3 Method for Obtaining Field Values fi jk

3.1 Conventional Method

In [Nakata, Aoyama, Makino, Hasegawa, and Tanaka (2012)], the field values fi jk
are obtained by evaluating a smooth scalar field f (xxx) on each of grid points xxxi jk.
To generate f (xxx), it is assumed that the point data is given as a collection of n scat-
tered points X = {xxx1,xxx2, . . . ,xxxNP} in the unit cube, together with outward-directed
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Figure 1: Schematic view for Eq. (6).

normals N = {nnn1,nnn2, . . . ,nnnNP} at each of given points, where NP is the number of
given points. Under the assumptions, the scalar field f (xxx) is generated by a method
such as RBF and MPU in the unit cube so that an original surface from which
the given points X were obtained is reconstructed as the implicit representation,
f (xxx) = 0. Namely, before g(xxx) in Eq. (2) is generated, f (xxx) has to be generat-
ed first. In other words, g(xxx) is generated by converting f (xxx). Hence, f (xxx) is an
intermediate for generating g(xxx).

3.2 Proposed Method

Under the same assumptions described in 3.1, we propose a new method for de-
termining the field values fi jk. In the proposed method, any intermediates are not
required, i.e., fi jk are directly obtained from given data, X and N , without an
explicit scalar field f (xxx).

3.2.1 Determining fi jk Directly

When the field values fi jk are determined on N3 uniform grid points xxxi jk, fi jk have
to satisfy the following conditions:

fi jk > 0 (inside of the surface),
fi jk = 0 (on the surface),
fi jk < 0 (outside of the surface).

(5)

Namely, fi jk are determined so that a signed distance from the surface is emulated.
This is because g(xxx) is generated by using fi jk, and has to satisfy Eq. (1). Although
the surface is not obtained, we directly determine fi jk from given data, X and N ,
so that Eq. (5) is approximately satisfied. Note that a clue for determining fi jk is
X , since X was obtained from an original surface by using an equipment such as
a 3D laser scanner.
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Figure 2: Levels of cells.

(a) (b)

Figure 3: Range for searching an approximate nearest point x̂xxnp from xxxi jk contained
in (a) C0 and (b) C1. In C0 and C1, fi jk on xxxi jk are determined by Eq. (6).

To determine fi jk with satisfying Eq. (5) approximately, we adopt the following
equation:

fi jk = d cosθ = (xxxnp− xxxi jk) ·nnnnp, (6)

where d = |xxxnp− xxxi jk|, and θ is defined as the angle between xxxnp− xxxi jk and nnnnp.
In addition, xxxnp ∈X is the nearest point from xxxi jk, and nnnnp ∈N is the outward-
directed normal corresponding to xxxnp. As shown in Fig. 1, fi jk determined by E-
q. (6) can approximate the exact distance between xxxi jk and an original surface.

3.2.2 Speed-up of Determining fi jk

If the field values fi jk are determined by Eq. (6) on all grid points xxxi jk, the computa-
tion time for determining all fi jk may be large in comparison with that of [Nakata,
Aoyama, Makino, Hasegawa, and Tanaka (2012)], even though an efficient algo-
rithm such as an octree based method is employed for searching the nearest point.
For this reason, to speed up determining fi jk, we consider employing Eq. (6) only
on the grid points contained in C0 and C1, where C` denotes a set of cells whose
level is `(`= 0,1, . . .). Here, we define a level of cells as follows:
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(a) (b) (c)
Figure 4: Schematic view for the case where field values on grid points contained
in Fi jk are (a) all positive (Type A), (b) all negative (Type B), and (c) positive or
negative (Type C). Here, red and blue dots are the same as described in Fig. 2(b).

1. The level of cells that contain given points is 0.

2. As shown in Fig. 2, the level of cells that are next to C` is `+1(l = 0,1, . . .),

The field values fi jk are determined in order of increasing the level of cells. On xxxi jk
contained in C0 and C1, fi jk is calculated by Eq. (6). Then, an approximate nearest
point x̂xxnp from xxxi jk can be found by searching (l,m,n)-th cells (l = i−1, i, i+1;m=
j− 1, j, j+ 1;n = k− 1,k,k+ 1) as shown in Figs. 3(a) and (b). To calculate fi jk
by Eq. (6), we consider xxxnp = x̂xxnp, since the nearest point xxxnp is exactly the same as
x̂xxnp in almost all cases. In addition, even if x̂xxnp is not exactly the same as xxxnp, x̂xxnp
is a good approximation of xxxnp. Note that the field values fi jk calculated by Eq. (6)
automatically satisfy Eq. (5).

In grid points contained in C`(` = 2,3, . . .), fi jk are calculated by using the field
values that were already determined on neighbor grid points of xxxi jk. To satisfy
Eq. (5) appropriately, we present the following three types of calculations.

Type A For the case where flmn on xxxlmn contained in Fi jk are all positive as shown
in Fig. 4(a):

fi jk =

i+1

∑
l=i−1

j+1

∑
m= j−1

k+1

∑
n=k−1

βlmn
(

flmn + |xxxlmn− xxxi jk|
)

Nβ

i jk

. (7)

Type B For the case where flmn on xxxlmn contained in Fi jk are all negative as shown
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in Fig. 4(b):

fi jk =

i+1

∑
l=i−1

j+1

∑
m= j−1

k+1

∑
n=k−1

βlmn
(

flmn−|xxxlmn− xxxi jk|
)

Nβ

i jk

. (8)

Type C Others, i.e., for the case where flmn on xxxlmn contained in Fi jk are positive
or negative as shown in Fig. 4(c):

fi jk =

i+1

∑
l=i−1

j+1

∑
m= j−1

k+1

∑
n=k−1

βlmn flmn

Nβ

i jk

. (9)

Here, Fi jk is defined as a set of cells in which flmn were already determined on
xxxlmn(l = i−1, i, i+1;m = j−1, j, j+1;n = k−1,k,k+1). In addition,

βlmn ≡

{
0 (xxxlmn is not contained in Fi jk)

1 (xxxlmn is contained in Fi jk)
, (10)

and

Nβ

i jk =
i+1

∑
l=i−1

j+1

∑
m= j−1

k+1

∑
n=k−1

βlmn. (11)

4 Numerical Experiments

In this section, numerical experiments are conducted to evaluate the proposed method
by using the data of Bunny, Armadillo and Lucy models as shown in Figs. 5(a), (b)
and (c), respectively. All models are first rescaled so that the given points are lie
in a unit cube [0,1)× [0,1)× [0,1). Computations were performed on a computer
equipped with a 3.4 GHz Intel Core i7 4930K processor, 32 GB RAM, CentOS
Linux ver. 6.5, and g++ ver. 4.4.7 with single-precision arithmetic.

Let us first investigate a reconstructed result represented as g(xxx)= 0 for each model.
For N = 400, the results obtained by using the proposed method are shown in
Figs. 5(d), (e) and (f) for Bunny, Armadillo and Lucy models, respectively. Note
that these results are obtained by an implicit surface polygonizer [Bloomenthal and
Ferguson (1995)].
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(a)

(b) (c)

(d)

(e) (f)

Figure 5: Left side: Given point data used in the numerical experiments: (a) Bun-
ny (NP = 34834), (b) Armadillo (NP = 172974) and (c) Lucy (NP = 1001991).
Right side: Reconstructed Results obtained by using the proposed method for
(d) Bunny, (e) Armadillo and (f) Lucy (N = 400).

To investigate the accuracy of these results quantitatively, an average error εavg of
g(xxx) obtained by using the proposed method is compared with that of the conven-
tional method. Here, the average error is defined by εavg ≡ ∑

NP
n=1 |g(xxxn)|/NP. If

g(xxx) is accurate on the given points, εavg→ 0, since g(xxx) is generally generated so
that g(xxxn) = 0 (n = 1,2, . . . ,NP) are satisfied. The average errors of g(xxx) obtained
by both methods for Bunny, Armadillo and Lucy models are plotted as a function
of the number N of cells for each direction in Figs. 6(a), (b) and (c), respectively.
We see from these figures that, for the case where N is relatively large, the average
error of the proposed method is smaller than that of the conventional method. How-
ever, we consider that the difference between the average errors obtained by both
methods is not large. Hence, we conclude that, on the given points, the accuracy
of g(xxx) obtained by using the proposed method is almost the same as that of the
conventional method.

Note that, as shown in Fig. 6(d), some big holes can be found in the bottom part
of Bunny model. Regardless of the accuracy of g(xxx) on given points, the surface
obtained by the conventional method becomes unnatural around big holes of given
data as shown in Fig. 6(e) for Bunny model. The proposed method also has the
same property as shown in Fig. 6(f). It must be noted here that not only above
property but also other properties of the conventional method are inherited to the
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(a) (b)

(c) (d) (e) (f)

Figure 6: Dependence of average error εavg of g(xxx) on the given points for (a) Bun-
ny, (b) Armadillo and (c) Lucy models on the number N of cells for each direction.
(d) Some big holes can be found in the bottom part of Bunny model. Regardless
of accuracy of g(xxx) on the given points, the surfaces obtained by (e) convention-
al method and (f) proposed method become unnatural around big holes of given
points.

proposed method, since the difference between conventional and proposed meth-
ods is only how to obtain the field values. Other process to generate g(xxx) in the
proposed method is exactly the same as that of the conventional method. Hence,
g(xxx) obtained by using the proposed method can be rendered in real-time on G-
PU by the same algorithm described in [Nakata, Aoyama, Makino, Hasegawa, and
Tanaka (2012)], though the results shown in Figs. 5(d), (e) and (f) are rendered by
the implicit surface polygonizer as mentioned above.

Finally, we investigate computation time of obtaining all field values by using both
methods. For Bunny, Armadillo and Lucy models, the computation time by both
methods is plotted as a function of the number N of cells for each direction in
Figs. 7(a), (b) and (c), respectively. Note that, for generating f (xxx) in the con-
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(a) (b)

(c) (d)

Figure 7: Dependence of computation time to obtain all field values for (a) Bunny,
(b) Armadillo and (c) Lucy models on the number N of cells for each direction. The
computation time of the proposed method for each model is summarized in (d).

ventional method, we employ the MPU method whose parameters as described in
[Ohtake, Belyaev, Alexa, Turk, and Seidel (2003)] are fixed as α = 1.35, λ = 0.2
and ε0 = 10−3. In addition, the computation time of the conventional method in
Fig. 7 contains the computation time of generating f (xxx), since this is indispens-
able in the conventional method to obtain the field values. We see from Figs. 7(a)
and (b) that the computation time of the proposed method is always less than that
of the conventional method. In addition, we see from Fig. 7(c) that, for N ≥ 75,
the computation time of the proposed method is less than that of the conventional
method. Here, for N = 50,100,150,200,250 and 300, the results obtained by using
the proposed method for Lucy model are shown in Figs. 8(a), (b), (c), (d), (e) and
(f), respectively. From these figures, in the following, we consider comparing the
computation time of both methods for N ≥ 150, since the reconstructed results are
insufficient for the case where N is relatively small. On average for N ≥ 150, the
computation time of the proposed method for Bunny, Armadillo and Lucy models
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(a) (b) (c) (d) (e) (f)

Figure 8: Reconstructed results of Lucy model for (a) N = 50, (b) N = 100, (c) N =
150, (d) N = 200, (e) N = 250 and (f) N = 300.

is about 10.4, 12.7 and 12.2 times less than that of the conventional method, re-
spectively. In addition, as shown in Fig. 7(d), the computation time of three models
is almost the same for N ≥ 300. This is because almost all field values are calcu-
lated by Eqs. (7), (8) and (9) for the case where the number N3 of all cells is large.
Namely, the total number of C0 and C1 is very small in comparison with that of
C`(` = 2,3, . . .). Hence, the process for searching the nearest point xxxnp in Eq. (6)
does not required in almost all cells. Since Eqs. (7), (8) and (9) do not use the given
points, the computation time of the proposed method is almost not affected by the
number NP of given points for the case where the number N3 of all cells is large.

5 Discussion

In this section, we discuss the applicability of the scalar field g(xxx) generated by the
proposed method to the meshless based analysis.

A scalar field g(xxx) generated by conventional method has sometimes been em-
ployed in the meshless methods to define an analysis domain as an implicit sur-
face, g(xxx) = 0. For example, with the scalar field g(xxx) generated by conventional
method, the structural analysis was done by the element-free Galerkin method (E-
FG) in [Hasegawa, Nakata, and Tanaka (2006)], and a fluid simulation was done
by the smoothed particle hydrodynamics method (SPH) in [Nakata and Sakamoto
(2014)].

In meshless methods, g(xxx) fulfills roles both defining the analysis domain and rec-
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ognizing inside/outside of the analysis domain by using the properties as described
in Eq. (1). Concretely, to recognize inside/outside of the analysis domain, eval-
uation of g(xxx) is required. This is because, in the meshless based analysis, there
are indispensable procedures such as evaluation of integrals inside the domain and
confining particles to the domain. By using the properties as described in Eq. (1),
these procedures can be executed easily. Note that, in the proposed method, g(xxx) is
generated so that Eq. (1) is satisfied.

The accuracy of g(xxx) generated by the proposed method is almost the same as
that generated by the conventional method as shown in Section 4. In addition, the
computation time for evaluating g(xxx) of the proposed method is almost equal to
that of the method in [Nakata, Aoyama, Makino, Hasegawa, and Tanaka (2012)].
One of the main properties of the method in [Nakata, Aoyama, Makino, Hasegawa,
and Tanaka (2012)] is parallel evaluation of g(xxx). Note that g(xxx) generated by the
proposed method has the same properties, since the proposed method is based on
the method in [Nakata, Aoyama, Makino, Hasegawa, and Tanaka (2012)]. Hence,
we consider that g(xxx) generated by the proposed method can be applied to the
meshless based analysis as well as that generated by the conventional methods. In
addition, by using the proposed method, the meshless based analysis may be more
efficient because of the parallel evaluation of g(xxx).

6 Conclusion

To speed up generating a scalar field g(xxx) based on a piecewise polynomial de-
scribed in [Nakata, Aoyama, Makino, Hasegawa, and Tanaka (2012)], a new method
for determining field values that are indispensable to generate g(xxx) has been pro-
posed. In the proposed method, any intermediates for generating g(xxx) are not re-
quired, i.e., the field values can directly be determined from given point data that
consists of point locations together with outward-directed normals. In numerical
experiments, by using the data of Bunny, Armadillo and Lucy models, the perfor-
mance of the proposed method has been investigated by comparing with that of the
conventional method. Conclusions obtained in the present study are summarized
as follows:

1. On the given points, the accuracy of g(xxx) obtained by using the proposed
method is almost the same as that of the conventional method.

2. The process for determining the field values by the proposed method is faster
than that of the conventional method. In the numerical experiments, the com-
putation time for determining the field values by the proposed method is
about 10.4–12.7 times less than that of the conventional method.
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3. For the case where the number of all cells is large, the computation time of
the proposed method is almost not affected by the number of given points.

In future study, the meshless methods with the implicit functions generated by using
the proposed method will be applied for solving partial differential equations in
complex shaped domains.
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