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Texture Segmentation based on Multivariate Generalized
Gaussian Mixture Model

K. Naveen Kumar1, K. Srinivasa Rao2, Y. Srinivas3, Ch. Satyanarayana4

Abstract: Texture Analysis is one of the prime considerations for image analysis
and processing. Texture segmentation gained lot of importance due to its ready ap-
plicability in automation of scene identification and computer vision. Several tex-
ture segmentation methods have been developed and analysed with the assumption
that the feature vector associated with the texture of the image region is modelled
as Gaussian mixture model. Due to the limitations of the Gaussian model being
meso kurtic, it may not characterise the texture of all image regions accurately.
Hence in this paper, a texture segmentation algorithm is developed and analysed
with the assumption that the feature vector of the texture associated with the whole
image is characterised by multivariate generalized Gaussian mixture model. The
generalized Gaussian mixture model includes several lepto kurtic, platy kurtic and
meso kurtic distributions as particular cases. The model parameters are estimated
through EM algorithm. The segmentation algorithm is developed using maximum
likelihood under Bayesian framework. The performance of the proposed algorithm
is evaluated through segmentation quality metrics and conducting experimentation
with a set of 8 sample images taken from Brodatz texture database. A comparative
study of the proposed algorithm with that of Gaussian mixture model revealed that
the proposed algorithm outstandthe existing algorithms.

Keywords: Texture; Multivariate generalized gaussian mixture model; EM algo-
rithm; Performance measures.

1 Introduction

Image analysis and image retrievals are prerequisites for image processing. In im-
age processing, the scene and texture in the image have a strong one to one cor-
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respondence. The ability of identifying the texture is the basic requisition for the
semantic information about the scene. As a result of it, the texture description and
segmentation formed a thrust area of computer vision and image processing [Haim,
Joseph, and Ian (2006)]. Generally, texture refers to the arrangement of the basic
constituents of a material. In digital images, the spatial inter relationships between
the arrangement of the image pixels describe the texture of the image.

Several texture analysis techniques have been developed and used for analysing the
natural scenes which are consisting of textures surfaces [Haralick, Shanmugam,
and Dinstein (1973); Haralick (1979); Du (1990); Weszka, Dyer, and Rosenfield
(1976); Lu, Chung, and Chen (1997)]. Among these methods, texture segmentation
methods are more useful because of the variation in textural patterns make the
difference in coarseness, complexity, shape, direction, content etc. The human
perception in comparing textures is highly inaccurate since the texture of the image
is covered by the scene. For efficient analysis of images, the texture classification
(segmentation) is highly needed.

The texture segmentation methods can be classified in to two categories namely
statistical methods and heuristic methods. The statistical methods include model
based methods, non parametric methods, classification trees, vector quantisation,
Markov random fields etc., [Unser (1995); Weldon and Higgins (1996); Unser
(1986); Randen and Husoy (1999); Hossein, Shankar, Allen, Shankar, and Y-
i (2011); Mihran and Anil (1998)]. Among these methods, model based texture
segmentation methods are more important since they capture the information more
effectively and accurately. Several model based image segmentation methods have
been developed [Pal and Pal (1993); Conrad and Kuldip (2003)]. In all these mod-
els, they assumed that the feature vector associated with texture of image is meso
kurtic and symmetry. But in many images, the feature vector of the texture may
not be meso kurtic even though it is symmetry. Hence, the texture segmentation
methods developed based on Gaussian mixture model (GMM) may not serve the
purpose accurately due to the limitations on GMM. Therefore, it is needed to model
the feature vector of the texture in the image segment using a suitable probability
model.

With this motivation, in this paper we develop and analyse texture segmentation
algorithm based on multivariate generalized Gaussian mixture model (MGGMM).
Here, it is assumed that the feature vector associated with the texture of the image
region is characterised by multivariate generalized Gaussian distribution and the
whole image is a collection of several image regions. The generalized Gaussian
distribution is capable of including several platy kurtic, lepty kurtic and meso kurtic
distributions as particular cases for specific values of the shape parameters. It is
interesting to note that generalized Gaussian distribution also includes Gaussian
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distribution as a particular case.

The rest of the article is organised as follows: Section 2 deals with the feature vec-
tor extraction of the texture associated with the image using DCT (Discrete Cosine
Transformation) coefficients. Section 3 deals with multivariate generalized Gaus-
sian mixture model and its properties. Section 4 deals with estimation of model
parameters using EM algorithm and initialisation of the parameters using moment
method of estimation and K-means algorithm. Section 5 is concerned with texture
segmentation algorithm under Bayesian frame using maximum likelihood function.
Section 6 deals with experimental results and performance evaluation of the devel-
oped algorithm using Brodatz texture database and computing the segmentation
performance measures. Section 7 deals with comparative study of the proposed
algorithm with that of Gaussian mixture model. The last Section 8 is to summarise
the results with conclusions and scope for further research in this area.

2 Feature vector extraction

For developing the texture segmentation model, the important consideration is de-
riving the feature vectors of the texture present in the image. Several techniques
have been adopted to extract the feature vectors associated with each texture in the
image [Conrad and Kuldip (2003); Mariana (2008)]. Among these techniques, the
2D discrete cosine transformation is simple and more efficient in characterising the
features of the texture. This method has been considered as a worldwide standard
[JPEG] for image compression [Huang (2005)]. To obtain the feature vectors as-
sociated with the image texture, we assume that the image is divided into MxM
blocks. In each block, the 2D DCT coefficients are computed using the method
[(Huang (2005)]. These coefficients are ordered in zigzag pattern (consisting of 16
coefficients) which are sufficient to reflect the amount of information stored in the
image. After finding the DCT coefficients, we get the feature vectors of the image
as ~xt = [~x1,~x2,~x3, . . . ,~xN ]

T consisting of Nx16 coefficients where N is number of
blocks.

3 Multivariate generalized gaussian MixtureModel

In texture analysis, the entire image texture is considered as a union of several repet-
itive patterns. In this section, we briefly discuss the probability distribution (model)
used for characterizing the feature vector of the texture. After extracting the feature
vector of each individual texture it can be modeled by a suitable probability distri-
bution such that the characteristics of the feature vector should match the statistical
theoretical characteristics of the distribution. The feature vector characterizing the
image is to follow a M-component mixture distribution. Therefore we develop and
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analyze the textures in an image by considering that the feature vectors represent-
ing textures follow a M-Component MGGMM model. The joint probability density
function (pdf) of the feature vector associated with each individual texture is

p(~xr/θ) =
M

∑
i=1

wigi (~xr,θ) (1)

where,~xr = (xri j), j = 1,2, . . . ,D, is a D dimensional random vector represents the
feature vector.
i = 1,2, . . .M representing the groups,
r = 1,2, . . .T representing the samples.
θ is a parametric set such that θ = (µ,σ ,β )
wi is the component weight such that ∑

M
i=1 wi = 1

and gi (~xr,θ) is the probability of ith class representing by the feature vectors of the
image and the D-dimensional generalized Gaussian distribution (GGD) is of the
form [(Allili, Bouguila, and Ziou (2007)].

g(~xr/θ) =
D

∏
j=1

β jK(β j)

2σ j
e

{
(−A(β j)

∣∣∣ x j−µ j
σ j

∣∣∣β j
}

(2)

where, µ j,σ j,β j are location, scale and shape parameters.

Also we have

K(β ) =

[
Γ(3/β )

Γ(1/β )

]
Γ(1/β )

1/2

and A(β ) =
[

Γ(3/β )

Γ(1/β )

]β/2

with Γ(·) denoting gamma function.

Each parameter β ≥ 0 controls the shape of GGD.

Expanding and rearranging the terms in (2), we get

g(~xr/θ) =
D

∏
j=1

β j

[
Γ(3/β j)

Γ(1/β j)

]
Γ(1/β j)2σ j

1/2

e

{
−
[

Γ(3/β j)
Γ(1/β j)

]β j/2∣∣∣ x j−µ j
σ j

∣∣∣β j
}

=
D

∏
j=1

1
2σ j
β j

Γ(1/β j)[
Γ(3/β j)
Γ(1/β j)

]−1/2

e

−
 x j−µ j

σi j

(√
Γ(1/β j)
Γ(3/β j)

)


β


(3)
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Let A(β j,σ j) =

[
Γ(1/β j)

Γ(3/β j)

]1/2

σ j

Then

g(~xr/θ) =
D

∏
j=1

1

2
β j

A(β j,σ j)Γ(1+
1
β j

)
e

{
−
∣∣∣∣ x j−µ j

A(β j ,σ j)

∣∣∣∣β j
}

(4)

When β = 1, the corresponding generalized Gaussian corresponds to a Laplacian
or double exponential distribution. When β = 2, the corresponding generalized
Gaussian corresponds to Gaussian distribution. In limiting cases, β → +∞, Eq.4
converges to a uniform distribution in (µ−

√
3σ ,µ +

√
3σ) and when β → 0+, the

distribution becomes degenerate are in x = µ

Figure 1: Generalized Gaussian pdf’s for different values of shape parameter β .

The mean value of the generalized Gaussian distribution is

E(x j) =
1

2Γ(1+ 1
β j
)A(β j,σ j)

∞∫
−∞

xe

{
−
∣∣∣∣ x j−µ j

A(β j ,σ j)

∣∣∣∣β j
}

dx

= µi j +
1

2Γ(1+
1
β j

)A(β j,σ j)

∞∫
−∞

(x j−µ j)e

{
−
∣∣∣∣ x j−µ j

A(β j ,σ j)

∣∣∣∣β j
}

dx

= µi j (5)
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The GGD is symmetric with respect to µ , hence the odd center moments are zero
i.e., E

∣∣xi j−µi j
∣∣t = 0, t = 1,3,5, . . . . The even central moments can be obtained

from absolute center moments and given by

E
∣∣x j−µ j

∣∣t =
σ2

j Γ

(
1
β j

)
Γ

(
3
β j

)


r/2

Γ

(
t +1

β j

)
Γ

(
1
β j

) (6)

The variance is given by

Var(x) = E(x− x̄)2 = E(x−µ)2 = σ
2 (7)

The model can have one covariance matrix for a generalized Gaussian density of
the class. The covariance matrix Σ can be full or diagonal. In this paper, the diago-
nal covariance matrix is considered. This choice based on the initial experimental
results. Therefore

∑i =


σ2

i1 · · ·
· σ2

i2 · ·
· · · ·
· · · σ2

iD

 (8)

As a result of diagonal covariance matrix for the feature vector, the features are
independent and the probability density function of the feature vector is

gi(~xr/θ) =
D

∏
j=1

exp

(
−
∣∣∣∣ xi j−µi j

A(βi j,σi j)

∣∣∣∣βi j
)

2Γ

(
1+

1
βi j

)
A(βi j,σi j)

(9)

=
D

∏
j=1

fi j(xri j) (10)

4 Estimationof model parameters using EM algorithm and initialisation of
the parameters

In this section, we consider estimation of model parameters using EM algorithm
that maximizes the likelihood of the model [Mclanchlan and Peel (2000)]. The
sample observations (DCT Coefficients) [~x1,~x2, . . .~xr] are drawn from image texture
which is characterized by the joint probability density function

p(~xr/θ) =
M

∑
i=1

wigi (~xr,θ)
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where, gi (~xr,θ) is given in the Eq.9.

The likelihood function is given by

L(θ) =
T

∏
r=1

[
M

∑
i=1

wigi (~xr,θ)

]
=

T

∏
r=1


M

∑
i=1

wi


D

∏
j=1

exp

(
−
∣∣∣∣ xi j−µi j

A(βi j,σi j)

∣∣∣∣βi j
)

2Γ

(
1+

1
βi j

)
A(βi j,σi j)


 (11)

This implies

logL(θ) = log
T

∏
r=1

[
M

∑
i=1

wigi(~xr,θ)

]
=

T

∑
r=1

log

[
M

∑
i=1

wigi(~xr,θ)

]

=
T

∑
r=1

log


M

∑
i=1

wi


D

∏
j=1

exp

(
−
∣∣∣∣ xi j−µi j

A(βi j,σi j)

∣∣∣∣βi j
)

2Γ

(
1+

1
βi j

)
A(βi j,σi j)


 (12)

To find the refined estimates of parameters wi,µi j and σi j for i = 1,2,3, . . .M; j =
1,2, . . . ,D. we maximize the expected value likelihood or log likelihood function.
The shape parameter βi j is estimated by procedure given by Shaoquan YU, et al.,
2012.

To estimate wi,µi j and σi j, we use the EM algorithm which consists of two steps
namely Expectation (E) Step and Maximization (M) Step. The first step of EM
algorithm is to estimate initial parameters wi,µi j and σi j from a given texture image
data.

4.1 E-Step

Given the estimates, θ (l) = (µ
(l)
i j ,σ

(l)
i j ) for i = 1,2, . . .M; j = 1,2,3, . . .D. One can

estimate probability density function as

p(~xr/θ) =
M

∑
i=1

wigi (~xr,θ)

The conditional probability of any observation xr belongs to Mth class is

ti(~xr/θ
(l)) = p((i/x),θ (l)) =

wigi(~xr,θ
(l))

pi(~xr,θ (l))
=

wigi(~xr,θ
(l))

M

∑
i=1

wigi (~xr,θ)

(13)
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The expected value of L(θ) is

Q(θ ,θ (0)) = E
θ (l) {logL(θ/~xr)} (14)

Following heuristic arguments of Jeff A Bilmes (1997),

we get

Q(θ ,θ (l)) =
T

∑
r=1

M

∑
i=1

[
log(wi ·gi(~xr,θ

(l))
]

ti(~xr,θ
(l)) =

T

∑
r=1

M

∑
i=1

[
log(wi)ti(~xr,θ

(l))
]

+
T

∑
r=1

M

∑
i=1

log

Π
D
j=1

exp

(
−
∣∣∣∣ xi j−µi j

A(βi j,σi j)

∣∣∣∣βi j
)

2Γ

(
1+

1
βi j

)
A(βi j,σi j)


 ti(~xr,θ

(l))

=
T

∑
r=1

M

∑
i=1

[
log(wi)ti(~xr,θ

(l))
]

+
T

∑
r=1

M

∑
i=1


D

∑
j=1

log


exp

(
−
∣∣∣∣ xi j−µi j

A(βi j,σi j)

∣∣∣∣βi j
)

2Γ

(
1+

1
βi j

)
A(βi j,σi j)


 ti(~xr,θ

(l))

=
T

∑
r=1

M

∑
i=1

[
log(wi)ti(~xr,θ

(l))
]
+

T

∑
r=1

M

∑
i=1

D

∑
j=1

log

[
−
∣∣∣∣ xi j−µi j

A(βi j,σi j)

∣∣∣∣βi j

− log2Γ

(
1+

1
βi j

)
A(βi j,σi j)

]
ti(−→x r,θ

(l)) (15)

4.2 M-Step

To maximize Q(θ ,θ (l)), we can maximize the term containing wi and containing
θ (l) independently, since they are not related. To update the component weights wi,
we maximize the likelihood function such that ∑

M
i=1 wi = 1

We construct the first order Lagrange type function as

L =
T

∑
r=1

M

∑
i=1

log(wi)ti(~xr,θ
(l))+ γ

(
M

∑
i=1

w
(l)

i −1

)
(16)

Where, γ is Lagrange multiplier and maximizing this Lagrange function with re-
spect to wi, we have to differentiate L with respect to wi and equate to zero i.e.,

∂

∂wi
[L] = 0
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This implies

∂

∂wi

T

∑
r=1

M

∑
i=1

log(wi)ti(~xr,θ
(l))+

∂

∂wi
γ

(
M

∑
i=1

w
(l)

i −1

)
= 0 (17)

This implies

T

∑
r=1

[
1
wi

ti(~xr,θ
(l))− γ

]
= 0

Therefore,

T

∑
r=1

[
ti(~xr,θ

(l))
]
= γwi (18)

Summing i = 1,2,3, . . . ,M, we have

M

∑
i=1

T

∑
r=1

[
ti(−→x r,θ

(l))
]
= γ (19)

This implies

γ = T (20)

Therefore

T

∑
r=1

[
ti(~xr,θ

(l))
]
= Twi (21)

This implies

w(l+1)
i =

1
T

T

∑
r=1

[
ti(~xr,θ

(l))
]

(22)

Hence, updated equations for wi is

w(l+1)
i =

1
T

T

∑
r=1

[
w(l)

i ·gi(~xr,θ
(l))

∑
M
i=1 w(l)

i ·gi(
−→x r,θ (l))

]
(23)

Where θ (l) =
(

µ
(l)
i j ,σ

(l)
i j

)
are the estimates at ith iteration.
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4.3 Updating µi j

For updating µi j, we consider derivative of Q(θ ,θ (l)) with respect to µi j for i =
1,2, . . . .M, j = 1,2, . . .D and equate to zero i. e,

∂

∂ µi j
Q(θ ,θ (l)) = 0

∂

∂ µi j

(
T

∑
r=1

M

∑
i=1

log(wi)ti(~xr,θ
(l))+

T

∑
r=1

M

∑
i=1

gi(~xr,θ
(l))ti(~xr,θ

(l))

)
= 0 (24)

∂

∂ µi j

 T

∑
r=1

M

∑
i=1

log(wi)ti(~xr,θ
(l))+

T

∑
r=1

M

∑
i=1

D

∑
j=1

log

 exp
(
−
∣∣∣ xri j−µi j

A(βi j,σi j)

∣∣∣βi j
)

2Γ

(
1+ 1

βi j

)
A(βi j,σi j)

 ti(~xr,θ
(l))

=0

Since µi j involves only one element of feature vector, mean µi j, the equation re-
duces to

∂

∂ µi j

T

∑
r=1

M

∑
i=1

(
− log2Γ

(
1+

1
βi j

)
− logA(βi j,σi j)

)
ti(~xr,θ

(l))

−

(∣∣∣∣ xri j−µi j

A(βi j,σi j)

∣∣∣∣βi j
)

ti(~xr,θ
(l)) = 0 (25)

This implies

−
T

∑
r=1

∂

∂ µi j

∣∣∣∣ xri j−µi j

A(ρi j,σi j)

∣∣∣∣ρi j

ti(~xr,θ
(l)) = 0 (26)

This implies

T

∑
r=1

ti(~xr,θ
(l))sign

[
xri j−µi j

A(βi j,σi j)

]βi j−1

· (xri j−µi j)
βi j−1 = 0 for βi j 6= 1 (27)

This is non trivial equation, explicit expression for µi j is little complicated. To
update µi j, solve equation by using Newton’s Raphson method and obtain µ

(l+1)
i j .

This µ
(l+1)
i j provides the refined estimates for µi j. For explicit estimate of µi j,

consider some special cases

Case 1: The Gaussian case, βi j = 2 leads to

T

∑
r=1

ti(~xr,θ
(l)).(xri j−µ

(l)
i j ) = 0 (28)
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This implies

µ
(l+1)
i j =

T

∑
r=1

ti(~xr,θ
(l)) · (xri j)

T

∑
r=1

ti(~xr,θ
(l))

(29)

Case 2: Consider for βi j 6= 1

T

∑
r=1

ti(~xr,θ
(l))sign

[
xri j−µi j

A(βi j,σi j)

]βi j−1(
xri j−µ

(l)
i j

)βi j−1
= 0

This implies that

µ
(l+1)
i j =

(
T

∑
r=1

(xti j)w
(l)
i gi(~xr,θ

(l))

) 1
βi j−1

(
T

∑
r=1

w(l)
i gi(
−→x r,θ

(l))

) 1
βi j−1

(30)

For general case: we can also develop a general approximation without using nu-
merical method for updating µ

(l+1)
i j by adopting an axiom that of the form µi j which

must be a weighted average of data vectors with weights provided by some power
of the assignment probabilities of those data vectors, notified in part by symmetry
of system, and in part by pragmatism leads to

µ
(l+1)
i j =

T

∑
r=1

ti(~xr,θ
(l))A(N,βi j)(xri j)

T

∑
r=1

ti(~xr,θ
(l))A(N,βi j)

(31)

Where A(N,βi j) is some function = 1 for βi j = 2 and must be equal to 1
βi j−1 for

βi j 6= 1, in the case of N = 2, we have also observed that A(N,βi j) must be increas-
ing function of βi j.

4.4 Updating σi j

For updating σi j, we consider maximization of Q(θ ,θ (l)) w.r.t. σi j for i= 1,2, . . .M, j =
1,2, . . .D and so differentiate w.r.t. σi j and equate to zero i.e., ∂

∂σi j
Q(θ ,θ (l)) = 0

∂

∂σi j

(
T

∑
r=1

M

∑
i=1

log(wi)ti(~xr,θ
(l))+

T

∑
r=1

M

∑
i=1

gi(~xr,θ
(l))ti(~xr,θ

(l))

)
= 0 (32)
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This implies

∂

∂σi j

 T

∑
r=1

M

∑
i=1

log(wi)ti(~xr,θ
(l))+

T

∑
r=1

M

∑
i=1

D

∑
j=1

log

 exp
(
−
∣∣∣ xri j−µi j

A(βi j,σi j)

∣∣∣βi j
)

2Γ

(
1+ 1

βi j

)
A(βi j,σi j)

 ti(~xr,θ
(l))

= 0

(33)

Since σi j involves only one element feature vector, we have

T

∑
r=1

ti(~xr,θ
(l))

 ∂

∂σi j
logσi j−

Γ

(
3

βi j

)
Γ

(
1

βi j

) · ∂

∂σi j
(xri j−µi j)

1
β ji−1

= 0 (34)

This implies

T

∑
r=1

ti(~xr,θ
(l))

2 ·Γ
(

3
βi j

)
Γ

(
1

βi j

) · ∣∣xri j−µi j
∣∣ 1

βi j − 2
βi j

∣∣σi j
∣∣ 1

βi j

= 0 (35)

Therefore,

σ
(l+1)
i j =



T

∑
r=1

ti(~xr,θ
(l))

 Γ

(
3

βi j

)
βi jΓ

(
1

βi j

)
 .
∣∣xri j−µi j

∣∣ 1
βi j

T

∑
r=1

ti(~xr,θ
(l))



1
βi j

(36)

4.5 Initialization of model parameters

The efficiency of the EM algorithm in estimating the parameters is heavily depen-
dent on the number of groups and the initial estimates of the model parameters
wi,µi j and σi j for i = 1,2,3, . . . ,M; j = 1,2, . . . ,D. Usually in EM algorithm, the
mixing parameter wi and the distribution parameters µi j and σi j are given with
some initial values. A commonly used method in initialization is by drawing a ran-
dom sample from the entire data. This method can be performed well when the
sample size is large, but the computation is heavily increased. When the sample
size is small it is likely that some small regions may not be sampled. To overcome
this problem, we use K-means algorithm to initialize the multivariate Generalized
Gaussian mixture parameters for initialization of the problem. The number of the
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mixture components is initially taken for K-means algorithm by the histogram of
the texture image. After determining the final value of the groups M, we obtain the
initial estimates of the parameters through sample moments as

wi = 1/M; σi j = Std. Deviation of Mth class; µi j =
1
T

T

∑
r=1

xri j

Substituting these values as the initial estimates, the refined estimates of the param-
eters can be obtained using updated equations of the EM Algorithm and simultane-
ously solving the Eqn’s (23), (31) and (36) using MATLAB package.

5 Texture segmentation algorithm

Once the texture is considered, the main purpose is to identify the regions of inter-
est. The following algorithm can be adopted for texture segmentation using Multi-
variate Generalized Gaussian Mixture model.

Step 1: Obtain the feature vectors from the texture image using technique present-
ed in feature vector extraction section.

Step 2: Divide the samples into M groups by K-means algorithm.

Step 3: Find the mean vector, variance vector, µi j and σi j for each class of the
multivariate data.

Step 4: Take wi = 1/M, for i = 1,2,3, . . .M groups.

Step 5: Obtain the refined estimates of wi,µi j and σi j for each class using the up-
dated equations of the EM algorithm.

Step 6: Assign each feature vector into the corresponding jth region (segment) ac-
cording to the maximum likelihood of the jth component L j.

That is, Feature vector~xt is assigned to the jth region for which L j is maximum.

where,

L j = max


D

∏
j=1

exp
(
−
∣∣∣ xi j−µi j

A(ρ ij,σ ij)

∣∣∣βi j
)

2Γ

(
1+ 1

βi j

)
A(β i jσi j)

 (37)
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6 Experimental results and performance evaluation of the developed algo-
rithm

To demonstrate the ability of the developed model, texture segmentation is to be
performed by using the dataset of textures available in the Brodatz Texture database
(http://sipi.usc.edu/database/database.php?volume=textures). For each texture im-
age, the histogram is plotted to identify the number of the components in the given
texture image. Based on the number of the peaks (M), K-means algorithm is em-
ployed over the multivariate data of feature vectors to divide in to M groups. For
each group, the initial estimate of the parameters wi, µi j and σi j are obtained using
K-means and moment estimators.

Using these initial estimates, the refined estimates are calculated based on the up-
dated equations obtained through EM Algorithm. With these values, texture seg-
mentation is performed based of the assignment of the data to a particular group
forwhich the likelihood is maximum. Then the segmentation image is drawn based
on the application of the developed algorithm.

Figure 2 presents the segmented texture images taken from Brodatz texture database
along with the refined estimates of the model parameters.

The performance of the developed image segmentation method is studied by obtain-
ing the image segmentation performance measures namely; Probabilistic Rand In-
dex (PRI), the Variation of Information (VOI) and Global Consistency Error (GCE).
The Rand index given by Unnikrishnan et al., (2007) counts the fraction of pairs of
pixels whose labeling are consistent between the computed segmentation and the
ground truth. This quantitative measure is easily extended to the Probabilistic Rand
index (PRI).

The variation of information (VOI) metric given by Meila (2007) is based on re-
lationship between a point and its cluster. It uses mutual information metric and
entropy to approximate the distance between two clustering’s across the lattice of
possible clustering’s. It measures the amount of information that is lost or gained
in changing from one clustering to another.

The Global Consistency Error (GCE) given by Martin, Fowlkes, Tal, and Malik
(2001) measures the extent to which one segmentation map can be viewed as a
refinement of segmentation. For a perfect match, every region in one of the seg-
mentations must be identical to, or a refinement (i.e., a subset) of, a region in the
other segmentation.

A comparative study of the developed algorithm based on Multivariate Generalized
Gaussian mixture model with K-means clustering with the image segmentation al-
gorithms based on Gaussian mixture model with K-means algorithm is performed
and the image segmentation performance measures PRI, GCE, VOI are computed.
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Figure 2: Original and Segmented images along with the revised estimates of the
parameters.

The image segmentation performance measures namely, PRI, GCE, VOI are com-
puted for all the eight images with respect to the developed model, Generalized
Gaussian Mixture Model with K-means are presented in Table 1.

From Table 1 and Figure 3, its observed that the proposed segmentation algorithm
based on multivariate generalized Gaussian mixture model have shown a signifi-
cant improvement over the earlier texture segmentation method based on Gaussian
mixture model.
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Table 1: Segmentation Performance Measures of the textured images.

Segmentation Performance Measures
Description Model PRI GCE VOI

Image 1 MGGMM 0.821 0.158 0.817
GMM 0.732 0.222 1.06

Image 2 MGGMM 0.997 0.204 0.236
GMM 0.659 0.267 1.305

Image 3 MGGMM 0.901 0.344 1.922
GMM 0.710 0.414 2.123

Image 4 MGGMM 0.633 0.336 1.263
GMM 0.507 0.413 1.376

Image 5 MGGMM 0.828 0.12 0.719
GMM 0.694 0.162 0.977

Image 6 MGGMM 0.924 0.072 0.401
GMM 0.798 0.173 0.809

Image 7 MGGMM 0.99 0.010 0.120
GMM 0.971 0.028 0.188

Image 8 MGGMM 0.897 0.131 1.741
GMM 0.663 0.422 2.246
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Figure 3: Texture Segmentation Performance Measures for MGGMM and GMM.

7 Comparative Study

The developed algorithm performance is evaluated by comparing the algorithm
with the Gaussian mixture model. Table 2 presents the miss classification rate of
the pixels of the sample using the proposed model and Gaussian mixture model
[Gui, Zhang, and Shang (2012)].

From the Table 2, it is observed that the misclassification rate of the classifier with
the multivariate generalized Gaussian mixture model is less when compared to that
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Table 2: Miss-classification rate of the classifier.
Model Miss-classification Rate
MGGMM 10%
GMM 15%

of GMM.

The accuracy of the classifier is also studied for the sample images by using confu-
sion matrix for segmented regions and computing the metrics [(David (2011)]. Ta-
ble 3 shows the values of Accuracy, Sensitivity, Specificity, Precision, F-Measure
and G-mean for the segmented regions in the image texture.

Table 3: Comparative study of MGGMM and GMM.

Descri-
ption MODEL Accu-

racy

Sensi-
tivity
(TPR)

1- Speci
ficity
(FPR)

Preci-
sion F-Measure G-mean

Image 1 MGGMM 0.901 0.975 0.125 0.986 0.921 0.918
GMM 0.841 0.864 0.226 0.683 0.803 0.869

Image 2 MGGMM 0.998 0.997 0.215 1 0.998 0.998
GMM 0.831 0.854 0.355 0.035 0.942 0.886

Image 3 MGGMM 0.924 0.936 0.286 0.888 0.912 0.925
GMM 0.749 0.797 0.291 0.115 0.866 0.863

Image 4 MGGMM 0.84 0.760 0.27 0.72 0.76 0.74
GMM 0.81 0.711 0.33 0.65 0.71 0.68

Image 5 MGGMM 0.905 0.98 0.104 0.606 0.742 0.926
GMM 0.812 0.957 0.219 0.431 0.603 0.884

Image 6 MGGMM 0.961 1 0.082 0.93 0.964 0.958
GMM 0.886 0.91 0.100 1 0.865 0.873

Image 7 MGGMM 1 1 0.010 1 1 1
GMM 0.986 0.91 0.039 0.978 0.989 0.98

Image 8 MGGMM 0.926 0.934 0.085 0.934 0.934 0.924
GMM 0.355 0.875 0.169 0.418 0.895 0.852

From Table 3, it is observed that the F-measure value for the proposed classifier is
more. This indicates that the proposed classifier performs better than that of Gaus-
sian mixture model. Figure 4 shows the ROC curves associated with the proposed
classifier and classifier with GMM.

From Figure 4, it is observed that the proposed classifier is having less false de-
tection of the segmented pixels compared to classifier with GMM. The figure also
shows that regions can be well identified from the background scene.
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Figure 4: ROC Curves of The GMM and MGGMM Model for different texture
images.

8 Conclusion

This paper addresses a novel and simple texture segmentation method based on
multivariate generalized Gaussian mixture model. Here, the DCT coefficients of
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the image are used for extracting the feature vectors. The DCT coefficients uti-
lize the global and local information of the pixels in the image more effectively.
Here, the feature vector associated with the texture of the whole image is charac-
terized by zero correlation multivariate generalized Gaussian mixture model. The
generalized Gaussian model includes platy, lepto and meso-kurtic distributions as
particular cases. The updated equations of the EM algorithm for multivariate gen-
eralized Gaussian mixture model are derived. The texture segmentation algorithm
is developed based on component maximum likelihood under Bayesian frame.

Using 8 images randomly taken from Brodatz texture database, the experimenta-
tion is carried for performance evaluation of the proposed method. From the exper-
imentation and computed measures of PRI, GCE and VOI, it is observed that the
segmentation obtained through the proposed method is close to the ground truth.
A comparative study of the developed model with respect to that of Gaussian mix-
ture model using ROC curves revealed that the performed method works extremely
better than the earlier methods.

It is also possible to develop the texture segmentation with a combination of DCT
coefficients and local binary patterns (LBP) using multivariate generalized Gaus-
sian mixture model which will be taken up elsewhere. The proposed algorithm is
useful for detecting the water bed and animal trajectories in remote sensing images.
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