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An Explicit Time Marching Technique With
Solution-Adaptive Time Integration Parameters

Delfim Soares Jr.1

Abstract: In this work, an explicit time marching procedure, with solution-adapt-
ive time integration parameters, is introduced for the analysis of hyperbolic mod-
els. The proposed technique is conditionally-stable, second-order accurate and it
has controllable algorithm dissipation, which locally adapts at each time step, ac-
cording to the computed solution. Thus, spurious modes can be more effectively
dissipated and accuracy is improved. Since this is an explicit time integration tech-
nique, the new procedure is very efficient, requiring no system of equations to be
dealt with at each time-step. Moreover, the technique is simple and easy to imple-
ment, being based just on displacement-velocity relations, requiring no computa-
tion of accelerations. Numerical results are presented along the paper, illustrating
the good performance of the new method, as well as its potentialities.

Keywords: Time integration methods; Explicit analysis; Adaptive parameters;
Adaptive dissipation control; Stability; Accuracy.

1 Introduction

In the literature, an adaptive time marching technique is usually referred to as a
mechanism that interactively proposes changes to the time step employed in the
analysis, in order to achieve a desired level of accuracy. In this sense, several work-
s have been proposed along the last decades, being several procedures available
nowadays [Choi and Chung (1996); Logg (2004); Lages, Silveira, Cintra, and Fr-
ery (2013) etc. – for a recent overview on the topic, the work of Rossi, Ferreira,
Mansur, and Calenzani (2014), is referred]. Adaptive time stepping is not the focus
here. In this work, time integration parameters are adaptively computed, taking into
account different spatial and temporal distributions.

The concept of adaptive time integration parameters is also not new (e.g., Soares,
(2014; 2015a, b)); however, in most works, this is carried out just once, in the
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beginning of the analysis, taking into account the physical and geometrical pro-
prieties of the model. In fact, explicit-implicit time marching techniques can be
regarded as a special case of this simplified approach, where “stiffer” subdomains
(which may arise from locally refined spatial discretizations, heterogeneous materi-
al distributions etc.) are treated by implicit integrators, whereas the more “flexible”
subdomains are treated by explicit time integration parameters [Miranda, Ferencz,
and Hughes (1989); Gravouil and Combescure (2001)].

Here, a full adaptive strategy is considered, i.e., not only different values for the
time integrators may be considered along the spatial domain of the model, but al-
so they may vary along the time domain, adapting themselves according to the
evolution of the computed solution. In addition, the proposed adaptive strategy is
non-iterative, being the new values for the time integrators directly computed tak-
ing into account just previous time-step results. Thus, the present technique is quite
generic and efficient.

The main goal here is to adapt the time integration parameters in order to proper-
ly dissipate spurious modes, providing more accurate analyses. Numerous efforts
during the past decades have focused on developing time integration algorithms
that include controllable numerical dissipation and improved accuracy [Hilbert et
al., (1977); Hulbert and Chung (1996); Chow and Kim (2002); Leontyev (2010);
Soares (2011); Idesman (2011) etc.]. The purpose of numerical dissipation is to
reduce spurious, non-physical oscillations that sometimes occur due to excitation
of spatially unresolved modes. One basic difficulty in designing such dissipative
algorithms is to add high-frequency dissipation without introducing excessive al-
gorithmic damping in the important low-frequency modes. Thus, in the present
technique, the time integrators are adaptively computed, introducing algorithm dis-
sipation into the analysis only when it is necessary. This is carried out based on a
local oscillatory criterion, being dissipative elements locally activated once oscil-
lations occur in the computed solution. When no oscillatory behavior is observed,
non-dissipative time integrators are employed. As it is well known, the central d-
ifference method (CDM), which is the nearly universal choice once explicit time
integration is considered, possesses no numerical dissipation. Thus, the technique
cannot deal with spurious modes, and non-physical oscillations may occur in the
solutions computed using the CDM. The present adaptive method acts extinguish-
ing these spurious oscillations once they arise.

The paper is organized as follows: first, the governing equations of the model and
the time integration strategy are presented, describing how the adaptive computa-
tion of the time integration parameters is carried out. In the sequence, the prop-
erties of the proposed methodology are discussed, and numerical applications are
presented, illustrating the good performance of the new technique, as well as its po-
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tentialities. As one will observe, the proposed approach is second-order accurate,
simple to implement, and quite effective to dissipate high-frequency modes and to
accurately compute low-frequency answers. An extra positive feature that arises in
the proposed formulation, is the fact that the technique is only based on single-step
displacements-velocities relations. Thus, the technique is truly self-starting, elimi-
nating any kind of cumbersome initial procedure, such as the computation of initial
accelerations and/or the computation of multistep initial values.

2 Governing equations and time integration strategy

The governing system of equations describing a linear dynamic model is given by
[Clough and Penzien (1993)]:

MÜ(t)+CU̇(t)+KU(t) = F(t) (1)

where M, C and K are mass, damping and stiffness matrices, respectively, F(t)
stands for the force vector and U(t), U̇(t) and Ü(t) are displacement, velocity and
acceleration vectors, respectively. The initial conditions of the model are given by:

U0 = U(0) (2a)

U̇0 = U̇(0) (2b)

where U0 and U̇0 stand for initial displacement and velocity vectors, respectively.

By time integrating equation (1) at the element level (element variables are here
indicated by e), considering a time-step ∆t, one may write:

Me

∫ t+ ∆t
2

t− ∆t
2

Üe(τ)dτ+Ce

∫ t+ ∆t
2

t− ∆t
2

U̇e(τ)dτ+Ke

∫ t+ ∆t
2

t− ∆t
2

Ue(τ)dτ=
∫ t+ ∆t

2

t− ∆t
2

Fe(τ)dτ (3)

which may be viewed as a simple weighted residual form of the local equations of
motion.

The integrals in the l.h.s. of equation (3) may be approximated by:

ℑ
n+ 1

2
Üe

=
∫ t+ ∆t

2

t− ∆t
2

Üe(τ)dτ ≈ U̇n+1
e − U̇n

e (4a)

ℑ
n+ 1

2
U̇e

=
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2
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e −Un

e (4b)
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e +

1
2

α
n
e ∆t2U̇n

e (4c)



226 Copyright © 2015 Tech Science Press CMES, vol.107, no.3, pp.223-247, 2015

where Un, U̇n and Ün are the approximations of U(tn), U̇(tn) and Ü(tn), respective-
ly, tn = n∆t, and αn

e is the time integration parameter of the new method, computed
at each element and at each time step. The displacement Un+1 can be defined by
the following simple finite difference expression:

Un+1 = Un +
1
2

∆tU̇n +
1
2

∆tU̇n+1 (5)

Taking into account approximations (4) and (5), equation (3) may be rewritten as
the following recursive relation:

(Me +
1
2

∆tCe)U̇n+1
e = ℑ

n+ 1
2

Fe
+MeU̇n

e−
1
2

∆tCeU̇n
e−Ke(∆tUn

e +
1
2

α
n
e ∆t2U̇n

e) (6)

where ℑ
n+ 1

2
Fe

stands for the integral in the r.h.s. of equation (3).

As it can be observed, when M and C are diagonal, the method is explicit. Once
assembling is considered, equation (6) enables to compute the velocities U̇n+1, and
equation (5) may then be used to compute the displacements at the current time
step. It is important to highlight that the method described by equations (5) and
(6) is a single-step method based only on velocities and displacements, being no
computation of accelerations required. Thus, the first positive feature of the method
is that it is truly self-starting, eliminating any kind of cumbersome initial procedure,
such as the computation of initial accelerations (which usually requires an extra
system of equations to be dealt with) and/or the computation of multistep initial
values.

As it may be observed in equations (4c) and (6), different α parameters may be
selected for each element and for each time step. Thus, a spatial/temporal adaptive
procedure may be developed, locally computing the time integration parameter α

according to the evolution of the computed fields. This is carried out here based on
an oscillatory criterion. In this sense, if the computed response of a degree of free-
dom of the model oscillates along time, the α parameters of the elements surround-
ing this degree of freedom are modified, locally introducing numerical dissipation
into the analysis. Once no oscillatory behavior is observed, the α parameters are
kept unitary (as it is discussed in the next section, for α = 1, no amplification decay
is introduced into the analysis).

The above idea can be mathematically established as follows: (i) for each time step
and for each element, compute an oscillatory parameter ϕn

e , as described in equa-
tion (7) (in this equation, ηe stands for the total amount of degrees of freedom of
the element); (ii) if this oscillatory parameter is null, no degree of freedom of the
element is oscillating along time, and αn

e = 1 is considered (equation (8a)), intro-
ducing no numerical dissipation into the analysis; (iii) if this oscillatory parameter
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is not null, at least one degree of freedom of the element is oscillating, and αn
e > 1

is considered (equation (8b)), introducing numerical dissipation into the analysis.

ϕ
n
e =

ηe

∑
i=1

(
∣∣un

i −un−2
i

∣∣− ∣∣un
i −un−1

i

∣∣− ∣∣un−1
i −un−2

i

∣∣) (7)

If ϕ
n
e = 0,αn

e = 1 (8a)

If ϕ
n
e 6= 0,αn

e = 1+aω∆t (8b)

In equation (8b), a stands as an input control parameter and ω represents an estima-
tion for the highest natural frequency of the model. The intensity of the algorithm
dissipation is proportional to a and, for a = 0, no numerical damping is introduced.
As indicated by equations (5)–(8), the proposed time integration method is an ef-
ficient and simple to implement technique, based on a single parameter a, which
controls the dissipative intensity of the method.

The oscillatory criterion represented by equation (7) indicates if an oscillation oc-
curs taking into account the computed results at the last three time steps. Following
this simple criterion, if the solution increment within two consecutive time steps
(i.e., |un− un−2|) is not equal to the sum of the corresponding increments within
one time step (i.e., |un−un−1|+ |un−1−un−2|), an oscillation occurs.

In the next section, the properties of the described time marching technique are
analyzed, and expressions (8) are further discussed.

3 Properties of the method

In this section, the single degree of freedom (SDOF) problem is considered in order
to discuss the properties (i.e., stability, accuracy etc.) of the proposed methodology,
following standard guidelines. The equation of motion for the SDOF model can be
written as:

ü(t)+2ξ wȧu(t)+w2u(t) = f (t) (9)

where ξ is the damping ratio and w is the natural frequency of the model. Consid-
ering equation (9) and the proposed methodology, the following recursive relation-
ship can be written:

[
un+1

u̇n+1

]
=

[
A11 A12
A21 A22

][
un

u̇n

]
+

[
L11 L12 L13
L21 L22 L23

] f n

f n+ 1
2

f n+1

=A
[

un

u̇n

]
+L

 f n

f n+ 1
2

f n+1

 (10)

where A and L stand for the amplification and the load operator matrices, respec-
tively.
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In the proposed technique, the amplification matrix A is given by equations (11):

A11 = [1+ξ w∆t− 1
2

w2
∆t2]/A0 (11a)

A12 = [1− 1
4

αw2
∆t2]∆t/A0 (11b)

A21 = [−w2
∆t2](1/∆t)/A0 (11c)

A22 = [1−ξ w∆t− 1
2

αw2
∆t2]/A0 (11d)

where A0 = 1+ξ w∆t.

The load operator matrix L may be given by:

L11 =
1
2

β1∆t2/A0 (12a)

L12 =
1
2

β2∆t2/A0 (12b)

L13 =
1
2

β3∆t2/A0 (12c)

L21 = β1∆t/A0 (12d)

L22 = β2∆t/A0 (12e)

L23 = β3∆t/A0 (12f)

where β1, β2 and β3 are integration parameters. These parameters can be selected,
for instance, as β1 = β3 = 1/4 and β2 = 1/2, if the trapezoidal quadrature rule is
followed, or as β1 = β3 = 1/6 and β2 = 2/3, if the Simpson rule is followed. If
linear behaviour is assumed for the load within ∆t, the load integration parameters
can be simply selected as β1 = β3 = 1/2 and β2 = 0.

In the proposed technique, different α values are expected to simultaneously occur
in the analysis, as well as time varying values are supposed to occur. Therefore,
in this section, the properties of the technique are discussed considering different
values for α , in order to illustrate a basic range of features that may develop (locally
in space and time) once the proposed methodology is applied.

3.1 Convergence

The expansion of the amplification matrix of the new method in Taylor’s series,
considering expressions (8), is given by:

A11 =1− 1
2

w2
∆t2 +

1
2

ξ w3
∆t3− 1

2
ξ

2w4
∆t4 +

1
2

ξ
3w5

∆t5 +O(∆t6) (13a)
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(13b)
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(13d)

By comparing it with the expansion of the analytical amplification matrix, which is
given by:

Aa
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24
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Aa
22 =1−2ξ w∆t− 1

2
(1−4ξ
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2
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+
1
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(14d)

one may observe that the method is second-order accurate, independently of a and
ω .

3.2 Stability and numerical dissipation

The stability condition requires that matrix A does not amplify errors as the time-
step algorithm advances on time. The conditions required to assure stability are
[Hughes (2000); Bathe (1996)]: (i) ρ(A)≤ 1; (ii) eigenvalues of A of multiplicity
greater than one are strictly less than one in modulus. In item (i), ρ(A) is the
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spectral radius of matrix A, which represents the maximal absolute magnitude of
the eigenvalues of A.

The eigenvalues of the amplification matrix of the proposed method are given by
equation (15), where A1 is half the trace of matrix A and A2 is the determinant of
A, as defined by equations (16):

λ1,2(A) = A1± (A2
1−A2)

1/2 (15)

A1 = [1− 1
4
(α +1)Ω2]/A0 (16a)

A2 = [1−ξ Ω+
1
2
(1−α)Ω2]/A0 (16b)

where Ω = w∆t is the sampling frequency of the model.

By analyzing the spectral radius of matrix A, it can be established that the method
is conditionally stable if α ≥ 1 and unconditionally unstable if α < 1. For α =
1, several features of the central difference method are reproduced, including the
spectral radius behavior. For α > 1, numerical damping is introduced into the
algorithm. The critical sampling frequency Ωc, which is the value of Ω under
which stability is assured, is given by:

Ωc = 2α
−1/2 (17)

and, for Ωc, the spectral radius is ρc = 1.

Because the higher modes of semidiscrete equations are artifacts of the discretiza-
tion process and not representative of the behaviour of the governing partial d-
ifferential equations, it is generally viewed as desirable and often is considered
absolutely necessary to have some form of algorithmic damping present to remove
the participation of the high-frequency modal components [Hughes (2000)]. Maxi-
mization of high-frequency dissipation is obtained by restricting the eigenvalues of
the amplification matrix to be complex conjugate, i.e., by requiring that A2

1 < A2. In
this case, the bifurcation sampling frequency Ωb, which is the value of Ω at which
complex conjugate eigenvalues bifurcate into real, distinct eigenvalues, is given by:

Ωb = 4(α +1)−1 (18)

At the bifurcation sampling frequency, the spectral radius achieves a minimal value,
which is given by ρb = |α−3|/|α +1|. Thus, for α = 3, ρ = 0 at Ω = 1. In Fig.1,
the spectral radii of the proposed method are depicted for various values of α . In
Fig.2, a scheme is presented, illustrating the main characteristics of the spectral
radius as function of α .
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Figure 1: Spectral radii.

Figure 2: Spectral radius behaviour.

3.3 Accuracy

Taking into account the homogeneous SDOF model equation, velocities may be
eliminated by repeated use of (10) to obtain a difference equation in terms of dis-
placements, as follows:

un+1−2A1un +A2un−1 = 0 (19)

Comparison of (19) with the characteristic equation of A indicates that the solution
has the representation:

un = c1λ
n
1 + c2λ

n
2 (20)

where the coefficients c1 and c2 are determined by the initial data and it is consid-
ered that λ1 6= λ2. When λ1 and λ2 are complex conjugate, solution (20) can be
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compared to the undercritically-damped model solution

ūn = exp(−ξ̄ w̄tn)[c̄1 cos(w̄Dtn)+ c̄2 sin(w̄Dtn)] (21)

allowing to establish error measures.

Considering λ1,2 = A±Bi, c1,2 = cr ± cii and c̄1,2 = c̄r ± c̄ii, the comparison of
equations (20) and (21) provides:

(cr± cii)(A±Bi)n = (c̄r± c̄ii)exp[(−ξ̄ w̄± w̄Di)∆tn] (22)

where:

cr = c̄r =
1
2

u0 (23a)

ci =
1
2
[(A−A11)/B]u0− 1

2
[A12/B]u̇0 (23b)

c̄i =
1
2
[−ξ w/wD]u0− 1

2
[1/wD]u̇0 (23c)

By adopting the polar forms A±Bi = ρ exp(±φ i), cr± cii = r exp(±θ i) and c̄r±
c̄ii = r̄ exp(±θ̄ i), equation (22) can be rewritten as:

(r/r̄)ρn exp[(±φn±θ ∓ θ̄)i] = exp(−ξ̄ w̄∆tn)exp[(±w̄D∆tn)i] (24)

from which one may define:

w̄D∆t = φ +(θ − θ̄)/n (25a)

ξ̄ w̄∆t =− ln(ρ) (25b)

A f = (r/r̄)1/n (25c)

which allows to compute period elongation, amplitude decay and amplitude factor
error measures, respectively [Soares (2015a)]. In Fig.3, (w/w̄−1), ξ̄ and A f are
depicted, considering the standard undamped unitary initial displacement model
and some values of α (one should keep in mind that for α = 1, the basic features
of the central difference method are reproduced).

4 Numerical applications

In this section, two numerical examples are considered, illustrating the performance
and potentialities of the proposed adaptive technique. First, the transversal motion
of a square membrane is studied and, in the sequence, an acoustic fluid layer is
analyzed. The computed results are compared to those of the central difference
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Figure 3: Period elongation (a), amplitude decay (b) and amplitude factor (c).
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method and to analytical answers. In the analyses that follow, linear triangular finite
elements are employed for the spatial discretization. A measure of the adopted
time-step length is computed according to the following expression:

γ = c∆t/` (26)

where c is the (primary) wave velocity and ` is the characteristic finite element
length.

4.1 Application 1

The subject of this investigation is the transverse motion of a square membrane
that has initial velocity prescribed over its central domain (grey area in the sketch
of Fig.4) and null displacements prescribed over its entire boundary (Mansur et al.,
2007). The physical properties of the membrane are c = 10 m/s (wave velocity)
and ρ = 1 kg/m3 (mass density). The geometry of the model is defined by L = 10
m and l = 0.4 m. The symmetry of the membrane is considered and just 1/4 of
it is discretized. Two spatial/temporal discretizations are considered here, namely:
(i) “discretization 1”, considering 5000 finite elements and ∆t = 0.0025s; and (ii)
“discretization 2”, considering 20000 finite elements and ∆t = 0.00125s. Both
discretizations provide γ ≈ 0.25.

L

L

l

l

x

y

Figure 4: Sketch of the membrane.

The analytical solution for the transversal displacement of the membrane is given
by:

uA(x,y, t) =
4Lv0

cπ3

∞

∑
m=1

∞

∑
n=1

Cmn

mn(m2 +n2)1/2 sin
(m

L
πx
)

sin
(n

L
πy
)

sin

(
(m2 +n2)1/2

L
πct

) (27)



An Explicit Time Marching Technique 235

where Cmn = [cos(c1m)− cos(c2m)][cos(c1n)− cos(c2n)], c1 = π

2 (1+ l/L), c2 =
π

2 (1− l/L) and v0 stands for the amplitude of the applied initial velocity.

Analytical answers are depicted in Fig.5, taking into account the discretized domain
of the membrane and four time instants, namely: t = 0.75s, t = 1.50s, t = 2.00s and
t = 2.50s. Results provided by the CDM are also depicted in the figure, considering
discretizations 1 and 2. As it can be observed in Fig.5, spurious modes are not
dissipated by the CDM, drastically damaging the quality of the computed results.

In Figs 6 and 7, results considering the proposed technique are presented, consid-
ering discretizations 1 and 2, respectively. As it is illustrated in the figures, the new
technique provides much better results than the CDM, properly dissipating the spu-
rious modes of the model. In fact, taking into account discretization 2, very good
results are obtained, being the computed solutions depicted in Fig.7 very close to
the analytical answers for the membrane. It is important to highlight that, despite
the geometrical simplicity of the membrane, the present application represents a
rather complex time-domain numerical computation. Here, successive reflections
occur at the model extremities and these systematic multiple reflections can em-
phasize some numerical deficiencies, such as numerical instabilities, excessive nu-
merical damping and/or errors amplifications. As it can be observed, the proposed
technique deals very properly with this complex numerical model.

In Figs 6 and 7, the evolutions of the time integration parameters along space and
time are also illustrated. In these figures, the elements with non-unitary α values
are marked, indicating the active dissipative elements at the focused time instants.
As one can notice, just few dissipative elements, properly distributed along space
and time, are able to eliminate the influence of spurious high frequency modes,
barely damaging the solution of the lower modes.

In Fig.8, time history results at the middle of the membrane are depicted, taking
into account the aforementioned procedures and discretizations. Fig.8 highlights
once more the good performance of the proposed methodology: the new technique
allows to extinguish spurious oscillations without introducing excessive errors into
the analysis. In Tab.1, the obtained relative errors (L2 norm) of the new technique
and of the CDM are provided, considering the focused analyses. As it can be
observed, the proposed technique provides lower errors for all the considered cases.

The influence of spurious modes is more visually remarkable taking into account
variables based on the spatial derivatives of the main computed field (as gradients,
stresses etc.). In Fig.9, the gradient evolution of the computed field is depicted,
considering a location point close to the middle of the membrane (i.e., at the center
of the boundary edge of the closest finite element). As one can observe, in this case,
the CDM provides very inaccurate results once it is unable to deal with spurious
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Computed fields at different instants of time: 1st column – analytical
answer; 2nd column – CDM (discretization 1); 3rd column – CDM (discretization
2); 1st row – t = 0.75s; 2nd row – t = 1.50s; 3rd row – t = 2.00s; 4th row – t = 2.50s.
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Figure 6: Computed fields and dissipative elements (marked by ‘*’) at different
instants of time considering the new technique (a = 3) and discretization 1: 1st row
– t = 0.75s; 2nd row – t = 1.50s; 3rd row – t = 2.00s; 4th row – t = 2.50s.

oscillations; therefore, the use of algorithms with numerical dissipation is highly
recommended (for the results depicted in Fig.9, the relative error of the CDM is
0.905, and the relative error of the new method is 0.748).
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Figure 7: Computed fields and dissipative elements (marked by ‘*’) at different
instants of time considering the new technique (a = 3) and discretization 2: 1st row
– t = 0.75s; 2nd row – t = 1.50s; 3rd row – t = 2.00s; 4th row – t = 2.50s.

4.2 Application 2

A strip of an acoustic fluid is considered here, as described in Fig.10. The height
of the fluid layer is defined by L = 2 m. The physical properties of the model are
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(a) discretization 1
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(b) discretization 2

Figure 8: Time history results at the middle of the membrane considering different
procedures.

Table 1: Computed relative errors.

Method Discretization Membrane Fluid Layer

CDM
1 0.319 0.039
2 0.163 0.024

New
1 0.282 0.033
2 0.156 0.021
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Figure 9: Time history results at 0.05m (horizontal distance) of the middle of the
membrane considering different procedures (discretization 1).

Source
L

u = 0

∂u/∂n = 0

Figure 10: Sketch of the fluid layer.

Figure 11: Evolution of the computed fields at each 0.0012s – analytical answer.

c = 1500 m/s (wave velocity) and ρ = 1000 kg/m3 (mass density). Null Dirichlet
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and Newman boundary conditions are prescribed over the top and the bottom of the
strip, respectively. A point source is applied at the bottom of the fluid layer, acting
invariably along time (Heavised time behaviour). As in the previous application,
two spatial/temporal discretizations are considered here, namely: (i) “discretization
1”, considering 8000 finite elements and ∆t = 2 ·10−5s; and (ii) “discretization 2”,
considering 32000 finite elements and ∆t = 10−5s. Both discretizations provide
γ ≈ 0.30.

(a) discretization 1

(b) discretization 2

Figure 12: Evolution of the computed fields at each 0.0012s – CDM.

For this model, analytical answers can be derived taking into the account the solu-
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tion related to a constant point source acting at an infinite medium:

uA(d, t) =
A

2πρc2 ln

(
ct +(c2t2−d2)1/2

d

)
H(ct−d) (28)

In equation (28), d is the distance between the source and the field points, H stands
for the Heaviside function and A is the amplitude of the applied source. Once
solutions of the form (28) are superposed, taking into account multiple “ghost”
reflected sources, the analytical solution for the present model can be obtained.

(a) discretization 1

(b) discretization 2

Figure 13: Evolution of the computed fields at each 0.0012s – new method (a = 3).
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(a) a = 0

(b) a = 0.5

(c) a = 1

(d) a = 2

(e) a = 3

Figure 14: Computed fields at t = 0.006s considering the new method (discretiza-
tion 1).

(a) a = 0.5

(b) a = 1

(c) a = 2

(d) a = 3

Figure 15: Dissipative elements at t = 0.006s considering the new method (dis-
cretization 1).
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In Figs.11, 12 and 13, results computed along the discretized strip are depicted,
considering the analytical solution, the CDM and the new method, respectively.
As one can observe, once again the new technique provides good results. As it is
illustrated in the figures, the new technique properly dissipates the spurious modes
of the model, rendering better results than the standard CDM.
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(b) discretization 2

Figure 16: Time history results at the middle of the fluid layer considering different
procedures.

In Figs.14 and 15, the influence of the a parameter is analyzed. In Fig.14, results
at t = 0.006s are depicted, considering the new technique and different values for
a. In Fig.15, the elements with non-unitary α values are marked, at t = 0.006s. As
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one can observe in Fig. 14, relatively good results are obtained considering a > 0,
even if low a values are selected. This is the case since the method automatically
adapts itself, generating more dissipative elements (see Fig.15) once the dissipa-
tive capacity of the elements is reduced (i.e., once lower a values are considered).
Thus, the adaptive method is quite robust, properly eliminating spurious modes
independently of the input data.

In Fig.16, time history results for the computed hydrodynamic pressure at the mid-
dle of the fluid layer are depicted, taking into account the aforementioned proce-
dures and discretizations. In Tab.1, the computed relative errors are provided, once
again indicating the better performance of the new technique.

5 Conclusions

An adaptive time marching technique is discussed here to analyze hyperbolic prob-
lems. The technique is conditionally stable (Ωc = 2α−1/2), second-order accurate
and it allows spurious high frequency modes to be properly dissipated, barely dam-
aging the accuracy of the lower modes solution. The algorithm dissipative features
are locally and adaptively calculated, taking into account the evolution of the com-
puted solution. Thus, a more effective time marching technique arises, enabling
enhanced dissipation and accuracy characteristics. Here, dissipative elements are
activated or not, based on a simple oscillatory criterion (equation (7)), which is
evaluated at each time step. The intensity of the numerical damping that is intro-
duced into the active dissipative elements is controlled by the a parameter (a≥ 0),
and the main features of the central difference method are reproduced when a = 0.

The proposed technique is simple and easy to implement. Moreover, as described
in section 2, the method is truly self-starting, requiring no initial procedures at all.
Thus, even by always adopting α = 1 (i.e., no dissipative properties), the proposed
technique may be considered better than the nearly universally used central differ-
ence method, due to its simplicity and self-starting attribute. In sections 3 and 4,
numerical results are presented, illustrating the good performance of the methodol-
ogy. As it is discussed in section 4, the new technique is robust and accurate, very
properly providing explicit solutions for complex problems.

Acknowledgement: The financial support by CNPq (Conselho Nacional de De-
senvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Amparo à
Pesquisa do Estado de Minas Gerais) is greatly acknowledged.

References

Bathe, K. J. (1996): Finite Element Procedures. Prentice-Hall, Englewood Cliffs,



246 Copyright © 2015 Tech Science Press CMES, vol.107, no.3, pp.223-247, 2015

NJ.

Cho, J. Y.; Kim, S. J. (2002): An explicit discontinuous time integration method
for dynamic-contact/impact problems. CMES: Computer Modeling in Engineering
& Sciences, vol. 3, pp. 687–698.

Choi, C. K.; Chung, H. J. (1996): Error estimates and adaptive time stepping
for various direct time integration methods. Computers & Structures, vol. 60, pp.
923–944.

Clough, R. W.; Penzien, J. (1993): Dynamics of Structures, second ed. McGraw-
Hill, New York.

Gravouil, A.; Combescure, A. (2001): Multi-time-step explicit–implicit method
for non-linear structural dynamics. International Journal for Numerical Methods
in Engineering, vol. 50, pp. 199–225.

Hilber, H. M.; Hughes, T. J. R.; Taylor, R. L. (1977): Improved numerical
dissipation for time integration algorithms in structural dynamics. Earthquake En-
gineering and Structural Dynamics, vol. 5, pp. 283–292.

Hughes, T. J. R. (2000): The Finite Element Method. Dover Publications INC,
New York.

Hulbert, G. M.; Chung, J. (1996): Explicit time integration algorithms for struc-
tural dynamics with optimal numerical dissipation. Computer Methods in Applied
Mechanics and Engineering, vol. 137, pp. 175–188.

Idesman, A. (2011): Accurate time integration of linear elastodynamics problems.
CMES: Computer Modeling in Engineering & Sciences, vol. 71, pp. 111–148.

Lages, E. N.; Silveira, E. S. S.; Cintra, D. T.; Frery, A. C. (2013): An adaptive
time integration strategy based on displacement history curvature. International
Journal for Numerical Methods in Engineering, vol. 93, pp. 1235–1254.

Leontyev, V. A. (2010): Direct time integration algorithm with controllable nu-
merical dissipation for structural dynamics: two-step Lambda method. Applied Nu-
merical Mathematics, vol. 60, pp. 277–292.

Logg, A. (2004): Multi-Adaptive Time-Integration. Applied Numerical Mathe-
matics, vol. 48, pp. 339-354.

Mansur, W. J.; Loureiro, F. S.; Soares, D.; Dors, C. (2007): Explicit time do-
main approaches based on numerical Green’s functions computed by finite differ-
ences: the ExGA family. Journal of Computational Physics, vol. 227, pp. 851–870.

Miranda, I.; Ferencz, R. M.; Hughes, T. J. R. (1989): An improved implicit-
explicit time integration method for structural dynamics. Earthquake Engineering
and Structural Dynamics, vol. 18, pp. 643-653.



An Explicit Time Marching Technique 247

Rossi, D. F.; Ferreira, W. G.; Mansur, W. J.; Calenzani, A. F. G. (2014): A re-
view of automatic time-stepping strategies on numerical time integration for struc-
tural dynamics analysis. Engineering Structures, vol. 80, pp. 118–136.

Soares, D. (2011): A new family of time marching procedures based on Green’s
function matrices. Computers & Structures, vol. 89, pp. 266–276.

Soares, D. (2014): An explicit family of time marching procedures with adaptive
dissipation control. International Journal for Numerical Methods in Engineering,
vol. 100, pp. 165–182.

Soares, D. (2015a): A simple and effective new family of time marching pro-
cedures for dynamics. Computer Methods in Applied Mechanics and Engineering,
vol. 283, pp. 1138–1166.

Soares, D. (2015b): A second-order time-marching procedure with enhanced ac-
curacy. CMES: Computer Modeling in Engineering & Sciences, vol. 105, pp. 341–
360.




