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Structural-Acoustic Design Sensitivity Analysis based on
Direct Differentiation Method with Different Element

Types

L.L. Chen1 and H.B. Chen1,2

Abstract: Engineers have started to develop ways to decrease noise radiation.
Structural-acoustic design sensitivity analysis can provide information on how
changes in design variable affect the radiated acoustic performance. As such, it
is an important step in the structural-acoustic design and in optimization process-
es. For thin structures immersed in water, a full interaction between the structural
domain and the fluid domain needs to be taken into account. In this work, the fi-
nite element method is used to model the structure parts and the boundary element
method is applied to the exterior acoustic problem. The formula of the sound pres-
sure sensitivity based on the direct differentiation method is presented. The design
variable can be chosen as the material parameters, structure and fluid parameter-
s, such as the fluid density, structural density, Poisson’s ratio, Young’s modulus,
structural shape size and so on. Numerical examples are presented to demonstrate
the validity of the proposed algorithm. Different types elements are used for the
numerical solution, and the performance of different types of FE/BE element is
presented and compared.

Keywords: Fluid-structure interaction, FE/BE coupling, Design sensitivity anal-
ysis, Discontinuous element, Direct differentiation method.

1 Introduction

Acoustic design sensitivity analysis can provide information on how changes in
geometry affect the acoustic performance of a given structure. As such, it is an
important step in the acoustic design and in optimization processes. An overview
of the developments in structural-acoustic optimization for passive noise control
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was presented in [Marburg (2002)]. The global finite difference method is widely
applied to structural-acoustic optimization because it is easy to implement [Laman-
cusa (1993); Hambric (1996)]. However, this method performs inefficiently espe-
cially when many design variables are taken into account concurrently. Analyt-
ic and semi-analytic sensitivity analyses are much more accurate and require less
computational costs than the global finite difference method. Analytic sensitivity
analysis, which appeared as the direct differentiation method, was applied to struc-
tural acoustic problems in [Chen, Zheng, and Chen (2013); Chen, Chen, and Zheng
(2013); Chen, Zheng, and Chen (2014); Zheng, Matsumoto, Takahashi, and Chen
(2012); Fritze, Marburg, and Hardtke (2005)]. Another method, which appeared
as the adjoint variable method [Choi, Shim, and Wang (1997); Wang (1999); Mat-
sumoto, Yamada, Takahashi, Zheng, and Harada (2011); Zheng, Chen, Matsumo-
to, and Takahashi (2011)], is very useful for sensitivity analysis with many design
variables. In the present paper, the direct differentiation method is applied for sen-
sitivity analysis.

The finite element method (FEM) was used to model the structure parts of a prob-
lem because of its high flexibility and applicability to large-scale practical models.
The boundary element method (BEM) can also be used to model the structure parts
[Qian, Batra, and Chen (2003); Han and Atluri (2002); Okada, Fukui, and Kumaza-
wa (2004)], and it is a better method to model the exterior sound field to avoid the
need to mesh the fluid domain [Qian, Han, and Atluri (2013); Qian, Han, Ufimt-
sev, and Atluri (2004); Qian, Han, and Atluri (2004);Chien, Rajiyah, and Atluri
(1990)]. As such a suitable approach for the analysis of fluid-structure interac-
tion problems is the coupling FE/BE method [Lie, Yu, and Zhao (2001); Everstine
and Henderson (1990); Merz, Kinns, and Kessissoglou (2009); Chen, Hofstetter,
and Mang (1998); Schneider (2008); Brunner, Junge, and Gaul (2009); Fischer
and Gaul (2005); Junge, Brunner, and Gaul (2011); Peters, Marburg, and Kessis-
soglou (2012)]. For the FE/BE algorithm, non-conforming discretizations at inter-
action surface allow an independent mesh shape and size for the fluid and structure
domain. Many approaches have been developed to generate the non-conforming
meshes, such as the Mortar method [Peters, Marburg, and Kessissoglou (2012)], in
which the coupling conditions at the common interface are formulated in a weak
sense. Results with higher accuracy can be obtained using non-conforming dis-
cretizations. However, for simplicity, the identical mesh for structure and fluid at
the interface is used for the numerical solution in this paper.

For BEM, the approach of continuous linear and quadratic elements is often ap-
plied, and the alternative of discontinuous elements with higher accuracy was in-
vestigated in [Rego-Silva (1993); Tadeu and Antonio (2000); Marburg and Schnei-
der (2003)]. The effect of superconvergence for error dependence upon element
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size for discontinuous boundary elements when collocation points are located at
the zeros of orthogonal functions for the standard interval was reviewed in [Atkin-
son (1997)]. Error dependence in terms of frequency, element size, and location of
nodes on discontinuous elements is presented in [Marburg and Schneider (2003)],
and the result that discontinuous boundary elements perform more efficiently than
continuous ones is also obtained in [Marburg and Schneider (2003)]. The perfor-
mance of the discontinuous boundary element for the rigid analysis in structural-
acoustic domain has also been thoroughly investigated. However, few papers de-
scribed the performance of the discontinuous boundary element coupled by FEM
when the interaction between the structure and fluid is taken into account.

The constant boundary element coupled by finite element is widely used to the nu-
merical solution for practical problems [Brunner, Junge, and Gaul (2009); Junge,
Brunner, and Gaul (2011); Merz, Kinns, and Kessissoglou (2009); Everstine and
Henderson (1990)], where the FE/BE element with linear shape function leads to
lines in 2D or triangles and quadrilaterals in 3D. The FE/BE element with quadrat-
ic shape functions is used for the structural-acoustic analysis in [Peters, Marburg,
and Kessissoglou (2012)], but not for the structural-acoustic sensitivity analysis.
In this paper, different types of FE/BE element are used for sensitivity analysis,
and their performance are compared in detail. The disadvantage of the linear shape
functions is that a curved surface is not well-represented, which causes gaps, over-
laps, and angles between elements of both meshes in the normal direction of the
interaction surface. As such, the more error arises when calculating the integration
on the boundary surface. Moreover, the coordinate of interpolation node obtained
using linear shape approximation deviates from the analytical nodal coordinate for
a curved surface, and more errors are produced. A possible solution to avoid these
disadvantages is the use of quadratic shape functions. Although it does not provide
the perfect fit for curved interfaces, the gaps and overlaps in the normal direction
of the interface are significantly reduced.

This paper presents the formula of the sound pressure sensitivity with respect to the
design variables, where the design variable can be chosen as the fluid density, struc-
tural density, Poisson’s ratio, Young’s modulus, structural shape size, and so on.
Two numerical examples are presented to demonstrate the validity and correctness
of the present algorithm. In this paper, several types coupling schemes are used for
the numerical solution, and the performance of different types of FE/BE coupling
schemes is presented and compared. The discontinuous linear boundary elements
with quadratic shape approximation was found to perform more efficiently than
the constant boundary elements with linear shape approximation by observing the
result for the surface error.
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2 Structural-acoustic formulation

For the fluid, the discretization of the Helmholtz integral equation obtained using
BEM results in a system of equations that can be written as

Hp = Gq+pi, (1)

where G and H are the influence matrices, p and q are the column matrices that
contain the nodal boundary values of the sound pressure and their normal deriva-
tives, and pi contains the nodal values of the incident pressure field.

FEM for structures have been thoroughly described and discussed in many papers.
In general, these methods result in a system of equations [Fritze, Marburg, and
Hardtke (2005)]

Au = f, (2)

where A = K+ iωC−ω2M, i =
√
−1, M the mass matrix, K the stiffness matrix,

C the damping matrix, and u the nodal displacement vector. Taking into account
the effect of the acoustic pressure at the structural surfaces, we applied an acoustic
load Csfp along with the structural load fs, and the excitation can be expressed as:

f = fs +Csfp, (3)

where the coupling matrix Csf can be expressed as [Fritze, Marburg, and Hardtke
(2005)]:

Csf =
∫

Γint

NT
s nNfdΓint , (4)

where Γint denotes the interaction surface, Ns and Nf are the global interpolation
functions for the structure and fluid domains, respectively, and n is the surface
normal vector. By substituting Eq. (3) into Eq. (2), we can obtain the following
formula

u = A−1fs +A−1Csfp. (5)

After having presented the systems of equations for the fluid and for the structure
separately, the coupling condition needs to be formulated, as follows

q = ω
2
ρS−1Cfsu, (6)

where Cfs = CT
sf and S =

∫
Γint

NT
f NfdΓint .
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In the next step, the coupling condition is applied to Eq. (1) to substitute for q. This
process yields

Hp = ω
2
ρGS−1Cfsu+pi. (7)

Eq. (2) and Eq. (7) can be combined to a coupled system of equations, as follows[
A −Csf

−ω2ρGS−1Cfs H

]{
u
p

}
= B

{
u
p

}
=

{
fs
pi

}
. (8)

In fact, direct iterations on the combined equation shown above converge very s-
lowly, and solving the system equation directly will take much more computing
time and storage requirement. In addition, obtaining the numerical solutions with
high accuracy is difficult. Instead of solving the above non-symmetric system of
linear equation by using an iterative solver, we propose the following approach. By
substituting Eq. (5) into Eq. (7), the following coupled boundary element equation
can be obtained [Fritze, Marburg, and Hardtke (2005)]

Hp−GWCsfp = GWfs +pi, (9)

where W = ω2ρS−1CfsA−1. The term A−1fs in the right side of Eq. (9) repre-
sents solution x of the linear system of equations Ax = fs. This symmetric and
frequency-dependent system is easily solved using a sparse direct solver. Directly
solving the term A−1Csf in the left side of Eq. (9) is unnecessary. In this study,
the iterative solver generalized minimal residual method (GMRES) [Saad (1996)]
is applied to accelerate the calculation of the solution to the coupled boundary el-
ement system equation. The current iterative solution is assumed as pk. First, the
matrix-vector product of Csfpk and a new vector y is calculated, where y = Csfpk.
The solution of A−1y can then be obtained efficiently when a sparse direct solver
is used to solve the symmetric and frequency-dependent system of linear equation
Ax = y. The implementation of a single Helmholtz boundary integral equation
in Eq. (9) may have the difficulty of non-uniqueness for exterior boundary-value
problems. In this study, the Burton-Miller method is applied to overcome the non-
uniqueness problem efficiently [Burton and Miller (1971)]. The strongly singular
and hypersingular integrals in the equations can be evaluated explicitly and directly
by using the Cauchy principal value and the Hadamard finite part integral method.
After solving Eq. (9), the sound pressure values vector p can be obtained, and the
solution of the vector p can be substituted into Eq. (5). The unknown vector u can
be solved using Eq. (5).

3 Design sensitivity analysis

The structural-acoustic optimization shows high potential in minimizing of radi-
ated noise especially for thin shell geometries. For the optimization process, the
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use of design sensitivity, which represents the rate of change of the object func-
tion with respect to the design variable, is often desirable. When the sensitivities
are obtained, an improved design can be obtained after the iterative calculations.
Accordingly, acoustic shape sensitivity analysis is typically the first and most im-
portant step in acoustic shape design and optimization processes [Chen, Chen, and
Zheng (2013); Zheng, Matsumoto, Takahashi, and Chen (2012)].

The implicit differentiation of Eq. (8) with respect to the design variable ϑ and
isolating the resulting sensitivities of structural displacement and sound pressure
lead to

B

{ .
u
.
p

}
=

{
r1

r2

}
= r, (10)

where

r =

{ .
fs
.
pi

}
−

.
B

{
u

p

}
. (11)

For different design variables, different expressions of
.
B are obtained. When the

fluid density ρ is chosen as the design variable,
.
B is derived by

.
B =

[
0 0

−ω2GS−1Cfs 0

]
(12)

and the vector r is derived by

r =

{
r1

r2

}
=

{
0

ω2GS−1Cfsu

}
. (13)

When the structural parameter is chosen as the design variable, such as structural
density ρs, Poisson’s ratio v, Young’s modulus E and thickness of spherical shell h
presented in the following numerical example,

.
B is derived by

.
B =

[ .
A 0
0 0

]
(14)

and the vector r is derived by

r =

{
r1

r2

}
=

{
−

.
Au

0

}
. (15)
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When the parameter determining the structural nodal coordinate is set as the design
variable, such as the radius of spherical shell r presented in the following numerical
example,

.
B is derived by

.
B =

[ .
A −

.
Csf

−ω2ρ(
.

GS−1Cfs)
.
H

]
(16)

where the upper dot
.
( ) denotes the differentiation with respect to the design vari-

able. The vector r is derived by

r =

{
r1

r2

}
=


.
fs−

.
Au+

.
Csfp

.
pi +ω2ρ(

.
GS−1Cfs)u−

.
Hp

 . (17)

The expressions of matrices
.
A,

.
Csf,

.
Cfs,

.
S−1,

.
H, and

.
G can be complicated, par-

ticularly when the structure domain is approximated using shell finite elements.
Hence, solving them directly is difficult. However, the semi-analytical derivative
method, through which variations of the coefficient matrices can be calculated us-
ing the finite difference method, can be applied to overcome this difficulty. For
example, matrix

.
C can be calculated using a small perturbation τ when the shape

design variable is denoted by α , as follows:

.
C =

C(α + τ)−C(α)

τ
. (18)

In this work, a step size τ/α = 10−3 is used. Smaller step size will produce better
solution. However, very smaller step size such as 10−7 will not produce correct
solution, because the data of the structural matrix from ANSYS is single precision.
On the other hand, the solution for the step sizes of 10−3, 10−4, 10−5 is compared,
and found to be very similar. So, step size of 10−3 is suitable. Directly solving Eq.
(10) is likely to be very inefficient because the system matrix will be quite large for
realistic problems. Decomposing the system equation Eq. (10) into two equations,
as follows

A
.
u−Csf

.
p = r1 (19)

and

H
.
p−ω

2
ρGS−1Cfs

.
u = r2. (20)

By substituting Eq. (19) into Eq. (20), the following formula is obtained

H
.
p−GWCsf

.
p = GWr1 + r2. (21)
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Equation (21) is very similar to Eq. (9); thus, the same solving method is imple-
mented. By solving the above equation, the sensitivity of the nodal sound pressure
on the surface can be obtained. The unknown vector

.
u can be solved by substituting

the solution of the vector
.
p into Eq. (19) and solving Eq. (19).

In the following work, we will derive the formulas of the sound pressure sensitivity
at the field point in the fluid domain. The boundary integral equation defined on
the structure boundary Γ to evaluate the sound pressure at a field point p(y) in the
fluid domain can be expressed as

p(y)+
∫

Γ

F(x,y)p(x)dΓ(x) =
∫

Γ

G(x,y)q(x)dΓ(x), (22)

where q(x) and F(x,y) are the normal derivatives of p(x) and G(x,y), respectively;
y is the field point; and G(x,y) is the Green’s function. For 3D acoustic wave
problems, G(x,y) = eikr

4πr , where r = |y− x|. Discretization of the above formula
allows us to evaluate p(y) as

p(y) = gT (y)q−hT (y)p, (23)

where g(y) and h(y) are coefficient vectors. By substituting the vectors p and q
obtained by solving the coupled boundary element equation (9) into Eq. (23), the
value of p(y) can be solved.

When the parameter, such as the fluid density ρ , structural density ρs, Poisson’s
ratio v, Young’s modulus E, or the thickness of the spherical shell h presented in
the following numerical example, is set as the design variable, we can obtain the
following formula by differentiating Eq. (22)

.
p(y)+

∫
Γ

F(x,y)
.
p(x)dΓ(x) =

∫
Γ

G(x,y)
.
q(x)dΓ(x). (24)

The discretization of the above formula allows us to evaluate
.
p(y) as

.
p(y) = gT (y)

.
q−hT (y)

.
p. (25)

When the parameter determining the structural nodal coordinate is set as the de-
sign variable, such as the radius of the spherical shell r presented in the following
numerical example, we can obtain the following formula by differentiating Eq. (22)

.
p(y) =

∫
Γ

[
.
G(x,y)q(x)−

.
F(x,y)p(x)]dΓ(x)+

∫
Γ

[G(x,y)
.
q(x)−F(x,y)

.
p(x)]dΓ(x)

+
∫

Γ

[G(x,y)q(x)−F(x,y)p(x)]d
.
Γ(x), (26)
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where
.
G(x,y) and

.
F(x,y) can be expressed in the form of the coordinate sensitivity.

For 3D acoustic wave problems, they can be expressed as

.
G(x,y) =− eikr

4πr2 (1− ikr)
∂ r
∂yi

(
.
yi−

.
xi), (27)

.
F(x,y) =

eikr

4πr3

[
(3−3ikr− k2r2)

∂ r
∂n(x)

∂ r
∂xi
− (1− ikr)ni(x)

]
(
.
xi−

.
yi)− (28)

eikr

4πr2 (1− ikr)
∂ r
∂xi

.
ni(x),

where
.
x j and

.
y j will be evaluated when the boundary of the analyzed domain is

fully parameterized with the shape design variable.
.
nl(x) and d

.
Γ(x) can be written

as
.
nl(x) =−

.
x j,ln j(x)+

.
x j,mn j(x)nm(x)nl(x), (29)

and

d
.
Γ(x) =

[.
xl,l−

.
xl, jnl(x)n j(x)

]
dΓ(x), (30)

where an index after a comma denotes the partial derivative with respect to the
coordinate component and

.
x j,m = ∂

.
x j/∂xm.

Discretizing Eq. (26), we can obtain the following linear algebraic equation
.
p(y) = gT

1 (y)q−hT
1 (y)p+gT (y)

.
q−hT (y)

.
p. (31)

where g1(y) and h1(y) are the coefficient vectors. After substituting the solution
of the vector p, q,

.
p and

.
q into Eq. (31) and solving Eq. (31), the sound pressure

sensitivity value at any field point in the fluid domain can be obtained.

4 Element types and surface error

The approach of continuous linear and quadratic boundary elements is often ap-
plied, and the alternative of discontinuous boundary elements was investigated
in previous studies [Rego-Silva (1993); Tadeu and Antonio (2000); Marburg and
Schneider (2003)]. For discontinuous elements, interpolation nodes are located in-
side the element and the expressions of the interpolation functions are dependent
on the position of the node inside the element (see Fig. 1 for quadrilaterals and
Fig. 2 for triangular elements). In the two figures, ‘BEmn’ and ‘FEmn’ denote
the boundary element and finite shell element with ‘m’ geometry nodes and ‘n’
interpolation nodes, respectively. For example, ‘BE41’ in Fig. 1 is the constan-
t boundary element with four geometrical nodes denoting linear shape functions
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being used, ‘BE44’ is the discontinuous linear boundary element with four geo-
metrical nodes, ‘BE91’ is the constant boundary element with nine geometrical
nodes denoting quadratic shape functions being used, ‘BE94’ is the discontinuous
linear boundary element with nine geometrical nodes. The ‘FE44’ element is used
as the isoparametric linear finite element, and the ‘FE88’ element as the eight-node
isoparametric quadratic finite element. Although continuous boundary element is
used widely, only discontinuous boundary element is used in the numerical calcu-
lations in this paper. For detailed error comparison between continuous and discon-
tinuous boundary elements, please see paper [Marburg and Schneider (2003)]. For
the constant boundary element, the interpolation node is defined at the centroid of
the element. For discontinuous linear boundary element, the values of ai and bi de-
cide the position of these interpolation nodes. In this paper, a1 = a2 = a3 = a4 = 0.5
and b1 = b2 = b3 = 0.25 are set for simplicity [Rego-Silva (1993)]. The piecewise
linear geometry approximation is implemented using elements with four or three
geometrical nodes, for example BE41 in Fig. 1 and BE31 in Fig. 2. The piecewise
quadratic geometry approximation is implemented using elements with nine or six
nodes, for example BE91 in Fig. 1 and BE61 in Fig. 2.
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× ×

× ×

× ×

× ×

× ×
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Fig. 1: Distribution of geometrical nodes and interpolation nodes in a quadrilateral
element
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×
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××

°
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°

Fig. 2: Distribution of geometrical nodes and interpolation nodes in a triangular
element

The solid structure is discretized using the Shell63 finite element in ANSYS for lin-
ear geometry approximation with three or four geometrical nodes, such as element
FE33 and FE44, and the Shell281 finite element in ANSYS for quadratic geometry
approximation with six or eight geometrical nodes, such as FE66 and FE88. The
acoustic domain is discretized using constant or discontinuous linear boundary ele-
ments, such as ‘BE31’ and ‘BE41’ elements with one interpolation node for linear
geometry approximation, ‘BE63’ with three interpolation nodes and ‘BE94’ ele-
ments with four interpolation nodes for quadratic geometry approximation. Every
structural element is set as a boundary element, and it denotes identical mesh for
the structure and fluid at the interface for the numerical solution. ‘FEmn/BEmn’
means that element ‘FEmn’ is used for the structure discretization and ‘BEmn’ for
the acoustic domain discretization. For different ‘FEmn/BEmn’ element, different
calculations of coupling matrix Csf will be implemented. For the ‘FE44/BE41’ el-
ement, the element coupling matrix is calculated using four structural interpolation
nodes and one fluid interpolation node, and the surface integration is implemented
using linear geometry approximation with four nodes. For the ‘FE88/BE94’ ele-
ment, the element coupling matrix is calculated using eight structural interpolation
nodes and four fluid interpolation nodes, and the surface integration is calculated
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using quadratic geometry approximation with nine geometrical nodes.

In this paper, the error function for the surface error based on the complex values is
expressed as [Marburg and Schneider (2003)].

||eΓ(xi)||= ||pe(xi)− pn(xi)||, x ∈ Γ, (32)

where pe represents the exact solution for the sound pressure, and pn is the numer-
ical solution. The discrete error function is evaluated in discrete points, and the
discrete surface error is determined as

||eΓ||2 =

(
1
n

n

∑
i=1
||eΓ(xi)||2

)1/2

, (33)

where n represents the number of nodes on the surface Γ. We then used the relative
error eΓ

2 for the sound pressure error

eΓ
2 =
||eΓ||2
||pΓ

e ||2
, (34)

where ||pΓ
e ||2 represents the discrete Euclidean norm of the exact sound pressure

and can be expressed as the following formula

||pΓ
e ||2 =

(
1
n

n

∑
i=1
||pe(xi)||2

)1/2

. (35)

5 An example of scattering from an elastic spherical shell

In this example, we consider the acoustic scattering of a plane incident wave with
a unit amplitude that travels along the positive x axis, as shown in Fig. 3.

The displacement u(θ) at the surface and scattered sound pressure p(R,θ) in the
fluid domain, respectively, are given by [Junger and Feit (1985)]

u(θ) =
Pi

k2r2ω

∞

∑
n=0

in(2n+1)Pn(cosθ)

Zn + zn

(
∂hn(kr)
∂ (kr)

)−1

(36)

p(R,θ) =−Pi

∞

∑
n=0

in(2n+1)Pn(cosθ)hn(kR)
(

∂hn(kr)
∂ (kr)

)−1

[(
∂ jn(kr)
∂ (kr)

)
− ρc

k2r2(Zn + zn)

(
∂hn(kr)
∂ (kr)

)−1
]

(37)
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r

R

θ

    incident wave

x

y

z

Field point

Fig. 3: Scattering from a spherical shell

where r is the radius of the spherical shell, Pn is the coefficient of the Legendre
polynomials of order n. The radiation impedance zn and modal impedance of the
shell Zn are given by

zn = iρchn(kr)
(

∂hn(kr)
∂ (kr)

)−1

(38)

Zn =−
iρscp

Ω

h
r

(
Ω2−

(
Ω

(1)
n

)2
)(

Ω2−
(

Ω
(2)
n

)2
)

Ω2−λn +1− v
(39)

where ρ is the fluid density, c is the speed of sound in the fluid, k = ω/c is the wave
number, ρs is the structural density, h is the thickness of the spherical shell, and hn

is the spherical Hankel functions of order n. λn = n(n+ 1) and cp =
√

E
ρs(1−v2)

is
the phase velocity, where E is the Young’s modulus and v is the Poisson’s ratio.
Ω = ωr/cp is the dimensionless frequency of a vibrating spherical shell. Ω

(i)
n is the

solutions of the following characteristic frequency equation

Ω
4−
[
1+3v+λn−β

2(1− v−λ
2
n − vλn)

]
Ω

2 +(λn−2)(1− v2)

+β
2 [

λ
3
n −4λ

2
n +λn(5− v2)−2(1− v2)

]
= 0 (40)

where β = h/
√

12r.

The material data for the structure and fluid and the geometrical data are listed in
Table 1. Several different meshes for the quadrilateral and triangular elements are
considered. Detailed information about mesh size and number of elements is given
in Table 2.
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Table 1: Material and geometrical data for a submerged spherical shell

Density (water) ρ 1000 kg/m3

Speed of sound c 1482 m/s
Density (steel) ρs 7860 kg/m3

Young’s modulus E 210 GPa
Poisson’ ratio v 0.3 -
Sphere radius r 5 m

Shell thickness h 0.05 m

Table 2: Number of quadrilateral element and triangular element for different mesh
sizes.

Mesh size d ( m)
Number of

quadrilateral element
Number of

triangular element
1.33 216 432
1.00 384 768
0.67 864 1728
0.50 1536 3072

Figures 4 and 5 present the analytical and numerical solutions for the sound pres-
sure and displacement on the surface at 50 Hz, respectively. The FE44/BE41 ele-
ment with linear shape function and the FE88/BE94 element with quadratic shape
function are used to calculate the numerical solution, and a mesh size d = 1.00 m is
used to discretize the spherical surface. The figures show that the solution obtained
using the FE88/BE94 element is in agreement with the analytical solution, but the
deviation of the solution with FE44/BE41 from the analytical solution is large. This
result indicates that an accurate numerical solution can be obtained using a discon-
tinuous linear boundary element with quadratic shape approximation in a moderate
mesh dense.

Figure 6 presents the analytical and numerical solutions for the normalized scat-
tered pressure on the xy plane at a distance R = 100 m from the origin point at 50
Hz. The ordinate of this figure is the normalized pressure p̄ = |pR/Pir|, where p is
the scattered pressure and Pi is the amplitude of the incident wave. The numerical
solutions are computed with the FE44/BE41 and FE88/BE94 elements with d = 1.0
m mesh discretization. This figure shows that the solution with the FE88/BE94
element with quadratic shape approximation is in agreement with the analytical
solution. However, the solution with the FE44/BE41 element with linear shape
approximation has a large deviation from the analytical solution.
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Fig. 4: Sound pressure on the surface at 50 Hz with mesh size d = 1.00 m

Fig. 5: Displacement on the surface at 50 Hz with mesh size d = 1.00 m

Figure 7 presents the analytical and the FE88/BE94 solutions for the normalized
scattered pressure at a computing point (100,0,0) in terms of frequencies. A step
size of 0.002 Hz up to 100 Hz is used for evaluation of the analytical solution. The
FE88/BE94 solution is evaluated in steps of 1 Hz. The mesh size d = 0.67 m is
used for the numerical solution. The resonance frequencies are determined as 55.9
Hz, 70.5 Hz, 80.6 Hz, 88.4 Hz, and 94.8 Hz. This figure shows that there is a
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good agreement between the FE88/BE94 solution and the analytical solution, and
indicates the validity and correctness of the proposed algorithm in this paper.

Fig. 6: Normalized scattered pressure on the xy plane at 50 Hz with mesh size
d = 1.00 m

Fig. 7: Normalized scattered pressure at the computing point (100,0,0) in terms of
frequencies

Figure 8 presents the surface errors that are calculated according to Eq. (34) for
the scattered pressure at a distance R = 100 m from the origin point with different
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(a) Quadrilateral elements (b) Triangular elements

Fig. 8: Scattered pressure error for different elements in terms of element size at 50
Hz

elements and mesh discretization. Building and discretizing a surface are not nec-
essary to calculate the surface error eΓ

2 because of the axisymmetry along x axis.
Discrete points are distributed on the half circle between θ = 0 and θ = 180 on the
xy plane, and the step size is set as 2 degrees and it generates 91 computing points.
The figures show that the error decreases with more refined mesh discretization, and
the numerical solution with higher accuracy is obtained using discontinuous linear
boundary element with three or four interpolation nodes than constant boundary
element. Apparently, the error obtained using elements with quadratic shape func-
tion is lower than that obtained using elements with linear shape function. In sum,
the FE88/BE94 and FE66/BE63 elements perform most efficiently at the same el-
ement size. Moreover, we consider the performance of different types elements
for the same degree of freedom. For the FE44/BE41 and FE88/BE91 elements,
d = 0.5 m generates 1536 interpolation nodes; for the FE88/BE94 and FE44/BE44
elements, d = 1.0 m also generates 1536 interpolation nodes. For the same degree
of freedom, the numerical solution with the FE44/BE41 element is 1.06E-2, 2.55E-
2 with FE44/BE44, 5.44E-3 with FE88/BE91, and 2.6E-3 with FE88/BE94. The
FE88/BE94 element performs mostly efficiently. The disadvantage of the linear
shape functions is that a curved surface is not well-represented, which causes gaps,
overlaps, and angles between elements of both meshes in the normal direction of the
interaction surface. As such, more error arises when calculating the integration on
the boundary surface. Moreover, the coordinate of the interpolation node obtained
using linear shape approximation deviates from the analytical nodal coordinate for
the curved surface, and more errors are produced. Although quadratic shape func-
tion does not provide the perfect fit for curved interfaces, the gaps and overlaps in
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the normal direction of the interface are significantly reduced. On the other hand,
by observing Fig. 8(b), the numerical solution for the FE66/BE63 and FE33/BE33
elements at d = 0.5 m cannot be obtained because of the high memory storage re-
quirement. The linear discontinuous element generates more interpolation nodes
and needs more computing time and memory storage than constant element at the
same mesh size. However, the fast multipole method could be applied to overcome
this problem. In the future, we will focus on this work.

Fig. 9: The normalized far-field scattered pressure sensitivity with respect to fluid
density

Figure 10 shows the analytical and the FE88/BE94 solution for the normalized
scattered pressure sensitivity at a computing point (100,0,0), where the design
variable ϑ is chosen as the fluid density ρ , structural density ρs, Poisson’s ratio
v, Young’s modulus E, thickness h and radius r, respectively. The normalized
scattered pressure sensitivity p̄,ϑ in this paper is expressed as follows

p̄,ϑ =

∣∣∣∣ ∂ p
∂ϑ

∣∣∣∣ Rϑ

Pir
(41)

where p is the scattered pressure . A mesh size d = 0.67 m is used for the numerical
solution. These figures show that the scattered pressure remains rather insensitive
in the low frequency range, and the sensitivity increases in the vicinity of resonance
peaks. The numerical solution is in agreement with the analytical solution. This
result indicates the validity of the proposed algorithm and its correct implementa-
tion.
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(a) Fluid density ρ (b) Structural density ρs

(c) Poisson’s ratio v (d) Young’s modulus E

(e) Thickness h (f) Radius r

Fig. 10: The normalized scattered pressure sensitivity with respect to different de-
sign variables

6 An example of elastic spherical shell excited by an unit force

The excitation in the form of a concentrated force F applied at point A (θ = 0)
is taken into account, as shown in Fig. 11. The displacement u(θ) at the spheri-
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cal surface and the corresponding radiated sound pressure in the fluid domain are
respectively given by [Junger and Feit (1985)]

u(θ) =
−F

4πr2iω

∞

∑
n=0

2n+1
Zn + zn

Pn(cosθ) (42)

p(R,θ) =
iρcF
4πr2

∞

∑
n=0

(2n+1)
(Zn + zn)

hn(kR)Pn(cosθ)

(
∂hn(kr)
∂ (kr)

)−1

(43)

where r is the radius of the spherical shell, and Pn is the coefficient of the Legendre
polynomials of order n. The radiation impedance zn and modal impedance of the
shell Zn are defined in Eq. (38) and (39). The material data for the structure and
fluid and the geometrical data are the same as those in the example of the scattered
sphere, and are listed in Table 1.

r
θ

x

y

z

A
F

Fig. 11: Spherical shell excited by a single force at point A

Figures 12 and 13 present the analytical and numerical solutions for the amplitudes
of the radiated sound pressure and displacement, respectively, on the surface at 50
Hz. The numerical solutions are computed with the FE44/BE41 and FE88/BE94 el-
ements with d = 1.0 m mesh discretization. The figures show that the numerical so-
lution obtained using the FE88/BE94 element with quadratic shape approximation
is in agreement with the analytical solution, but the deviation of the solution with
the FE44/BE41 element from the analytical solution is large. This result denotes
that a more accurate solution can be obtained using discontinuous linear boundary
element with quadratic shape approximation.

Figure 14 presents the analytical and numerical solutions for the amplitude of the
radiated sound pressure at the points distributed on the xy plane at a distance
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Fig. 12: Sound pressure on the surface at 50 Hz with mesh size d = 1.0 m

Fig. 13: Displacement on the surface at 50 Hz d = 1.0 m

R = 100 m from the origin point at 50 Hz. This figure shows that accurate numer-
ical solution can be obtained using the FE88/BE94 element with quadratic shape
function. Figure 15 presents the analytical and the FE88/BE94 solutions for the
amplitude of the radiated sound pressure at a computing point (100,0,0) in terms
of frequencies. A step size of 0.002 Hz up to 100 Hz is used for evaluation of the
analytical solution, whereas the FE88/BE94 solution is evaluated in steps of 1 Hz.
A mesh size d = 0.67 m is used for the numerical solution. This figure shows that
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there is a good agreement between the FE88/BE94 solution and the analytical so-
lution and indicates the validity and correctness of the proposed algorithm in this
paper.

Fig. 14: Radiated pressure on the xy plane at a distance R = 100m at 50 Hz

Fig. 15: Radiated sound pressure at point (100,0,0) in terms of frequencies.

Figure 16 presents the surface errors that are calculated according to Eq. (34) for the
radiated sound pressure at a distance R = 100 m from the origin point with different
elements and mesh discretization. Building and discretizing a surface for calculat-
ing the surface error eΓ

2 are not necessary because of the axisymmetry along x axis.
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Discrete points are distributed on the half circle between θ = 0 and θ = 180 on the
xy plane, and the step size is set as 2 degrees and it generates 91 computing points.
The figures show that the error decreases with a more refined mesh discretization,
and the numerical solution with a higher accuracy is obtained using discontinu-
ous linear boundary element with three or four interpolation nodes than constant
boundary element. The error obtained using elements with quadratic shape func-
tion is lower than that obtained using elements with linear shape function. In sum,
the FE88/BE94 and FE66/BE63 elements perform most efficiently at the same el-
ement size. We then consider the performance of different types elements for the
same degree of freedom. For the FE44/BE41 and FE88/BE91 elements, d = 0.5 m
generates 1536 interpolation nodes; for the FE88/BE94 and FE44/BE44 elements,
d = 1.0 m also generates 1536 interpolation nodes. For the same degree of free-
dom, the numerical solution with the FE44/BE41 element is 1.83E-2, 3.12E-2 with
FE44/BE44, 1.32E-2 with FE88/BE91, and 3.33E-3 with FE88/BE94. Thus, the
FE88/BE94 element performs mostly efficiently.

(a) Quadrilateral elements (b) Triangular elements

Fig. 16: Radiated sound pressure error for different elements in terms of element
size at 50 Hz

Figure 17 shows the analytical and the FE88/BE94 solution for the amplitude of
the radiated sound pressure sensitivity at a computing point (100,0,0), where the
design variable ϑ is set as the fluid density ρ , structural density ρs, Poisson’s ratio
v, Young’s modulus E, thickness h and radius r, respectively. A mesh size d =
0.67 m is used for the numerical solution. These figures show that the radiated
pressure remains rather insensitive in the low frequency range, and the sensitivity
goes up in the vicinity of resonance peaks. The numerical solution agrees with the
analytical solution which indicates the validity of the proposed algorithm and its
correct implementation.
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(a) Fluid density ρ (b) Structural density ρs

(c) Poisson’s ratio v (d) Young’s modulus E

(e) Thickness h (f) Radius r

Fig. 17: The radiated sound pressure sensitivity with respect to different design
variables

7 Conclusions

A coupling algorithm based on FEM and BEM is presented for the simulation of
fluid-structure interaction and structural acoustic sensitivity analysis using the di-
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rect differentiation method, where the design variable is set as the fluid density,
structural density, Poisson’s ratio, Young’s modulus, structural thickness and ra-
dius, respectively. For different design variables, the different formulations are
presented for the calculation of the derivatives to the sound pressure. Numerical
examples are presented to demonstrate the validity of the proposed algorithm. D-
ifferent types elements are used for the numerical solution, and the performance
of different types of FE/BE element is presented and compared. The discontinu-
ous linear boundary elements with quadratic shape approximation perform more
efficiently than the constant boundary elements with linear shape approximation.

The algorithm presented in this paper makes it possible to predict the effects of
different design variables on the radiation and scattered sound field numerically.
Future work will include applying the structural-acoustic design sensitivity analysis
to optimize and extending the method to practical engineering problems.
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