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Elastodynamic Analysis of Thick Multilayer Composite
Plates by The Boundary Element Method

J. Useche1 and H. Alvarez1

Abstract: Dynamic stress analysis of laminated composites plates represents a
relevant task in designing of aerospace, shipbuilding and automotive components
where impulsive loads can lead to sudden structural failure. The mechanical com-
plexity inherent to these kind of components makes the numerical modeling an es-
sential engineering analysis tool. This work deals with dynamic analysis of stresses
and deformations in laminated composites thick plates using a new Boundary El-
ement Method formulation. Composite laminated plates were modeled using the
Reissner’s plate theory. We propose a direct time-domain formulation based on
elastostatic fundamental solution for symmetrical laminated thick plates. Formula-
tion takes into account the rotational inertia of the plate. Domain integrals related
to distributed body forces and those related to inertial terms are evaluated using
the Radial Integration Method. Contour integrals are numerically evaluated using
quadratic approximation for displacements and generalized forces. Time integra-
tion is performed using the Houbolt Integration Method. Resulting shear forces and
bending moments are calculated. The results obtained using this formulation show
good agreement when compared with finite element solutions.

Keywords: Boundary element method, Laminated thick plates, Dynamic stress
analysis, Radial integration method, Composite plates.

1 Introduction

Laminated composite plates have gained popularity for the manufacturing of com-
ponents with high strength to weight ratio and superior performance in highly de-
manding environments. These characteristics have become an attractive alternative
in the marine, automotive, mechanical, civil and aerospace industries [Vasiliev and
Morozov (2001)]. In general, composites have complex mechanical responses not
found in isotropic materials and no closed solutions to mathematical models are
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possible, being necessary the use of numerical modeling for practical engineering
analysis.

The Finite Element Method (FEM) is a well established technique for numeri-
cal modeling of complex composite plate structures under dynamic loads [Reddy
(2004); Tenek and Argyris (2010); Reddy, Roman, Arciniegas, and F. (2010) and
Zhang and Atluri (1986)]. However, FEM analysis of structures involving geomet-
rical discontinuities or high stress concentrators requires the use of meshes with
high number of finite elements. In this way, the computational cost of the models
is increased [Bathes (2007)].

The Boundary Element Method (BEM) has emerged as an attractive option to the
FEM for the analysis of plates and shells structures [Mukherjee (2013); Wrobel and
Aliabadi (2002); Rashed (2000); Dirgantara and Aliabadi (1999); Wen, Aliabadi,
and Young (2000a); Beskos (2003) and Providakis and Beskos (1999)]. Since BE-
M only requires the discretization of the boundary of the body under analysis the
number of unknowns in a model is reduced. This feature makes BEM an attractive
tool for the analysis of problems with high stress gradients, geometric discontinu-
ities and infinite domains. Moreover, BEM has been successfully used in the static
and dynamic analysis of laminated plates [E. L. Albuquerque and Aliabadi (2006);
E. L. Albuquerque and de Paiva (2007); W. Portilho de Paiva and Albuquerque
(2011) and Wang (1991)]. In spite of this, BEM hasn’t been applied to dynamic
stress analysis of thick laminated composite plates. This problem represents an at-
tractive field of research that would contribute to the advancement of knowledge in
computational structural mechanics.

Three different BEM formulations could be used in dynamic plate analysis: direct
time-domain formulations using elasto-static fundamental solutions [Gao (2002);
Partridge, Brebbia, and Wrobel (1992); Manolis and Beskos (1998); Sapountza-
kis (2010), Perez-Gavilán and Aliabadi (2001) and Katsikadelis (2014)]; formula-
tions based on elasto-dynamics fundamental solutions [Wen and Aliabadi (2006)
and Wen, Adetoro, and Xu (2008)] and formulations based on Laplace or Fourier
transformations of governing equations [Duddeck (2010) and Wen, Aliabadi, and
Young (2000b)]. Compared to elastodynamic fundamental solutions, the use of e-
lastostatic fundamental solutions in BEM formulations presents the advantage of
mathematical simplicity, thus allowing the application of well established methods
to treat domain integrals [Providakis and Beskos (1999)]. Formulations based on
elasto-static fundamental solutions have been successfully used for dynamic BEM
analysis of isotropic plates and shells [Useche and Albuquerque (2012); Useche,
Albuquerque, and Sollero (2012) and Useche (2014)]. Unlike to formulations us-
ing elasto-dynamic fundamental solutions, BEM formulations based on the use of
elasto-static solutions generate systems of equations not involving time or frequen-
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cy. Moreover, domain integrals related with inertial terms do not need to be trans-
formed to the boundary. This aspect represents a major advantage because calcula-
tion of boundary integrals in elasto-dynamic formulations is expensive [Gaul, Kogl,
and Wagner (2003)].

In this paper a direct Boundary Element Method formulation for the dynamic tran-
sient analysis of symmetric laminated thick plates is presented. Formulation is
based on the elastostatic fundamental solutions proposed by [Wang (1991)]. Plates
were analyzed using the First Order Shear Deformation Theory (FSDT) for lam-
inated composite plates [Reddy (2004)]. Formulation takes into consideration ef-
fects of rotatory inertia. Integrals related to domain loads and inertial forces were
calculated using the Radial Integration Method. The proposed formulation is vali-
dated through numerical tests and results are compared with FEM solutions.

2 Laminated plate equations

Consider a symmetrically laminated plate occupying an area Ω in the x1x2 plane
with total thickness h and composed by N orthotropic layers. Each layer has prin-
cipal material coordinates orientated at an angle θ referred to the laminated coor-
dinate x1. The x1x2 plane is considered the midsurface and x3-axis is taken normal
to this surface. Plate is bounded by the contour Γ = Γw

⋃
Γp with Γ = Γw

⋂
Γp ≡ 0.

The FSDT was employed to model the bending response for the plate. In the FSDT,
relations between generalized displacements and strains are given by [Wrobel and
Aliabadi (2002)]:

2χαβ = wα,β +wβ ,α

ψα = wα +w3,α (1)

where χαβ and ψα are the curvature tensor and the transversal shear strains, respec-
tively. In this work, indicial notation and the Einstein’s summation convention are
used. In these equations, wα denotes in-plane rotations and w3 represents transver-
sal deflection.

Dynamic equilibrium equations for a plate are given by [Useche, Albuquerque, and
Sollero (2012)]:

Mα,β −Qα +qα = Λαβ wβ ,tt (2)

Qα,α +q3 = Λ33w3,tt (3)

where qα are distributed in-plane moments and q3 = p is the distributed pressure,
Λik is the inertial tensor defined as: Λαβ = 1/12ρh3δαβ , Λ33 = ρh and Λα3 =
Λ3α = 0, Mαβ and Qα are the resultant tensor moment and the normal shear vector,
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respectively, wα,tt denotes angular in-plane accelerations and w3,tt is the transverse
acceleration. For laminated plates, Mαβ and Qα are given by [Wang (1991)]:

Mαβ = Eαβγθ (wγ,θ +wγ,θ ) (4)

Q1 = A45ψ4 +A55ψ5, Q2 = A44ψ4 +A45ψ5 (5)

Bending and shear stiffness tensors Eαβγθ Ai j are related to layers stiffness Q̄k
i j

through [Reddy (2004)]:

Di j =
1
3

N

∑
k=1

Q̄k
i j(z

3
3(k+1)− z3

3k), i, j = 1,2,6 (6)

Ai j =
N

∑
k=1

KiK jQ̄k
i j(z3(k+1)− z3k), i, j = 4,5 (7)

where N is the number of layers, Ki and K j are the shear correction factors. Tensor
Eαβγθ is related to Di j through Voigt notation.

Substituting (4) and (5) into (2) and (3), we obtain the following set of differential
equations:

Likwk +qi = Λikwk,tt (8)

where differential operator Lik is defined as:

L11 = D11
∂ 2

∂x2
1
+2D16

∂ 2

∂x1∂x2
+D66

∂ 2

∂x2
2
−A55

L12 = L21 = D16
∂ 2

∂x2
2
+(D12 +D66)

∂ 2

∂x1∂x2
+D26

∂ 2

∂x2
2
−A45

L13 =−L31 =−
(

A45
∂

∂x2
+A55

∂

∂x1

)
L23 =−L32 =−

(
A44

∂

∂x2
+A45

∂

∂x1

)
L22 = D66

∂ 2

∂x2
1
+2D26

∂ 2

∂x1∂x2
+D22

∂ 2

∂x2
2
−A44

L33 = A55
∂ 2

∂x2
2
+2A45

∂ 2

∂x1∂x2
+A44

∂ 2

∂x2
2

(9)

3 Integral formulation

The boundary integral formulation of equations (8) is derived by using the weight-
ed residual method and making use of the Green’s identity [Wrobel and Aliabadi
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(2002)]. In this way, the integral formulation for these equations is given by:

cikwk(x′, t)+
∫

Γ

P∗ik(x
′,x)wk(x, t)dΓ =

∫
Γ

W ∗ik(x
′,x)pk(x, t)dΓ

+
∫

Ω

W ∗i3(x
′,x)q3(x, t)dΩ−

∫
Ω

W ∗ik(x
′,x)Λikwk,tt(x, t)dΩ (10)

with qα = 0. In this equation, W ∗ik and P∗ik are fundamental solutions of the or-
thotropic shear deformable plates [Wang (1991)]; ci j(x′) are the jump terms. The
stress integral formulation is obtained by substituting (10) into (1) and then into (2)
and (3). The derivatives of the generalized displacements are calculated as:

wk,α(x′, t)+
∫

Γ

P∗ik,α(x
′,x)wk(x, t)dΓ =

∫
Γ

W ∗ik,α(x
′,x)pk(x, t)dΓ

+
∫

Ω

W ∗i3,α(x
′,x)q3(x, t)dΩ−

∫
Ω

W ∗ik,α(x
′,x)Λikwk,tt(x, t)dΩ (11)

The above formulation requires the calculation of domain integrals related with
distributed load and inertial terms. Diverse methods have been developed for the
calculation of such integrals [Wrobel and Aliabadi (2002)]. Among of them, the
Radial Integration Method (RIM), the Cell Integration Method (CIM) and the Dual
Reciprocity Method (DRM) are the most used in BEM analysis. Although CIM
is a simply and well established method, it requires discretization domain thus e-
liminating the main BEM advantage. DRM has proven to be a very successful and
efficient method to transform domain integrals in dynamic BEM analysis of plates
and shells [Useche and Albuquerque (2012); A. Sahli and Rahmani (2014); Wen
and Aliabadi (2000) and Fata (2012)]. The main disadvantage of DRM lies on
finding particular solutions to governing differential equations (1), which in gen-
eral is a cumbersome task. Compared with DRM, RIM has been widely used in
BEM as it is applicable to any kind of problem regardless of the complexity of the
used fundamental solutions [Wrobel and Aliabadi (2002) and E. L. Albuquerque
and de Paiva (2007)]. In the present work, the Radial Integration Method (RIM) is
used as presented in [W. Portilho de Paiva and Albuquerque (2011)].

Consider the domain term q3(t) in equation (10) approximate over the domain as a
sum of the M products between radial basis functions fm and unknown coefficients
γm(t), that is (see figure 1):

q3(t)≈
M

∑
m=1

f m
γ

m(t) (12)

Applying RIM to the second domain integral in (11), we obtain [Useche, Albu-
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Figure 1: Transformation of domain integral through Radial Integration Method

querque, and Sollero (2012)]:

∫
Ω

W ∗i3(x
′,x)q3(x, t)dΩ =

M

∑
m=1

γ
m(t)

∫
Γ

Fm
i3 (x

′)
r

n · rdΓ (13)

where r is the value of ρ in a point of the boundary Γ as shown in figure 1. In this
expression Fm

i3 is defined as:

Fm
i3 (x

′) =
∫ r

0
W ∗i3(x

′,x) f m
ρdρ (14)

The approximation functions fm are taken as fm = 1+ rm, where rm represents the
distance between the center of the radial basis function and the integration point.
Coefficients γm(t) are related to pm(t) through expression:

pm(t) = Flkγ
k(t), l = 1,2 . . . ,M (15)

where Fik is a matrix of coefficients obtained by taking the value of p(t) at different
RIM points.

On the other hand, integral related with the inertial term in (10) can be transformed
to the boundary. For this, consider the following approximation for Λikwk,tt :

Λikwk,tt(t)≈
N

∑
n=1

dn
λ

n
i,tt(t) (16)
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where dn = rm log(rm) and λ m
,tt(t) are unknown coefficients. Thus, third integral in

equation (10) is rewritten as:∫
Ω

W ∗ik(x
′,x)Λikwk,tt(x, t)dΩ =

N

∑
m=1

λ
m
,tt(t)

∫
Γ

Dm(x′)
r

n · rdΓ (17)

Coefficients λ n(t) are related to Λikwk,tt(t) through the expression:

Λlkwk,tt(t) = Dlkλ
n
k,tt(t), l = 1,2 . . . ,N (18)

Finally, using (13) and (17) the integral equation (10) can be rewritten as:

cikwk(x′, t)+
∫

Γ

P∗ik(x
′,x)wk(x, t)dΓ =

∫
Γ

W ∗ik(x
′,x)pk(x, t)dΓ

+
M

∑
m=1

γ
m(t)

∫
Γ

Fm(x′)
r

n · rdΓ−
N

∑
n=1

λ
n
,tt(t)

∫
Γ

Dn(x′)
r

n · rdΓ (19)

4 Boundary element formulation

In order to approximate wk and pk, quadratic discontinuous boundary elements
were used. The geometry of the boundary is approximated through continuous
quadratic elements. In this way, for a given collocation point i, equations (19) can
be discretized as:

cikwk(x′, t)+
Ne

∑
j=1

3

∑
r=1

w jr
k (t)

∫
ξ=+1

ξ=−1
P∗ik(x

′,x)Φr(ξ )J j(ξ )dξ

=
Ne

∑
j=1

3

∑
r=1

p jr
k (t)

∫
ξ=+1

ξ=−1
W ∗ik(x

′,x)Φr(ξ )J j(ξ )dξ

+
M

∑
m=1

γ
m(t)

Ne

∑
j=1

∫
ξ=+1

ξ=−1

Fm(ξ )

r(ξ )
nα(ξ )rα(ξ )J j(ξ )dξ

−
N

∑
n=1

λ
n
,tt(t)

Ne

∑
j=1

∫
ξ=+1

ξ=−1

Dn(ξ )

r(ξ )
nα(ξ )rα(ξ )J j(ξ )dξ (20)

where J represents the Jacobian of the transformation (dΓ = J(ξ )dξ ); ξ is the el-
ement local coordinate and Φr is the shape function of the element. Expression for
γm(t) and λ m

,tt(t) are obtained by inverting (15) and (18) and replaced into equation
(20). Applying this equation at each collocation point successively, we obtain a set
of equations that can be expressed in matrix form as:

Mẅ+Hw = Gp+q (21)

where w= {w1,w2,w3}T , p= {p1, p2, p3}T , ẅ= {ẅ1, ẅ2, ẅ3}T and q= {0,0,q3}T .
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Figure 2: Square square plate

5 Time-integration scheme

The ordinary differential equation (21) is solved by using the Houbolt time-integration
algorithm. Houbolt method has been successfully used in the dynamic BEM analy-
sis of plates and shells in [Useche and Albuquerque (2012); Useche, Albuquerque,
and Sollero (2012); Partridge, Brebbia, and Wrobel (1992) and Gaul, Kogl, and
Wagner (2003)]. In this method, the acceleration vector ẅ at time τ +∆τ is ap-
proximated as [Useche (2014)]:

ẅτ+∆τ =
1

∆τ2 (2wτ+∆τ −5wτ +4wτ−∆τ −wτ−2∆τ) (22)

where ∆τ represents the time-step. Writing equation (21) at time τ +∆τ:

Mẅτ+∆τ +Hwτ+∆τ = Gpτ+∆τ + fτ+∆τ (23)

and substituting equation (22) into equation (23), we have:

(2M+∆τ
2H)wτ+∆τ − 1

∆τ2 (Gpτ+∆τ + fτ+∆τ) = M(5wτ −4wτ−∆τ −wτ−2∆τ) (24)

6 Numerical examples

The proposed formulation was initially tested considering a simply supported square
quasi-isotropic plate (as presented in figure 2) under a constant impulsive q3=100
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Figure 3: Boundary element model for square plate

N/cm2. The dimensions of the plate are: a = b = 10 cm, h/a = 10 with elastic con-
stants E1/E2 = 1.001, E1 = 210×105 N/cm2, ν = 0.3 and mass density ρ = 0.7853
N.s2/cm4. Boundary conditions employed are: w3 = 0 and Mn = 0 on all sides of the
plate. The dynamic response of the plate was obtained for the interval t ∈ [0,0.03]
and using 9, 16 and 49 RIM collocations points as shown in figure 3.
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Figure 4: Transversal displacement for the square plate as function of RIM points

A FEM analysis using the ANSYS® code was carried out in order to validate the
BEM solution. FEM model is based on SHELL93 shear deformable finite element.



286 Copyright © 2015 Tech Science Press CMES, vol.107, no.4, pp.277-296, 2015

0 0.005 0.01 0.015 0.02 0.025 0.03
−6

−4

−2

0

2

4

6
x 10−3

Time in seconds

C
en

tra
l d

is
pl

ac
em

en
t (

cm
.)

Δt = 1x10−4 s.

Dt = 5x10−4 s.

Dt = 1x10−3 s.

Dt = 2x10−3 s.

Dt = 5x10−5 s.

Figure 5: Convergence of the central transversal displacement versus time-step for
49 RIM points

Figure 4 shows the central deflection for different BEM meshes compared with the
FEA solution. In this analysis a time step ∆t = 1.0× 10−4 s. is used. On the
other hand, a BEM model with 49 RIM collocation points is used to carrie out a
convergence analysis for the central deflection versus time step. Figure 5 depicts
the history of convergent maximum deflection for different time steps. As results
show, the BEM formulation gives good results when compared with FEM solutions.

Now, consider a three layer orthotropic [0/90/0°] clamped square plate with length
of 25 cm and thickness 5 cm, is subjected to suddenly distributed impulsive load
q = 10 N/cm2. The material properties used for each layer are: E1/E2 = 25,
E2 = 2.1× 106 N/cm2, G12 = G13 = G23 = 0.5E2, ν12 = 0.25 and ρ = 8× 10−6

N-sec2/cm4. As in previous example, in order to compare results, a FEM analysis
is performed. Convergence solutions for central displacement and bending mo-
ments under static load is presented in table 1. Good agreement is observed when
FEM solutions are compared with analytical solutions [Reddy (2004)]. Figure 6
shows convergent dynamic solutions for bending moments at center of the plate. A
convergent solution was obtained using a FEM mesh with 9216 elements.

Figure 7 depicts the history of vertical central deflection for time interval from 0
to 750 µs for ∆τ = 5 µs using 145, 421, 571 and 691 RIM collocation points.
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Table 1: Finite element convergence analysis for static conditions

Mesh wmax Mxx Myy Mxy

36 1.77×10−4 −414.78 −79.86 −2.472
144 1.77×10−4 −476.00 −92.44 −0.653
576 1.77×10−4 −491.60 −95.68 −0.165

2304 1.77×10−4 −495.50 −96.49 −0.041
9216 1.77×10−4 −496.40 −96.69 −0.010

Analytical 1.80×10−4 −497.00 −97.00 0.000
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Figure 6: FEA convergence solutions for [0/90/0°] clamped square plate

Figure 8 shows convergence solution for resultant bending moments at center of
the plate. Good agreement of BEM results when compared with the FEM solution
is observed.
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Figure 7: Central deflection for [0/90/0°] clamped square plate
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Figure 8: Bending moments for [0/90/0°] clamped square plate

Figure 9 shows the central deflection of a four-layer orthotropic [0/90/90/0°] sim-
ply supported plate under suddenly applied pulse loading q = 10 N/cm2. Plate has
same dimensions and material properties as previous one. Figure 10 shows conver-
gent bending moments at the center of the plate for this time interval. Both central
deflection and bending moments obtained with BEM formulation show good agree-
ment when compared with FEM solution.
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Figure 9: Central deflection for [0/90/90/0°] clamped square plate
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Figure 10: Bending moments for [0/90/90/0°] clamped square plate

In this example a full clamped rectangular plate made of Glass Laminate Aluminum
Reinforced Epoxy (GLARE) with a central rectangular hole (as presented in figure
11) is analyzed. Rectangular plate has dimensions: a/b = c/d = 1.5, a/c = 3 and
thickness h = 0.14 cm. Plate was tested with 5-layered aluminum alloy/glass re-
inforced plastic material, with 2 layer of aluminium (0.03 cm thickness each) and
3-layers of composite constituent S2-glass fibres/epoxy matrix (0.025 mm each) us-
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a

bd

c

x1

x2

Figure 11: Simply supported rectangular plate with rectangular hole

Figure 12: One-quarter BEM model for plate with rectangular hole

ing the sequence: [GF/AL/GF/AL/GF] (GF: glass fiber, AL: Aluminum). Mechan-
ical properties of these materials are: Aluminum layers E = 92.39× 105 N/cm2,
density: ρ = 2.7×10−5 N-s2/cm4, Poisson ratio ν =0.33. For glass fiber compos-
ite layer-cross plied, we have: E1 = 31.17×105 N/cm2, E2 = 31.17×105 N/cm2,
G12 = G13 = G23 = 5.548×105 N/cm2, ν12 = 0.098, ν13 = ν23 = 0.0575 and den-
sity ρ = 2.0×10−5 N-s2/cm4.

In this analysis, BEM model with 41 internal points and 26 elements, as presented
in figure 12, is used. Figure 13 shows a comparison between BEM and FEM con-
vergent bending moments at the center of the plate. Good agreement is observed
between BEM and FEM solution.
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Figure 13: Bending moments for GLARE composite plate
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Figure 14: Simply supported circular
plate with central hole

Figure 15: BEM model for circular
plate with central hole

Finally, Figure 14 shows a six layer orthotropic [0/45/− 45°]s clamped circular
plate with a central hole. BEM model is presented in figure 15. Dynamic response
of this plate is analyzed for impulsive pressure load presented in figure 16 and given
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Figure 17: Deslacements at points C, D, E and F for circular plate

by:

q(t) =

{
300t, t ≤ 10 ms.
4700e−0.045t , t ≥ 10 ms.

[N/cm2] (25)

For this plate, R/r = 2 and thickness h = R/100 cm. Materials properties used for
each layer are: E1 = 52.5 N/cm2, E2 = 2.1× 106 N/cm2, G12 = G13 = G23 = 1.1
N/cm2 ν12 = 0.25 and ρ = 8×10−6 N-sec2/cm4.

BEM model with 149 internal points and 32 elements as presented in figure 17 is
used in this analysis. Figure 16 shows deflections at points C, D, E and F for the
time- interval considered. This figure shows pole points at 320 and 740 microsec-
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Figure 18: Bending resultant stress at point A for circular plate with hole

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

8

Time − Microseconds

B
en

di
ng

 M
om

en
ts

 a
t p

oi
nt

 B
 [N

.c
m

/c
m

]

Mxx

Myy
Mxy

Figure 19: Bending resultant stress at point B for circular plate with hole

onds approximately, where no deflection is experimented by the plate. Figures 18
and 19 shows bending moments at points A and B. These figures show high pe-
riod bending moments (about 740 ms.), medium-range period variations (100 ms.
approximately) and high-frequency variations of bending moments (less than 1 m-
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s.). This high-frequency variations is highly related with wave stress propagation.
However, more research work must be done because numerical noise influence
could be present.

7 Conclusions

A direct time-domain Boundary Element Method formulation for transient analy-
sis of symmetric laminated thick plates was presented. Formulation is based on
the elastostatic fundamental solution of the governing equations of the problem
and takes into account rotatory inertia of the plate. The Radial Integration Method
is used to treat domain integrals related with inertial mass and distributed surface
loads. In order to validate the proposed formulation, numerical examples was pre-
sented and results compared with FEM solutions. Very good agreement between
BEM and FEM solutions were obtained, thus demonstrating the reliability of the
proposed formulation. Future investigations should focus on harmonic and tran-
sient analysis laminated composite thick plates taking into account damping effect-
s.
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