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The Influence of Non-Homogeneous Material Properties
on Elastic Wave Propagation in Fluid-Filled Boreholes

A. Tadeu1, P. Stanak2, J. Antonio1, J. Sladek2, V. Sladek2

Abstract: This paper implements a numerical method based on the mutual cou-
pling of the boundary element method (BEM) and the meshless local Petrov-Galerkin
(MLPG) method to simulate elastic wave propagation in fluid-filled boreholes. The
fluid-solid interaction is solved in the frequency domain assuming longitudinally
invariant geometry in the axial direction (2.5D formulation).
This model is used to assess the influence of the non-homogeneous material prop-
erties of a borehole wall that can be caused by a damaged zone, construction pro-
cess or the ageing of material. The BEM is used to model propagation within
the unbounded homogeneous domain and the fluid domain inside the borehole and
the MLPG method is used to simulate the confined, non-homogeneous, surround-
ing damaged borehole. The advantages of MLPG in modeling non-homogeneous
bounded media and the advantage of BEM in modeling unbounded homogeneous
material are thus exploited. The coupling of the two numerical techniques is ac-
complished directly at the nodal points located at the common interface. Boundary
conditions at the interfaces are imposed through the collocation of continuity e-
quations at the interface by means of the moving least-squares (MLS) scheme. At
the solid-solid interface, continuity of stresses and displacements is imposed, while
continuity of normal stresses and displacements and null shear stress are prescribed
at the fluid-solid interface.
The validity of the coupled BEM-MLPG approach is confirmed against the results
provided by an analytical solution developed for a circular multi-layered subdo-
main, in which the central fluid domain is surrounded by a circular non-homogeneous
elastic region whose material properties vary radially. Finally, the example of an
unbounded medium containing two fluid-filled boreholes excited by a blast load is
used to illustrate the applicability of the proposed model.
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technique.

1 Introduction

The study of wave propagation phenomena in elastic media and the interaction
between a fluid and the heterogeneous material buried in elastic host media are
important research subjects in civil, geophysical or oil-drilling engineering. Wave
propagation along fluid-filled boreholes from sources inside and outside the bore-
hole has been studied by many researchers for acoustic logging, vertical profiling
and cross-hole surveying purposes. Measurement of the pressure inside a fluid-
filled borehole, generated by a source either on the ground surface or in another
borehole, is an essential part of several geophysical and seismic prospecting tech-
niques [Albright and Johnson (1990); Krohn (1992)]. Other examples can be found
in seismic fluid-filled boreholes and even around driven tunnels (for trains or cars)
where a damaged zone can be found.

One of the first researchers, Biot (1952) analyzed the propagation of waves along
a borehole boundary and derived the dispersion equation for guided waves in a
borehole. A number of researchers have subsequently focused their attention on
the propagation of waves along fluid-filled boreholes from sources aligned with
the borehole axis, because of its relevance to the acoustic logging technique. The
interaction of elastic plane waves incident upon a fluid- or air-filled borehole has
also been investigated in the context of vertical profiling and cross-hole surveying.
The case of a P-wave normally incident on the borehole axis was studied by Blair
(1984).

Research has been conducted that takes the state of fracturing and the presence
of damaged zones around the borehole into account, e.g. [Baker (1984); Schmitt
and Bouchon (1985); Baker and Winbow (1988)]. There are several reasons why
borehole walls may be non-homogeneous. Possible causes include the mechanical
action of the drill string in vertically deviated wells, rock failure adjacent to a drilled
borehole, plastic deformation and washing out of the borehole in soft or poorly
consolidated rocks [Bell and Gough (1979); Zheng, Kemeny, and Cook (1989)].
The influence of the casing on the propagation of waves along fluid filled boreholes
was studied by Gibson and Peng (1994).

Different computational methods have been used to obtain the solution of wave
propagation across and within fluid-filled boreholes. Analytical calculations are
utilized by Ávila-Carrera, Sánchez-Sesma, Spurlin, Valle-Molina, and Rodríuez-
Castellanos (2014). The finite difference method [Stephen, Cardo-Casas, and Cheng
(1985); Randall (1991); Leslie and Randall (1992); Cheng, Cheng, and Toksoz
(1995)], the boundary integral approach [Bouchon and Schmitt (1989)], the bound-
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ary element method [Dong, Bouchon, and Toksfz (1995)] and hybrid methods
[White and Sengbush (1963); De Hoop, De Hon, and Kurkjian (1994)] are among
the numerical techniques most often used. The boundary element method (BEM)
is a suitable tool for analyzing wave propagation in the vicinity of a borehole in
a homogeneous isotropic formation, because it automatically satisfies the far-field
conditions. The method was used by Bouchon (1993) in an infinitely long borehole
located in layered isotropic media. One significant drawback of the BEM is that
it requires an a priori fundamental solution or Green’s function in the boundary
integral equation formulation. However, the fundamental solution is generally un-
available in the closed form for problems that involve non-homogeneous material
properties.

Meshless methods are a powerful alternative to well established mesh-based tech-
niques such as the FEM and BEM when it comes to solving boundary value prob-
lems. Focusing only on nodes instead of elements has certain advantages, such
as the ability to efficiently handle continuously non-homogeneous media. In the
case of standard FEM the material properties are constant for each finite element,
leading to piecewise homogeneous material properties in the domain under con-
sideration. Meshless methods are perfectly suited to handling such problems of
non-homogeneous domains since the approximation of unknown field quantities is
only performed in terms of nodes instead of finite elements, thus the continuous
variation of material properties is exactly maintained.

The meshless local Petrov-Galerkin (MLPG) method [Atluri, Sladek, Sladek, and
Zhu (2000); Atluri (2004)] is one of the most rapidly developing meshless method-
s. It is based on the local weak form of governing equations over small subdomains
specified for each nodal point [Dong, Alotaibi, Mohiuddine, and Atluri (2014)].
All integrals can be easily evaluated over these regular-shaped, overlapping sub-
domains of arbitrary shape (generally circles for 2D problems and spheres for 3D
problems) and their respective boundaries. There is only one nodal point in each
subdomain, thereby keeping the local sense of the approach. As mentioned above,
meshless methods are advantageous for the analysis of elastic wave propagation in
continuously non-homogeneous media. Sladek, Sladek and Zhang (2003) applied
the MLPG to elastodynamic problems in continuously non-homogeneous bodies.
Use of the MLPG method to analyze a broad range of scientific problems is sum-
marized in the review article by Sladek, Stanak, Han, Sladek, and Atluri (2013).

However, like mesh-based techniques, the meshless methods have their own disad-
vantages and limitations. The interpolations and the algorithm implementation tend
to be computationally expensive and these methods may not be efficient for prob-
lems with infinite and semi-infinite domains [Gu and Liu (2005)]. Therefore, many
researchers have been proposing the coupling of appropriately selected methods to
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alleviate the specific limitations of individual methods and improve efficiency, ac-
curacy and flexibility. The MLPG method has been coupled with the FEM for prob-
lems involving elasticity [Liu and Gu (2000)], potential problems [Chen and Raju
(2003)] and electromagnetic field computations [Zhao and Nie (2008)]. Tadeu,
Stanak, Sladek, Sladek, Prata, and Simões (2013) used a coupled BEM-MLPG ap-
proach for the thermal analysis of non-homogeneous media. Direct coupling with
the use of an MLS approximation scheme was employed. A similar technique has
also been used for the acoustic and elastic analysis of non-homogeneous inclusions
[Tadeu, Stanak, Sladek, and Sladek (2014); Tadeu, Stanak, Antonio, Sladek, and S-
ladek (2015)]. Other examples include combinations of the BEM with the method
of fundamental solutions (MFS) [Tadeu, Simões, and Simões (2010); Godinho,
Tadeu, and Simões (2006)] or BEM with meshless Kansa’s method [Godinho and
Tadeu (2012)]. The coupling of the BEM and MFS for the 2.5D analysis of elas-
tic wave propagation in the frequency domain is described in [Castro and Tadeu
(2012)]. Combinations of the Trefftz method and Voronoi cells [Dong and Atluri
(2012)] and the symmetric Galerkin BEM (SGBEM) with Voronoi cells for mi-
cromechanical analysis [Dong and Atluri (2013)] have also been introduced.

Several assumptions are possible that may reduce computational effort. In certain
cases the geometry can be considered longitudinally invariant; this is a valid as-
sumption for roads, railway tracks, tunnels, pipelines, dams and alluvial valleys
[François, Schevenels, Galvín, Lombaert, and Degrande (2010)]. A two-and-a-
half-dimensional (2.5D) approach can be employed with these longitudinally in-
variant structures [Tadeu and Kausel (2000)]. The Fourier transform of the lon-
gitudinal coordinate can then represent the 3D response of the structure in a 2D
discretized domain (cross-section). A 2.5D BEM approach has also been applied
to layered elastic and acoustic formations by Tadeu and Antonio (2001), and to
seismic analysis [Antonio and Tadeu (2002)].

In this work we describe a BEM and MLPG coupling for the analysis of a ho-
mogeneous wave propagation domain containing a fluid-filled borehole with non-
homogeneous variation of elastic material properties. The advantages of each
method are exploited by using the BEM for the homogeneous unbounded domain
and the fluid phase, and the MLPG for the non-homogeneous borehole. Nodal
points are introduced inside the non-homogeneous domain and at the interfaces,
where the same nodal points are used for the specification of boundary elements.
The continuity conditions for the displacements and tractions are specified for n-
odes at the interface between the unbounded solid and the damaged solid medi-
um. Four boundary conditions must be prescribed at the interface between the
fluid and solid phase: continuity of normal stresses and displacements and null s-
hear stress. The imposition of these conditions leads to a system of equations that
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can be solved for the nodal solid displacements and fluid pressures. The moving-
least squares (MLS) approximation is applied in the MLPG formulation for the
approximation of field variables inside the non-homogeneous domain, and for the
continuity conditions. This direct coupling method does not require the iterative
technique [Soares (2009)] or the concept of overlapping “double nodes” for mutual
BEM-MLPG coupling.

The proposed method is verified by an analytical solution for a simple geometry.
Numerical examples are introduced for two boreholes where the different varia-
tion of material properties represents a damaged zone. The computations are first
performed in the frequency domain and inverse Fourier transforms are subsequent-
ly applied to obtain time responses. Complex frequencies are used to avoid the
time-aliasing phenomenon. This effect is later taken into account by rescaling the
response in the time domain. Finally, some conclusions are drawn and the quality
of the obtained numerical results is discussed.

2 Governing equations for 2.5D analysis

Elastic wave propagation in a non-homogeneous isotropic medium is governed by
the following well-known equilibrium equation

σi j, j (x, t) = ρ üi (x, t) (1)

where σi j is the stress tensor, ui are mechanical displacements and ρ is the mass
density. A comma followed by an index denotes partial differentiation with respect
to the coordinate associated with the index i, j = 1,2,3. The dots over the quantity
indicate the derivative with respect to time t.

Applying the Fourier transform F (ω) =
∫

∞

−∞
f (t)eiωtdt to equation (1) yields the

transformation to frequency domain as

σi j, j (x,ω) =−ω
2
ρui (x,ω) (2)

where ω is the angular frequency and a dependence of the type eiωt is implicit.

Stress tensor σi j is defined with use of Hooke’s law as

σi j =Ci jklεkl (3)

where Ci jkl and εkl are the stress-strain matrix in an isotropic medium and elastic
strain tensor defined as follows,

Ci jkl = λδi jδkl +µ
(
δikδ jl +δilδ jk

)
, εkl =

1
2
(uk,l +ul,k) (4)
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where λ ,µ are the Lame material constants and δi j is the Kronecker delta symbol.
λ ,µ depend on the shear cs and dilatational cp wave velocities according to

cs =

√
µ

ρ
, cp =

√
λ +2µ

ρ
(5)

Numerous engineering problems can be characterized by the continuous non-ho-
mogeneity of isotropic material with varying Young’s modulus E (x), while the
Poisson ratio ν is assumed to be constant. Spatially varying the Lame constants
can be defined as

µ (x) =
E (x)

2(1+ν)
, λ (x) =

E (x)ν

(1+ν)(1−2ν)
(6)

One can see that by omitting the component notation of the vector quantities, Eq.
(2) can be easily transformed into the following well-known governing equation
for the elastic wave propagation in the frequency domain,

(λ +2µ)∇(∇ ·u)−µ∇× (∇×u) =−ω
2
ρu (7)

In the 2.5D analysis, the geometry of the media is constant in one direction and the
load may be 3D. The response is expressed by applying a spatial Fourier transform
in that direction (usually the z-axis - index 3).

Taking Eq. (2), we may separate the third component (thus α = 1,2) as

σiα,α (x,ω)+σi3,3 (x,ω) =−ω
2
ρui (x,ω) (8)

Performing the spatial Fourier transformation f̃ (kz) =
∫

∞

−∞
f (z)e−ikzzdz on Eq. (8)

we obtain the governing equations for Fourier transforms,

σ̃iα,α (x,kz,ω)+ ikzσ̃i3 (x,kz,ω) =−ω
2
ρ ũi (x,kz,ω) (9)

where kz is the axial wave number, x≡ (x,y) and a dependence of the type e−ikzz is
again implicit.

For a fluid medium, the wave propagation is governed by the well-known Helmholz
equation,

∇
2 p(x,ω)+ω

2/c2
p p(x,ω) = 0 (10)

where p(x,ω) represents the pressure field. Again performing the spatial Fourier
transformation f̃ (kz) =

∫
∞

−∞
f (z)e−ikzzdz on Eq. (10) the governing equations for

Fourier transforms is obtained as(
∂ 2

∂x2 +
∂ 2

∂y2

)
p̃(x,kz,ω)+(ω2/c2

p− k2
z )p̃(x,kz,ω) = 0 (11)
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This equation will be used in the analysis of the fluid filled bounded domain, as
shown in the following section.

3 Numerical solution procedure

Let us now consider a two dimensional fluid-filled borehole Ω1 with a damaged
non-homogeneous zone Ω2, having density ρ2 buried in a homogeneous unbounded
elastic domain Ω3 with density ρ3, as shown in Figure 1. cpm , m = 1,2,3 is the
longitudinal wave velocity and the shear wave velocity of each medium n = 2,3 is
denoted by csn . Interfaces between the media are denoted as Γ1 and Γ2.

It is proposed to solve this problem using a coupling of the BEM and the MLPG
with a view to exploiting the advantages of each numerical method for appropriate
part of the problem. MLPG is used for domain Ω2 since it is best suited to analyzing
non-homogeneous media. The BEM, meanwhile, is used to analyze domains Ω1
and Ω3, which have homogeneous material properties. Domain Ω2 is discretized
using nodal points uniformly distributed over the analyzed domain, while domains
Ω1 and Ω3 are discretized by constant boundary elements at Γ1 and Γ2 as indicated
in Figure 1.

Figure 1: Problem definition.

3.1 MLPG formulation for domain Ω2

The MLPG technique [Atluri (2004)] was chosen for the meshless analysis of elas-
tic wave propagation in the domain Ω2, assuming the MLS approximation for the
definition of the trial functions and Heaviside unit step function as a test function
in each local subdomain ΩS. Instead of writing the global weak form, the MLPG
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is based on the local weak form of the governing equations. The shape of the lo-
cal integration domain ΩS can be arbitrary, and we adopted the cylindrical shape
aligned in the longitudinal z = 3 direction. Since the problem is assumed infinite
in the longitudinal direction, the volume integral can be decomposed as an integral
over the z-coordinate and the cross section of cylinder ΩS. The local integration
domain ΩS is shown in Fig. 2 for the 2D example.

Figure 2: Local boundaries for the weak formulation, the domain Ωx for MLS
approximation of the trial function, and the support area of weight function around
a node.

The local weak form of Eq. (9) is then written over each subdomain ΩS as∫
ΩS

[
σ̃iα,α (x,kz,ω)+ ikzσ̃i3 (x,kz,ω)+ω

2
ρ ũi (x,kz,ω)

]
w∗ (x)dΩ = 0 (12)

Applying the Gauss divergence theorem to the left-hand side integral in Eq. (12)
leads to∫

∂ΩS

nα (x) σ̃iα (x,kz,ω)w∗ (x)dΓ−
∫

ΩS

σ̃iα (x,kz,ω)w∗,α (x)dΩ

+
∫

ΩS

[
ikzσ̃i3 (x,kz,ω)+ω

2
ρ ũi (x,kz,ω)

]
w∗ (x)dΩ = 0

(13)

where n j (x) is the unit normal vector and ∂ΩS is the boundary of the subdomain
ΩS. Assuming the Heaviside unit step function for the test function

w∗(x) =

1 at x ∈ (Ωs∪∂Ωs)

0 at x /∈ (Ωs∪∂Ωs)
(14)
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the following local integral equation (LIE) is finally obtained∫
∂ΩS

nα (x) σ̃iα (x,kz,ω)dΓ+
∫

ΩS

[
ikzσ̃i3 (x,kz,ω)+ω

2
ρ ũi (x,kz,ω)

]
dΩ = 0 (15)

The integrand in the first boundary integral in Eq. (15) can be identified as the
Fourier transform of the traction vector t̃i (x,kz,ω) = nα (x) σ̃iα (x,kz,ω).

The Fourier transform of the stress tensor σi j in the axial z-direction can be ex-
pressed in terms of the Fourier transforms of displacements for α,β ,γ = 1,2 as

σ̃iα = δiβ
[
λδαβ

(
ũγ,γ + ikzũ3

)
+µ

(
ũα,β + ũβ ,α

)]
+δi3µ (ũ3,α + ikzũα) (16)

σ̃i3 = δiβ µ
(
ũ3,β + ikzũβ

)
+δi3

[
λ ũγ,γ + ikz (λ +2µ) ũ3

]
(17)

Thus, LIE (15) for i = β takes the form∫
∂ΩS

[
λnβ

(
ũγ,γ + ikzũ3

)
+µnα

(
ũα,β + ũβ ,α

)]
dΓ

+
∫

ΩS

[
ikzµ ũ3,β +

(
ω

2
ρ− k2

z µ
)

ũβ

]
dΩ = 0

(18)

while for i = 3 we obtain∫
∂ΩS

µnα [ũ3,α + ikzũα ]dΓ+
∫

ΩS

[
ikzλ ũγ,γ +

(
ω

2
ρ− k2

z (λ +2µ)
)

ũ3
]

dΩ = 0 (19)

We have formulated the MLPG method using the moving least-squares method
(MLS) to approximate the displacement field over a number of nodal points ran-
domly distributed over the domain Ω2 and the interfaces Γ1 and Γ2, by using a set
of nodes across the domain of influence. According to the MLS method [Atluri
(2004)], the approximation ũh(x,kz,ω) of the displacement field ũ(x,kz,ω) over a
number of randomly located nodes

{
xi
}

, i = 1,2, . . .N, is given by the following
equation:

ũ(x,kz,ω)∼= ũh(x,kz,ω) =
N

∑
i=1

φ
i(x)ûi (kz,ω). (20)

where ûi(kz,ω) are so called fictitious nodal values of aproximated field [Atluri
(2004)] and φ i(x) is the MLS shape function. The MLS shape function is defined
using the monomial basis vector of order m = 6 (for 2D case), with quadratic poly-
nomials.

For the approximation of derivatives of displacements (strains), we can use

ũ,α(x,kz,ω) =
N

∑
i=1

φ
i
,α(x)û

i (kz,ω). (21)
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The number of nodes N used for the approximation is determined by the weight
function wi(x). A 4th order spline-type weight function is applied in the present
work as follows,

wi(x) =


1−6

(
di

ri

)2

+8
(

di

ri

)3

−3
(

di

ri

)4

, 0≤ di ≤ ri

0, di ≥ ri

, (22)

where di =
∥∥x−xi

∥∥ and ri is the size of the support domain. In fact, it is the number
of nodes lying in the support domain with radius ri which determines the value of N.
It is seen that the C1-continuity is ensured over the entire domain, and therefore the
continuity of gradients of the approximated displacement fields is satisfied. In the
MLS approximation, the rate of convergence of the solution may depend upon the
nodal distance as well as the size of the support domain [Wen and Aliabadi (2008)].
It should be noted that a smaller subdomain size could induce larger oscillations in
the nodal shape functions [Atluri (2004)]. A necessary condition for a regular MLS
approximation is that at least m weight functions are non-zero (i.e. N ≥m) for each
sample point x ∈Ω2. This condition determines the size of the support domain.

Discretized LIEs are obtained by substitution of expressions (20) and (21) for spa-
tial MLS approximants of displacements and their derivatives into Eqs. (18) and
(19) considered for each subdomain Ωc

s ⊂Ω2 as

N

∑
a=1

ûa
γ (kz,ω)

{∫
∂Ωc

s

[
λnβ φ

a
,γ (x)+µnαδγβ φ

a
,α (x)+µnγφ

a
,β (x)

]
dΓ

}
+

+ikz

N

∑
a=1

ûa
3 (kz,ω)

∫
∂Ωc

s

λnβ φ
a (x)dΓ

+
N

∑
a=1

ûa
β
(ω)

∫
Ωc

s

[
ω

2
ρ−µ (kz)

2
]

φ
a (x)dΩ+

+ikz

N

∑
a=1

ûa
3 (kz,ω)

∫
Ωc

s

µφ
a
,β (x)dΩ = 0

(23)

ikz

N

∑
a=1

ûa
α (kz,ω)

∫
∂Ωc

s

µnαφ
a (x)dΓ+

N

∑
a=1

ûa
3 (kz,ω)

∫
∂Ωc

s

µnαφ
a
,α (x)dΓ+

+ikz

N

∑
a=1

ûa
γ (kz,ω)

∫
Ωc

s

λφ
a
,γ (x)dΩ

+
N

∑
a=1

ûa
3 (kz,ω)

∫
Ωc

s

[
ω

2
ρ− (kz)

2 (λ +2µ)
]

φ
a (x)dΩ = 0

(24)
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Eqs. (23, 24) are applied to all interior nodes xc,(c= 1,2, . . . ,Nin) located inside the
domain Ω2 and surrounded by the subdomain Ωc

s ⊂Ω2, leading to 3Nin equations.
The BEM approach is used for the nodes on the boundary. Boundary elements with
one node in the centre of the element are used. These nodes are also used for the
MLS approximations (20), (21).

3.2 BEM formulation for domain Ω3

The BEM solution of Eq. (2) for 2.5-D problem in medium Ω3, bounded by surface
Γ2 and subjected to an incident displacement field uinc

i is presented next. By apply-
ing the reciprocity theorem we obtain the following boundary integral equations:

pi jũ j (x0,kz,ω) =
∫

Γ2

t̃ j (x,nn,kz,ω)Gi j (x,x0,kz,ω)dΓ−

−
∫

Γ2

ũ j (x,kz,ω)Hi j (x,x0,nn,kz,ω)dΓ

+ ũinc
i (x0,xs,kz,ω)

(25)

In this equation, the coefficient pi j is equal to δi j/2 when the boundary Γ2 is s-
mooth, ũ j (x,kz,ω) represents the displacement field at x = (x,y), t̃ j (x,nn,kz,ω)
specifies nodal tractions in direction j on the boundary at x = (x,y), nn is the unit
outward normal vector on the boundary Γ2 at (x,y) defined by nn = (cosθn,sinθn).
Gi j (x,x0,kz,ω) and Hi j (x,x0,nn,kz,ω) correspond to the fundamental solutions
for displacement and tractions (Green’s functions) for elastic medium in Ω3, in di-
rection j at x, caused by a unit point load in direction i applied at the collocation
point x0 = (x0,y0). The derivation of the Green’s functions for 2.5D problems can
be found in [Tadeu and Kausel (2000); Tadeu, Stanak, Antonio, Sladek, and Sladek
(2015)]. ũinc

i (x0,xs,kz,ω) represents the incident displacement field in direction i
at x0 with the source located at xs = (xs,ys).

The boundary Γ2 is then discretized into N2
be constant boundary elements, with each

having one nodal point. Each of the three loads (aligned in the horizontal, vertical
and z directions) is applied sequentially to all nodal points to obtain 3N2

be equations.

3.3 BEM formulation for domain Ω1

The BEM is also used to analyze the fluid filled domain Ω1 placed within the non-
homogeneous domain Ω2 in a similar way to that described in the previous section.
However in this case the integral equation for the pressure p̃ is written as:

cp̃(x0,kz,ω) =−ρ1ω
2
∫

Γ1

ũn f (x,kz,ω)G f (x,x0,kz,ω)dΓ+

+
∫

Γ1

p̃(x,kz,ω)H f (x,x0,nn,kz,ω)dΓ

(26)
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In this equation, c is equal to 0.5 when the boundary Γ1 is smooth, ũn f (x,kz,ω)
represents the normal displacement field at x = (x,y) on the boundary, p̃(x,kz,ω)
specifies the pressure on the boundary at x = (x,y) and the subscript f is used
for fluid. G f (x,x0,kz,ω) and H f (x,x0,nn,kz,ω) are the fundamental solutions for
pressures and displacements:

G f (x,x0,kz,ω) =− i
4

H0

(
kcp1

√
(x− x0)

2 +(y− y0)
2
)

(27)

H f (x,x0,nn,kz,ω) =
ikcp1

4
H1

(
kcp1

√
(x− x0)

2 +(y− y0)
2
)

∂ r
∂n

(28)

where Hn (. . .) are second kind Hankel functions of the order n and

kcp1 =
√

ω2/c2
p1
− k2

z

is assumed with Im(kcp1
)< 0.

The boundary Γ1 is then discretized into N1
be constant boundary elements, with each

having one nodal point. The necessary integrations over the boundary elements can
generally be performed by means of standard Gaussian quadrature. To ensure that
the method is accurate, when the loaded element coincides with the integrated ele-
ment the resulting singular integration should be performed analytically, following,
for example, the expressions in [Tadeu, Santos and Kausel (1999a, b)].

3.4 Coupled BEM-MLPG formulation for interface Γ2

This section describes how the mutual coupling of the BEM and the MLPG is for-
mulated to obtain the elastic wave field generated by a dynamic load. This approach
exploits a direct coupling between the BEM and MLPG. It can be done when the
nodes used by the BEM match the nodes used by the MLPG. If the boundary nodes
coincide, then the continuity of displacements and the equilibrium of tractions can
be imposed directly.

The following coupling conditions should be considered on the mutual interface,
Γ2:

2ũi(x,kz,ω) = 3ũi(x,kz,ω), 2t̃i(x,kz,ω)+ 3t̃i(x,kz,ω) = 0 (29)

which should be valid at any point on the interface Γ2 = ∂Ω3. The association of
boundary densities to domains Ω2 and Ω3 is denoted by the left superscripts 2 and
3, respecively. The problem in the domain Ω2 is described using the MLPG, while
in the domain Ω3 it is simulated using the BEM.
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The displacement and traction fields at the interface Γ2 can be approximated using
the MLS approximations (20) and (21). The tractions are then given as

2t̃β (x,kz,ω) =−2
λ (x)nβ (x) ikz

N

∑
a=1

ûa
3 (kz,ω)φ

a (x)−

−nα (x)
N

∑
a=1

ûa
γ (kz,ω)

{
δαβ

2
λ (x)φ

a
,γ (x) (30)

+2
µ (x)

[
δβγφ

a
,α (x)+δαγφ

a
,β (x)

]}
2t̃3 (x,kz,ω) =−2

µ (x)nα (x)
N

∑
a=1

[
ûa

α (kz,ω) ikzφ
a (x)+ ûa

3 (kz,ω)φ
a
,α (x)

]
(31)

where the unit normal vector n(x)at x ∈ Γ2 is considered as outward from the point
of view of the domain Ω3.

The mutual direct coupling between the BEM and the MLPG is accomplished by
inserting the coupling conditions (29) into the boundary integral equation (25),
which leads to

pi jũi (x0,kz,ω) =−
∫

Γ2

2t̃ j (x,nn,kz,ω)Gi j (x,x0,kz,ω)dΓ−

−
∫

Γ2

2ũ j (x,kz,ω)Hi j (x,x0,nn,kz,ω)dΓ

+ ũinc
i (x0,xs,kz,ω)

(32)

Finally, the numerical solution of Eq. (32) involves discretizing the boundary Γ2
into a set of N2

be boundary elements Γq with constant approximation of boundary
densities, leading to

pi jũ j (x0,kz,ω) =−
N2

be

∑
q=1

2t̃ j (xq,kz,ω)
∫

Γq

Gi j (x,x0,kz,ω)dΓq−

−
N2

be

∑
q=1

2ũ j (xq,kz,ω)
∫

Γq

Hi j (x,x0,nn,kz,ω)dΓq

+ ũinc
i (x0,xs,kz,ω)

(33)

Taking into account Eq. (33) at nodal points on the interface Γ2 3 xl ∈ {xq}N2
be

q=1
with N2

be = NΓ2 , we obtain the set of discretized BIE

pi j
2ũ j

(
xl,kz,ω

)
=−

N2
be

∑
q=1

2t̃ j (xq,kz,ω)
∫

Γq

Gi j

(
x,xl,kz,ω

)
dΓq−
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−
N2

be

∑
q=1

2ũ j (xq,kz,ω)
∫

Γq

Hi j

(
x,xl,nn,kz,ω

)
dΓq (34)

+ ũinc
i

(
xl,xs,kz,ω

)
which replace the boundary conditions at nodal points on ∂Ω2∩Γ2 in the numerical
treatment of the problem in Ω2 by the MLPG. The boundary densities 2ũ j and 2t̃β ,
2t̃3 at the boundary nodes xq,(q = 1, . . . ,N2

be) are expressed according to (20) and
(30), (31), respectively, in terms of nodal unknowns ûa

i (kz,ω) used in the numerical
solution in Ω2 by the MLPG.

3.5 Coupled BEM-MLPG formulation for interface Γ1

At any point x on the interface Γ1 = ∂Ω1 we must impose four boundary conditions
between the solid and fluid: continuity of normal stresses and displacements and
null shear stress.

2ũβ (x,kz,ω)nβ (x) = ũn f (x,kz,ω), 2t̃β (x,kz,ω)nβ (x)+ p̃(x,kz,ω) = 0 (35)
2t̃t(x,kz,ω) =−2t̃1(x,kz,ω)n2(x)+ 2t̃2(x,kz,ω)n1(x) = 0 (36)
2t̃3(x,kz,ω) = 0. (37)

The procedure is the same as in the previous section. The displacement and traction
fields at the interface Γ1 can be approximated using the MLS approximations (20)
and Eqs. (30), (31) with the unit normal vector n(x) at x ∈ Γ1 being considered
now as outward from the point of view of the domain Ω1. The numerical solution
of Eq. (26) together with (35) involves discretizing the boundary Γ1into a set of
N1

be(N
Γ1 = N1

be) boundary elements, leading to

cp̃(x0,kz,ω) =−ρ1ω
2

N1
be

∑
q=1

2ũβ (xq,kz,ω)nβ (xq)
∫

Γq

G f (x,x0,kz,ω)dΓ−

−
N1

be

∑
q=1

2t̃β (xq,kz,ω)nβ (xq)
∫

Γq

H f (x,x0,nn,kz,ω)dΓ

(38)

Taking into account Eqs. (36)–(38) at nodal points x j ∈ {xq}N1
be

q=1 on the interface
Γ1 with N1

be = NΓ1 , we obtain the set of discretized equations

2t̃1(x j,kz,ω)n2(x j)− 2t̃2(x j,kz,ω)n1(x j) = 0 (39)
2t̃3(x j,kz,ω) = 0 (40)
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cnβ

(
x j) 2t̃β

(
x j,kz,ω

)
=ρ1ω

2
N1

be

∑
q=1

2ũβ (xq,kz,ω)nβ (xq)
∫

Γq

G f
(
x,x j,kz,ω

)
dΓ+

+
N1

be

∑
q=1

2t̃β (xq,kz,ω)nβ (xq)
∫

Γq

H f
(
x,x j,nn,kz,ω

)
dΓ

(41)

which replace the boundary conditions at nodal points on ∂Ω2∩Γ1 in the numerical
treatment of the problem in Ω2 by the MLPG. The boundary densities 2ũ j and 2t̃β ,
2t̃3 at the boundary nodes xq,(q = 1, . . . ,N1

be) are expressed according to (20) and
(30), (31), respectively, in terms of nodal unknowns ûa

i (kz,ω) used in the numerical
solution in Ω2 by the MLPG.

Finally, we have 3Nin equations given by Eqs. (23), (24), 3N2
be equations given by

Eq. (34), and 3N1
be equations given by Eqs. (39)–(41) which should be solved for

3Ntotal = 3
(
Nin +N1

be +N2
be

)
nodal unknowns ûa

i (kz,ω) distributed in Ω2∪(−Γ1)∪
(−Γ2). Note that these nodal unknowns are complex variables.

4 Verification of the proposed numerical procedure

The accuracy of the proposed model is verified by taking a non-homogeneous e-
lastic annular circular fluid filled borehole region Ω2, with an internal radius rint =
0.75 m and an external radius rext = 1.50 m, centered at (xcen = 0.0 m; ycen = 0.0 m)
and buried in an unbounded homogeneous elastic medium Ω3. The fluid filled do-
main is denoted as Ω1. The system is excited by a blast line load whose amplitude
varies sinusoidally in the third dimension (kz = 0.8 rad/m), located at a given point
(x0 =−4.0 m; y0 = 0.0 m) in the outer homogeneous domain, as illustrated in Fig-
ure 3.

Figure 3: Geometry of the model used to verify the algorithm.

The host medium, with an elasticity modulus of E0 = 11689288.6 kPa, a Poisson
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ratio of 0.29593 and density of 2140 kg/m3, allows P and S wave velocities of
2696.5 m/s and 1451.7 m/s, respectively. Inside the non-homogeneous circular
annular region the density of 2500 kg/m3and the Poisson ratio of 0.15 are assumed
to be constant. However, a radial variation of the elasticity modulus is assumed as
follows,

E(r) = E1 +
(E0−E1)

2

[
1+ cos

(
π
(rd− rint)

rint
−π

)]
, (42)

with E1 = 28980000.0 kPa and rd =

√
(x− xcen)

2 +(y− ycen)
2. Thus, the annular

medium allows P-wave and S-wave velocities in the close vicinity of the fluid bore-
hole wall of 3498.6 m/s and 2244.9 m/s, respectively. The fluid medium, Ω1, is
water with a density of 1000 kg/m3 that allows P-wave velocities of 1500.0 m/s

The system is loaded by the incident field source located at x0 = (x0,y0), which is
given as

uinc
x (x0,xs,kz,ω) =

i
2

kcpH1
(
kcpr

) ∂ r
∂x

uinc
y (x0,xs,kz,ω) =

i
2

kcpH1
(
kcpr

) ∂ r
∂y

(43)

uinc
z (x0,xs,kz,ω) =

kz

2
H0
(
kcpr

)
with r =

√
(x0− xs)2 +(y0− ys)2 and kcp =

√
ω2/c2

p− k2
z , assuming Im

(
kcp

)
< 0.

The solution of this system can be defined analytically, taking a multilayered sys-
tem composed of concentric ring-shaped regions with different material properties
(see Appendix A).

4.1 Evaluation of accuracy of the proposed model

Several simulations were performed to verify the proposed model. The results for
a harmonic source with a frequency of 1000.0 Hz are presented next, to illustrate
the accuracy of the solutions. In the next figures the analytical responses and the
numerical error are displayed for the displacements (in the x,y and z directions)
and for the pressure. Displacements and pressures were computed over a grid of
7953 receivers (Nrecsol = 7342 in the solid media and Nrec f l = 611 in the fluid medi-
um), spaced at equal intervals in the two orthogonal directions and placed between
(x =−2.25 m; y =−2.25 m) and (x = 2.25 m; y = 2.25 m).

The numerical calculations were performed using a radius of the local support do-
main

(
ri
)

that was three times the nodal point distance (3h). The value 0.9h was
chosen for the radius of local subdomain Ωs.
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Figure 4: Verification and accuracy for a source excitation frequency of 1000.0 Hz:
a) elasticity modulus variation; b) node distribution.

The variation pattern of the elastic modulus is presented in Figure 4a, while the
distribution of the 180 boundary nodes on Γ2 and the 90 boundary nodes on Γ1,
together with 1755 internal nodes used to compute the solution, is displayed in
Figure 4b. A regular distribution of nodal points has been adopted since it best suits
the character of the problem. Regular node distribution is also most appropriate for
specifying both the local subdomains and the support domains. Non-uniform nodal
distribution can also be used, although one must ensure that a sufficient number of
nodes will be used for accuracy of the local approximation to remain high.

Figures 5 to 8 present the results obtained for the displacements in three directions
(x,y and z) and for the pressure. Each Figure contains plots showing the real and
imaginary parts of the analytical solution and the numerical error. The results show
a good agreement between the two solutions.

4.2 Evaluation of the averaged error of the proposed model

The number of the nodal points and the radius of the circular support domain both
influence the accuracy of the response. The effect of those two parameters on the
response error has therefore been assessed. Computations were performed using a
geometry similar to that described above, over the same grid of receivers. For the
external interface Γ2 we have considered 80 to 180 boundary nodes, for the internal
boundary on the interface Γ1 we have considered 40 to 90 boundary nodes, together
with 300 to 1755 regularly distributed internal nodes. The number of the internal
nodes was defined so that the distance between them was the same as that between
the boundary nodes. The error for each receiver is calculated as the difference
between the analytical and the numerical result. The global performance of the
solution is assessed by the normalized average error, computed in the solid media
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(a)

(b)

Figure 5: Verification and accuracy for a source excitation frequency of 1000.0 Hz:
a) Analytical displacement in x direction; b) Numerical error when ri = 3h.

and fluid medium as follows,

errori =

1
Nrecsol

Nrecsol

∑
n=1
|ui (x,kz,ω)− ûi (x,kz,ω)|

|ui,max (x,kz,ω)|
,

errorp =

1
Nrec f l

Nrec f l

∑
n=1
|p(x,kz,ω)− p̂(x,kz,ω)|

|pmax (x,kz,ω)|
(44)

where ui (x,kz,ω) and p(x,kz,ω) are the analytical displacements and pressure
solutions; |ui,max (x,kz,ω)| and |pmax (x,kz,ω)| are the maximum absolute response
over the grid of receivers; ûi (x,kz,ω) and p̂(x,kz,ω) are the numerical results.

The radius of the circular support domain changes from rs = 0.1 m to rs = 1.0 m in
increments of 0.01 m. Four frequencies were analyzed, namely, 500.0 Hz,1000.0 Hz,
2000.0 Hz, and 4000.0 Hz. Figures 9 to 12 illustrate how the error varies with the
ratio between the radius of the circular support domain and the distance between
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Figure 6: Verification and accuracy for a source excitation frequency of 1000.0 Hz:
a) Analytical displacement in y direction; b) Numerical error when ri = 3h.

nodal points (ri/h) and the number of boundary elements at the interface Γ2. The
amplitude average error is presented on a logarithmic scale to enhance the errors.
In the case where the radius of the circular support domain is not large enough to
cover a sufficient number of nodes in the defined domain to ensure the regularity of
the MLS shape function, the responses are not computed.

Analysis of the results showed that the error was higher at higher frequencies. For
those frequencies, the best results are found for high values of boundary elements
and for relatively low values of ri/h. A good value of the relation ri/h is close to
3. The accuracy is expected to improve if the number of boundary elements were
increased further. At lower frequencies the average error was very low, of the order
of 1×10−8.

5 Numerical example

The algorithm developed was applied to a problem where two circular annular flu-
id borehole regions, both with internal radius (rint = 0.75 m) and external radius
(rext = 1.50 m) and filled with water, are buried in an infinite elastic medium, as
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Figure 7: Verification and accuracy for a source excitation frequency of 1000.0 Hz:
a) Analytical displacement in z direction; b) Numerical error when ri = 3h.

shown in Figure 13. The unbounded solid and fluid are assumed to have the prop-
erties described above. In one example, a smooth increasing change in the elastic
modulus occurs towards the centre, whereas in the second example the elastic mod-
ulus suffers a smooth decrease (see Figure 14). The borehole inclusions are centred
at (x = 0.0 m; y = 0.0 m) and (x = 0.0 m; y = 3.5 m). The medium is excited by
a blast line load with kz = 0.8 rad/m placed at(x0 =−5.0 m; y0 = 1.75 m). The
circular support domain used in the computations was set at 3 times the nodal point
distance.

In the first example (Case 1), the change in the elasticity modulus within the annu-
lar circular non-homogeneous region of each fluid-filled borehole follows equation
(38) (see Figure 14a), assuming the density and the Poisson ratio values already
adopted for the example with a single inclusion.

In the second example (Case 2), the elasticity modulus within the annular circular
non-homogeneous region of each fluid-filled borehole varies according to

E(r) = E1 +
(E0−E1)

2

[
1+ cos

(
π
(rd− rint)

rint
−π

)]
, (45)
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Figure 8: Verification and accuracy for a source excitation frequency of1000.0 Hz:
a) Analytical pressure; b) Numerical error when ri = 3h.

Figure 9: Average normalized error of the numerical solution showing the relation
between the radius of the circular support domain and the distance between nodal
points for a frequency of 500 Hz.
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Figure 10: Average normalized error of the numerical solution showing the relation
between the radius of the circular support domain and the distance between nodal
points for a frequency of 1 000 Hz.

Figure 11: Average normalized error of the numerical solution showing the relation
between the radius of the circular support domain and the distance between nodal
points for a frequency of 2 000 Hz.

with E1 = 2591860.0 kPa while the density of 2140 kg/m3 and a Poisson ratio of
0.29593 are kept constant (see Figure 14b). The velocities for the P-wave and S-
wave velocities in the vicinity of the fluid-filled borehole wall are 1269.7 m/s and
683.6 m/s, respectively.

Computations in the frequency range of [30, 7680.0 Hz] with a frequency incre-
ment of 30.0 Hz were performed over a fine grid of 13630 receivers placed between
(x =−4.5 m; y =−2.75 m) and (x = 4.5 m; y = 6.25 m) for z = 0.0m to obtain
displacements and pressures. Each annular region was discretized using 160 exter-
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Figure 12: Average normalized error of the numerical solution showing the relation
between the radius of the circular support domain and the distance between nodal
points for a frequency of 4 000 Hz.

Figure 13: Geometry used in the numerical applications.

(a) (b)

Figure 14: Elastic modulus in the vicinity of the fluid-filled borehole: a) Smooth
increasing change (Case 1); b) Smooth descreasing change (Case 2).
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nal boundary elements and 80 internal boundary elements and 1320 internal nodal
points. The internal nodal points were arranged evenly throughout each annular
circular non-homogeneous region.

An inverse Fourier transformation was applied to the frequency results to obtain
time responses. The source was assumed to have a temporal variation similar to a
Ricker pulse with a characteristic frequency of 2500 Hz. The Ricker pulse may be
defined in the frequency domain as

U (ω) = A
[
2
√

πtoe−iω ts
]

Ω
2e−Ω2

(46)

where A is the amplitude, Ω = ω to/2, ts is the time when the maximum occurs,
while π to is the characteristic period of the wavelet. This procedure defines a total
time window of T = 2π/∆ω (where ∆ω is the frequency step) for the time domain
analysis. A Ricker pulse was simulated because it decays rapidly in the frequency
domain and is of short duration, which meant the computations could be limited to
a narrow frequency range and offered an easy interpretation of the time signals.

(a)

(b)

Figure 15: Time domain displacements in the x,y and z directions at t = 1.3 ms: a)
Case 1; b) Case 2.

Aliasing phenomena were avoided by using complex frequencies with a smal-
l imaginary part of the form ωc = ω − iη (with η = 0.7∆ω). This attenuation,
introduced in the frequency domain, was removed by rescaling the response in the
time domain using an exponential window, eη t .



The Influence of Non-Homogeneous Material Properties on Elastic Wave 369

Figures 15 to 17 give time domain plots showing the displacements (in the x,y and z
directions) and pressure at different time instants (t = 1.5ms, t = 2.0ms, t = 2.5ms
and t = 3.2ms). Two plots are presented in each figure, corresponding to the two
cases under simulation, at each time instant. A color scale is used in which the red
shades represent positive and the blue shades negative displacement values.

In Figure 15 (a) and (b), for t = 1.3ms, the incident field has already entered the
annular region of the borehole. At this instant, the interference due to the differ-
ence of velocities between the annular region and the infinite media in the wave
propagation is very slight.

(a)

(b)

Figure 16: Time domain displacements in the x,y and z directions at t = 1.9 ms: a)
Case 1; b) Case 2.

At t = 1.9 ms, Figure 16 shows that the wavefront has already arrived inside the
fluid-filled borehole and backward reflections outside the annular region are visible.
At this instant, the distortion of the wave inside the annular region due to the smooth
change of velocity (refraction) and to the diffraction around the fluid-filled hole
can be seen. Additionally, in Figure 16(a) it can be seen that the velocity is higher
inside the annular region than in the infinite medium, due to the increase in the
elastic modulus, while in Figure 16(b) the decrease in the elastic modulus leads to
lower propagation pulse velocities inside the annular region. The first changes in
fluid pressure are also visible.

Figure 17 shows the response at t = 2.4ms. Now, we can see the effect of multiple
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(a)

(b)

Figure 17: Time domain displacements in the x,y and z directions at t = 2.4ms: a)
Case 1; b) Case 2.

(a)

(b)

Figure 18: Time domain displacements in the x, y and z directions at t = 3.2ms: a)
Case 1; b) Case 2.
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reflections inside the fluid-filled borehole. The distortion and the delay or advance
of the wavefront is very noticeable because of the change in the elastic modulus. It
can be seen that the backward reflections are strong when the elastic modulus in-
creases (Figure 17 a), whereas they are weaker when the elastic modulus decreases
(Figure 17b).

The wave propagation proceeds and at time t = 3.2ms a more complex wave field
can be seen, caused by the reflections, multiple reflections, refraction and diffrac-
tion of waves.

6 Conclusion

This paper has presented a coupled numerical model using the meshless local
Petrov-Galerkin (MLPG) method and the boundary element method (BEM) for
the simulation of transient solid-fluid wave propagation, in the frequency domain,
of homogenous unbounded media containing a non-homogeneous elastic annular
circular fluid-filled borehole region with medium properties that changes smoothly
in the annular regions. The BEM was used to simulate the wave propagation in the
outer medium and the inner fluid-filled domain, while the MLPG was used to model
the localized regions with non-homogeneous properties, for which the BEM is not
suitable. In the MLPG method, the governing partial differential equations were
satisfied in a weak-form for small fictitious subdomains. A unit step function was
used as the test function in the local weak-form of the governing partial differential
equations for small circular subdomains, spread around the analyzed domain. The
moving least-squares (MLS) scheme was used to approximate the field quantities.

The accuracy of the proposed model was corroborated for different frequencies a-
gainst an analytical solution developed for a circular fluid-filled borehole bounded
by a confined circular annular subdomain, in which the elastic properties (Young’s
modulus) vary in the radial direction. It was demonstrated that the accuracy of
the results obtained with the proposed model varies with the radius of the support
domain and the number of nodal points. The calculation of the average error for dif-
ferent relations between the radius of the circular support domain and the distance
between nodal points made it possible to define a suitable radius for the support
domain and the number of the nodal points that should be used. The number of n-
odal points/boundary elements needs to increase for higher frequencies and greater
accuracy is obtained for relatively small radii of the circular support domains.

The applicability of the proposed model was illustrated by modeling two circular
annular inclusions with variable elastic material properties. The temporal pattern
of the pressure and displacement wavefield observed in the plots was found to be
consistent with the physics of the problem.
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Appendix A: 2.5D Cylindrical fluid-elastic multilayered analytical solution

This Appendix defines the basic equations to compute the reference analytical so-
lution used for benchmarking the proposed numerical model. For this purpose we
consider a system built from a set of m two-dimensional circular, concentric elastic
layers, bounded by an infinite elastic medium, medium m+1 (see Figure A1). The
inner medium, labeled medium 0, is fluid, with mass density ρ0, allowing pressure
wave velocities cp0 . The material properties and thickness of the various elastic m
layers and of the unbounded medium may differ (mass density ρ j, shear wave ve-
locities cs j and dilatational wave velocities cp j ). This system is subjected to a blast
harmonic line source, whose amplitude varies sinusoidally in the third z-dimension,
placed somewhere in the domain at point O of coordinates (x0,y0).

In a cylindrical coordinate system, the wave propagation in each elastic layer, gov-
erned by Eq. (9), can be expressed as a function of a dilatational potential (φ ) and
two shear scalar potentials (ψ , χ), while the pressure wave propagation in the inner
fluid medium, governed by Eq. (11), can be computed as a function of a dilata-
tional potential (φ ). Each potential satisfies a wave equation, which reduces to the
Helmholtz equation in the frequency domain. The solution for this problem can
be defined by applying the separation of variables procedure to the Helmholtz e-
quation in each medium of the system and enforcing the boundary conditions at all
interfaces, using a series of Bessel functions.

A.1 Incident field

If there is a source in the elastic layer j, at point x0 with coordinates (x0,y0), the
incident field point x with coordinates (x,y) can be expressed as

φ
j,inc (x,kz,ω) =− i

2
H0

(
kcp j

√
(x− x0)

2 +(y− y0)
2
)

(A1)

where kcp j
=
√

ω2/c2
p j
− k2

z .

Eq. (A1) expresses the incident field as wave terms centered at the source point and
not at the axis of the concentric multilayer system. However, this can be achieved
by applying Graf’s addition theorem [Watson (1980)], which results in the expres-
sions below (in cylindrical coordinates):

ϕ
inc(r,θ ,kz,ω)=− i

2

∞

∑
n=0

(−1)n
εnH(2)

n (kcp j
r0)Jn(kcp j

r)cos(nθ),whenr<r00 (A2)
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Figure A1: Geometry of the problem for the reference solution, with a circular,
concentric, fluid-elastic multilayer system bounded by an infinite elastic medium
(medium m+1).

ϕ
inc(r,θ ,kz,ω)=− i

2

∞

∑
n=0

(−1)n
εnH(2)

n (kcp j
r)Jn(kcp j

r0)cos(nθ),whenr<r00 (A3)

in which εn = 1 if n = 0, εn = 2 if n > 0, r00 is the distance from the source to
the axis of the multilayer system, r is the distance from point x to the center of the
multilayer system at (0,0) (see Figure A1).

A.2 The scattered and refracted field within each elastic cylindrical layer

The total displacement field is found by adding the incident field to the sets of
scattered and refracted terms arising within each layer and at each interface. For
the layer j( j 6= 0), the scattered and refracted terms on the inner and outer interfaces
can be expressed as

φ
j1(r,θ ,kz,ω) =

∞

∑
n=0

At
n jHn(kcp j

r)cos(nθ) (A4)

φ
j2(r,θ ,kz,ω) =

∞

∑
n=0

Ab
n jJn(kcp j

r)cos(nθ) (A5)

ψ
j1(r,θ ,kz,ω) =

∞

∑
n=0

Bt
n jHn(kcs j

r)sin(nθ) (A6)

ψ
j2(r,θ ,kz,ω) =

∞

∑
n=0

Bb
n jJn(kcs j

r)sin(nθ) (A7)
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χ
j1(r,θ ,kz,ω) =

∞

∑
n=0

Ct
n jHn(kcs j

r)cos(nθ) (A8)

χ
j2(r,θ ,kz,ω) =

∞

∑
n=0

Cb
n jJn(kcs j

r)cos(nθ) (A9)

where At
n j, Ab

n j, Bt
n j, Bb

n j, Ct
n j and Cb

n j are unknown amplitudes.

A.3 The scattered field within the fluid

The pressure field is defined by computing the scattered field arising within the
fluid inner and at interface 1,

φ
02(r,θ ,kz,ω) =

∞

∑
n=0

Ab
n0Jn(kcp0

r)cos(nθ) (A10)

A.4 System of equations

A system of 6m+ 4 equations is derived, ensuring the following boundary condi-
tions:

- continuity of displacements and tractions between layers at the m interfaces
between elastic layers;

- continuity of normal displacements, continuity of normal tractions and null
shear stress at the fluid-elastic interface.

Each equation takes into account the contribution of the scattered and refracted
field and the involvement of the incident field.

The resolution of the system gives the amplitude of the scattered and refracted
terms at each interface. The displacement field for each elastic layer is found by
adding these terms to the contribution of the incident field, while the pressure field
is computed by adding the contribution of the pressure field terms within the fluid.
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