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A High-Order Accurate Wavelet Method for Solving
Three-Dimensional Poisson Problems
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Abstract: Based on the approximation scheme for a L2-function defined on a
three-dimensional bounded space by combining techniques of boundary extension
and Coiflet-type wavelet expansion, a modified wavelet Galerkin method is pro-
posed for solving three-dimensional Poisson problems with various boundary con-
ditions. Such a wavelet-based solution procedure has been justified by solving five
test examples. Numerical results demonstrate that the present wavelet method has
an excellent numerical accuracy, a fast convergence rate, and a very good capability
in handling complex boundary conditions.
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1 Introduction

The Poisson problem, as a typical elliptic partial differential equation, plays a cen-
tral role in mathematics, theoretical physics, mechanics and other fields, such as
electromagnetics [Heise and Kuhn (1996)], fluid dynamics [Vuik, Segal, and Mei-
jerink (1999)], plasma physics [Feng and Sheng (2015)], and electrical power net-
work modeling [Howle and Vavasis (2005)]. It has so broad applications that re-
searchers have to frequently find a numerical solution of the Poisson equation [Do-
ha (1989); Wordelman, Aluru, and Ravaioli (2000); Feng and Sheng (2015)].

In the past few decades, a number of numerical methods have been proposed to
solve the Poisson equations. For example, Mittal and Gahlaut (1987) introduced the
second- and fourth-order finite difference schemes for solving Poisson equations.
Doha (1989) developed a Chebyshev spectral method to study Poisson problems. A
fourth-order compact difference scheme for solving the three-dimensional Poisson
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equation on a cubic domain has been proposed by Ge (2010). Barad and Colella
(2005) used a local refinement finite volume method to solve the Poisson equation.
And a Haar wavelet method for solving two- and three-dimensional Poisson prob-
lems has been derived by Shi, Cao, and Chen (2012). Although these numerical
methods are effectively applied to the solution of Poisson problems, researchers
have been trying to find a more high-order accurate method to solve numerically
Poisson problems, which allows for using lower computational cost with respect to
a low-order accurate method to ensure a similar accuracy [Zhang, (1998); Shi, Cao,
and Chen (2012); Feng and Sheng (2015); Bardazzi, Lugni, Antuono, Graziani, and
Faltinsen (2015)].

In our recent work [Liu, Zhou, Wang, and Wang (2013); Liu, Wang, and Zhou
(2013); Liu, Wang, and Zhou (2013); Liu, Zhou, Zhang, and Wang (2014)], we
have developed the modified wavelet Galerkin methods for solutions of one- and
two-dimensional nonlinear problems, which have shown an excellent numerical ac-
curacy and a fast convergence rate. For instance, the order of convergence of such
wavelet algorithm for two-dimensional Bratu-like equations is about 5 [Liu, Zhou,
Wang, and Wang (2013)]. And for the Burgers’ equation, this wavelet method
also has a convergence rate of order 5, and shows a much better accuracy than
many other existing methods [Liu, Zhou, Zhang, and Wang (2014)], such as the
multiquadric method [Hon and Mao (1998)], the multiquadric quasi-interpolation
method [Chen and Wu (2006)], the cubic B-spline quasi-interpolation method [Zhu
and Wang (2009)], the multiquadric-RBF method [Xie and Li (2013)], the weighted
average differential quadrature method [Jiwari, Mittal, and Sharma (2013)], the lat-
tice Boltzmann method [Gao, Le, and Shi (2013)], and the B-spline finite element
method [Kutluay, Esen, and Dag (2004)].

In the present study, based on the modified wavelet Galerkin methods respectively
for the solution of one- and two-dimensional nonlinear boundary value problems
[Liu, Zhou, Wang, and Wang (2013); Liu, Wang, and Zhou (2013)], we propose
a wavelet approximation scheme for three-dimensional bounded functions based
on techniques of boundary extension and Coiflet-type wavelet expansion, which
can eliminate the undesired oscillating error near boundary points due to function
value jump [Liu, Zhou, Wang, and Wang (2013)]. Then a wavelet-based solution
procedure for three-dimensional Poisson problems is derived in detail. At last, a
comparison between the present solutions and those obtained by using other exist-
ing numerical methods is made to demonstrate the effectiveness of the proposed
wavelet method.
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2 Wavelet approximation of an interval-bounded L2-function

Following the theory of wavelet based multiresolution analysis, a set of scaling
bases for three-dimensional space can be directly extended by the tensor products of
one-dimensional wavelet bases [Meyer (1992); Ray and Gupta (2014)]. Therefore
based on our previous work [Liu, Zhou, Wang, and Wang (2013)], for a function
f (x,y,z) ∈ L2[01]3, we have

f (x,y,z)≈ P jx, jy, jz f (x,y,z) =
2 jx

∑
k=0

2 jy

∑
l=0

2 jz

∑
n=0

f (
k

2 jx
,

l
2 jy

,
n

2 jz
)ϕ jx,k(x)ϕ jy,l(y)ϕ jz,n(z) (1)

in which jx, jy and jz are the decomposition level respectively in the x, y and z
directions, and the modified one-dimensional wavelet basis

ϕ j,k(x)=



−1

∑
i=−9

T0,k(
i

2 j )φ(2
jx−i+7)+φ(2 jx−k+7) k ∈ [0,3]

φ(2 jx−k+7) k ∈ [4,2 j−4]

2 j+6

∑
i=2 j+1

T1,2 j−k(
i

2 j )φ(2
jx−i+7)+φ(2 jx−k+7) k ∈ [2 j−3,2 j]

. (2)

Here φ(x) is the generalized Coiflet-type orthogonal scaling function with first or-
der moment M1 = 7 and number of vanishing moment β = 6 of the corresponding
wavelet function, which is developed by Wang [Wang (2001)]. And in Eq. (2),
expressions

T0,k(x) =
3

∑
i=0

p0,i,k

i!
xi, T1,k =

3

∑
i=0

p1,i,k

i!
(x−1)i (3)

where coefficients p0,i,k and p1,i,k of numerical differentiation are determined by
relationships P0 = {2−i j p0,i,k}, P1 = {2−i j p1,i,k}, and matrixes [Liu, Zhou, Wang,
and Wang (2013); Wang (2014)]

P0 =


1 0 0 0

−11/6 3 −3/2 1/3
2 −5 4 −1
−1 3 −3 1

 , P1 =


1 0 0 0

11/6 −3 3/2 −1/3
2 −5 4 −1
1 −3 3 −1

 . (4)

Following the error analysis for this wavelet approximation in one- and two-dimensional
problems accomplished by Liu et al. [Liu, Zhou, Zhang, and Wang (2014); Liu,
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Wang, and Zhou (2013)] and the theory of multiresolution analysis [Meyer (1992)],
we can similarly obtain∥∥∥∥∂ n+m+l f (x)

∂xn∂ym∂ zl −
∂ n+m+lP jx, jy, jz f (x)

∂xn∂ym∂ zl

∥∥∥∥
L2[0,1]3

≤C2
−γ

(5)

in which exponent γ = min{ jx(β −n), jy(β −m), jz(β − l)}, constants C depends
on the smoothness and boundary extension property of f (x, y, z), and n, m, l are
non-negative integers satisfying n, m, l < β = 6.

3 Solution of the three-dimensional poisson equation

In this section, we will propose a modified Galerkin method based on the wavelet
approximation (2) to solve the three-dimensional Poisson equation in Cartesian
coordinates with the Robin type boundary conditions, as follows:

∂ 2 p
∂x2

1
+

∂ 2 p
∂x2

2
+

∂ 2 p
∂x2

3
= f (x1,x2,x3), x1,x2,x3 ∈ [0,1] (6a)

ai p(x1,x2,x3)+bi
∂ p
∂xi

= gi,xi = 0, i = 1,2,3 (6b)

ci p(x1,x2,x3)+di
∂ p
∂xi

= hi,xi = 1, i = 1,2,3 (6c)

in which ai, bi, ci, di, i = 1,2,3 are constants, and gi, hi, f are known functions.

Following the wavelet approximation (1), the unknown function p(x1, x2, x3) and
the source function f (x1, x2, x3) can be approximated respectively as

p(x1,x2,x3)≈
2 j1

∑
k=0

2 j2

∑
l=0

2 j3

∑
n=0

p(
k

2 j1
,

l
2 j2

,
n

2 j3
)ϕ j1,k(x1)ϕ j2,l(x2)ϕ j3,n(x3) (7)

f (x1,x2,x3)≈
2 j1

∑
k=0

2 j2

∑
l=0

2 j3

∑
n=0

f (
k

2 j1
,

l
2 j2

,
n

2 j3
)ϕ j1,k(x1)ϕ j2,l(x2)ϕ j3,n(x3). (8)

Substituting Eqs. (7) and (8) into Eq. (6a), yields

2 j1

∑
k=0

2 j2

∑
l=0

2 j3

∑
n=0

p(
k

2 j1
,

l
2 j2

,
n

2 j3
)[

d2ϕ j1,k(x1)

dx2
1

ϕ j2,l(x2)ϕ j3,n(x3)

+ϕ j1,k(x1)
d2ϕ j2,l(x2)

dx2
2

ϕ j3,n(x3)+ϕ j1,k(x1)ϕ j2,l(x2)
d2ϕ j3,n(x3)

dx2
3

]

≈
2 j1

∑
k=0

2 j2

∑
l=0

2 j3

∑
n=0

f (
k

2 j1
,

l
2 j2

,
n

2 j3
)ϕ j1,k(x1)ϕ j2,l(x2)ϕ j3,n(x3)

. (9)
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Multiplying both sides of Eq. (9) by ϕ j1,k0(x1)ϕ j2,l0(x2)ϕ j3,n0(x3), k0 = 1,2, . . . ,2 j1−
1, l0 = 1,2, . . . ,2 j2 −1, n0 = 1,2, . . . ,2 j3 −1, respectively and perform integration
over the region [0, 1]3, gives

AP≈ BF (10)

in which matrixes A = {ao0q = Γ
j1,2
k,k0

Γ
j2,0
l,l0 Γ

j3,0
n,n0 +Γ

j1,0
k,k0

Γ
j2,2
l,l0 Γ

j3,0
n,n0 +Γ

j1,0
k,k0

Γ
j2,0
l,l0 Γ

j3,2
n,n0},

B = {bo0q = Γ
j1,0
k,k0

Γ
j2,0
l,l0 Γ

j3,0
n,n0}, and vectors P = {pq = p(k/2 j1 , l/2 j2 ,n/2 j3)}T, F =

{ fq = f (k/2 j1 , l/2 j2 ,n/2 j3)}T, where the subscripts o0 = (2 j1 − 1)(2 j2 − 1)(n0−
1)+ (2 j1 − 1)(l0− 1)+ k0− 1, q = (2 j1 + 1)(2 j2 + 1)n+(2 j1 + 1)l + k, and k =
0,1, . . . ,2 j1 , l = 0,1, . . . ,2 j2 , n= 0,1, . . . ,2 j3 ,k0 = 1,2, . . . ,2 j1−1, l0 = 1,2, . . . ,2 j2−
1, n0 = 1,2, . . . ,2 j3 −1. Here, the generalized connection coefficients Γ

j,n
k,l =

∫ 1
0 dn

ϕ j,k(x)/dxnϕ j,l(x)dx can be obtained exactly by using the procedure suggested by
Wang [Wang (2001)], and the expression of the modified scaling basis have been
given by Eq. (2).

On the other hand, substituting Eq. (7) into boundary conditions (6b), we have

ai p(x1,x2,x3)+bi

2 j1

∑
k=0

2 j2

∑
l=0

2 j3

∑
n=0

p(
k

2 j1
,

l
2 j2

,
n

2 j3
)
∂ϕ j1,k(x1)ϕ j2,l(x2)ϕ j3,n(x3)

∂xi

≈gi,xi = 0, i = 1,2,3.

(11)

Assigning x2 = 0,1/2 j2 , . . .1, x3 = 0,1/2 j3 , . . .1 for i = 1, x1 = 1/2 j1 ,2/2 j1 , . . .1−
1/2 j1 , x3 = 0,1/2 j3 , . . .1 for i = 2, and x1 = 1/2 j1 ,2/2 j1 , . . .1−1/2 j1 , x2 = 1/2 j2 ,
2/2 j2 , . . .1−1/2 j2 for i = 3, respectively, yields

A1P≈G1 (12a)

A2P≈G2 (12b)

A3P≈G3 (12c)

where matrixes A1 = {a1,o1q = a1δk0δll1δnn1 + b1Λ
j1,1
k,0 Λ

j2,0
l,l1 Λ

j3,0
n,n1}, A2 = {a2,o2q =

a2δkk2δl0δnn2 +b2Λ
j1,0
k,k2

Λ
j2,1
l,0 Λ

j3,0
n,n2}, A3 = {a3,o3q = a3δkk3δll3δn0+b3Λ

j1,0
k,k3

Λ
j2,0
l,l3 Λ

j3,1
n,0 },

and the vectors G1 = {g1,o1 = g1(l1/2 j2 ,n1/2 j3)}T, G2 = {g2,o2 = g2(k2/2 j2 , n2/
2 j3)}T, G3 = {g3,o3 = g3(k3/2 j2 , l3/2 j3)}T, in which δkl is the Kronecker delta func-
tion, subscripts o1 = (2 j3 +1)l1 +n1, o2 = (2 j1−1)n2 +k2−1, o3 = (2 j1−1)(l3−
1)+ k3−1, k2,k3 = 1,2, . . . ,2 j1−1, l1 = 0,1, . . . ,2 j2 , l3 = 1,2, . . . ,2 j2−1,n1,n2 =
0,1, . . . ,2 j3 , and the coefficients Λ

j,n
k,l = dnϕ j,k(x)/dxn|x=l/2 j also can be obtained

exactly by using the procedure suggested by Wang [Wang (2001)] and the modified
scaling basis (2).
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Similarly, based on boundary conditions (6c) one can obtain

B1P≈H1 (13a)

B2P≈H2 (13b)

B3P≈H3 (13c)

where matrixes B1 = {b1,o1q = c1δk2 j1 δll1δnn1 +d1Λ
j1,1
k,2 j1

Λ
j2,0
l,l1 Λ

j3,0
n,n1}, B2 = {b2,o2q =

c2δkk2δl2 j2 δnn2 + d2Λ
j1,0
k,k2

Λ
j2,1
l,2 j2

Λ
j3,0
n,n2}, B3 = {b3,o3q = c3δkk3δll3δn2 j3 + d3Λ

j1,0
k,k3

Λ
j2,0
l,l3

Λ
j3,1
n,2 j3
}, and the vectors H1 = {h1,o1 = h1(l1/2 j2 ,n1/2 j3)}T, H2 = {h2,o2 = h2(k2/2 j2 ,

n2/2 j3)}T, H3 = {h3,o3 = h3(k3/2 j2 , l3/2 j3)}T.

By solving simultaneously Eqs. (10), (12) and (13), we can obtain the nodal values
of unknown function p(k/2 j1 , l/2 j2 ,n/2 j3), k = 0,1, . . . ,2 j1 , l = 0,1, . . . ,2 j2 , n =
0,1, . . . ,2 j3 , which can be used to reconstruct p(x1, x2, x3) in terms of Eq. (7). We
note that this wavelet solution is valid for the Poisson equation (6a) with almost
all the classic types of boundary conditions. For example in Eq. (6b), parameters
bi = 0 represent the Dirichlet boundary conditions, ai = 0 represent the Neumann
boundary conditions, and arbitrary values of ai and bi represent the general Robin
boundary conditions. Moreover by using the similar algorithm, we also can obtain
the wavelet solutions of the one- and two-dimensional Poisson problems.

4 Numerical examples

In the following, we will demonstrate the efficiency and accuracy of the proposed
wavelet method by numerically solving Poisson equations with various boundary
conditions. To effectively evaluate the performance of the present method, we con-
sider the maximum absolute error L∞, mean absolute error L1, relative error norm
L2 and order of convergence R∞,1, which are, respectively, defined as

L∞ = max
k
{|unum

k −uexact
k |} (14)

L1 = ∑
k
|unum

k −uexact
k |/N (15)

L2 =
∫

Ω

(umum−uexact)2dΩ/
∫

Ω

(uexact)2dΩ (16)

R∞,1 =
log[L∞,1(N2)/L∞,1(N1)]

log[N1/D
1 /N1/D

2 ]
(17)

in which N and D are the number of grid points and the spatial dimension of the
problem, respectively [Barad and Colella (2005); Atluri and Zhu (1998)].
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Example 1 We consider the one-dimensional Poisson equation with Dirichlet bound-
ary conditions as follows: ∂ 2 p

∂x2 = 4[(1−2x)2
π

2−2]sin(2πx)+16π(1−2x)cos(2πx)

p(0) = p(1) = 0,x ∈ [0,1]
(18)

whose exact solution is p(x) = −(1− 2x)2 sin(2πx) [Gibou, Fedkiw, Cheng, and
Kang (2002)].

Table 1: Mean absolute error L1 and order of convergence R1 for problem (18).

Present FDM [Gibou (2002)]
Grid N L1-error Order R1 Grid N L1-error Order R1

16 1.351E-04 — 40 4.422E-04 —
32 6.756E-06 4.32 80 1.132E-04 1.97
64 2.986E-07 4.50 160 2.736E-05 2.04

Table 2: Maximum absolute error L∞ and order of convergence R∞ for problem
(18).

Present FDM [Gibou (2002)]
Grid N L∞-error Order R∞ Grid N L∞-error Order R∞

16 7.801E-04 — 40 9.236E-04 —
32 6.578E-05 3.57 80 2.654E-04 1.79
64 4.532E-06 3.86 160 7.306E-05 1.86

Tables 1 and 2 show the errors of numerical solutions of the one-dimensional Pois-
son problem (18) given by the proposed wavelet method with various values of grid
points N. It can be seen from Tables 1 and 2 that results obtained using the present
wavelet method with less number of grid points N has a much better numerical
accuracy than those given by the finite difference method (FDM) [Gibou, Fedkiw,
Cheng, and Kang (2002)].

Example 2 Consider the two-dimensional Laplace equation

∂ 2 p
∂x2 +

∂ 2 p
∂y2 = 0, x,y ∈ [0,2] (19)

subjected to the Dirichlet boundary conditions which are extracted from the exact
solution p(x,y) = 3x2y+ 3xy2− x3− y3 [Atluri and Zhu (1998); Zhu, Zhang and
Atluri (1998)].
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Figure 1 shows the relative error norm L2 of numerical solutions of Eq. (19), which
are obtained respectively by using the local boundary integral equation method (L-
BIE) [Zhu, Zhang, and Atluri (1998)], the meshless Local Petrov-Galerkin method
(MLPG) [Atluri and Zhu (1998)], and the present wavelet method. We see from
Figure 1 that the present wavelet solution is very accurate and almost independen-
t of the number of grid points N, which is different from those given by LBIE
and MLPG whose order of convergence is about 7.5 [Atluri and Zhu (1998); Zhu,
Zhang, and Atluri (1998)]. The reason for this phenomenon may be the fact that
the wavelet expansion (1) can exactly characterize the theoretical solution of Eq.
(19), since Eq. (1) is a completely accurate representation of the polynomial whose
order is below the vanishing moment β = 6 of the wavelet function we use [Meyer
(1992); Wang (2001); Liu, Zhou, Zhang, and Wang (2014)]. And the very slight
error of the proposed solution shown in Figure 1 may be caused by rounding errors
which are not specially handled in this study.
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Figure 1: Relative error norm L2 of numerical solutions of Eq. (19) obtained re-
spectively by using LBIE, MLPG and the present wavelet method.

Example 3 Consider the two-dimensional Poisson equation

∂ 2 p
∂x2 +

∂ 2 p
∂y2 =−8π

2 sin(2πx)sin(2πy), x,y ∈ [0,1] (20)

subjected respectively to the Dirichlet boundary conditions [Barad and Colella
(2005)]
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p(0,y) = p(1,y) = p(x,0) = p(x,1) = 0 (21)

and the mixed boundary conditions
∂ p
∂x

=−2π sin(2πy),x = 0

p+
∂ p
∂x

=−2π sin(2πy),x = 1

p(x,0) = p(x,1) = 0

. (22)

The exact solution of this problem is p(x,y) = sin(2πx)sin(2πy).

Table 3: Error L1 and order of convergence R1 for Eq. (20) with boundary condi-
tions (21).

Grid N
Present TFVD [Barad (2005)] FFVD [Barad (2005)]

L1-error Order R1 L1-error Order R1 L1-error Order R1

16×16 3.795E-05 — — — — —
32×32 7.566E-07 5.65 — — — —
64×64 1.394E-08 5.76 1.075E-04 — 1.361E-07 —

128×128 2.710E-10 5.68 2.644E-05 2.02 8.490E-09 4.00
256×256 6.920E-12 5.29 6.562E-06 2.01 5.302E-10 4.00
512×512 2.589E-12 1.42 1.635E-06 2.00 3.312E-11 4.00

Table 4: Error L∞ and order of convergence R∞ for Eq. (18) with boundary condi-
tions (21).

Grid N
Present TFVD [Barad (2005)] FFVD [Barad (2005)]

L∞-error Order R∞ L∞-error Order R∞ L∞-error Order R∞

16×16 1.959E-04 — — — — —
32×32 6.868E-06 4.83 — — — —
64×64 2.217E-07 4.95 2.306E-04 — 3.182E-07 —

128×128 7.002E-09 4.98 5.457E-05 2.08 1.970E-08 4.01
256×256 2.199E-10 4.99 1.330E-05 2.04 1.228E-09 4.00
512×512 7.396E-12 4.89 3.286E-06 2.02 7.652E-11 4.00

Tables 3 and 4 respectively show the comparisons of the mean absolute error L1
and the maximum absolute error L∞ between solutions obtained respectively by
using different numerical methods for the two-dimensional Poisson equation (20)
with the Dirichlet boundary conditions (21). It can be seen from Tables 3 and 4
that the present wavelet solutions are more accurate than those given by both of the
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two-order finite volume method (TFVD) and the four-order finite volume method
(TFVD) [Barad and Colella (2005)]. And from Tables 3 and 4, we also can find that
the order of convergence R∞,1 of the proposed wavelet method is about 5, which
obviously exceeds the order of convergence of the finite volume method [Barad
and Colella (2005)]. In Figure 2, we show the relation between the errors and the
number of grid points N for the two-dimensional Poisson equation (20) with the
mixed boundary conditions (22). It can been seen from Figure 1 that the present
wavelet method for solving Poisson problems with complex boundary conditions
is also very accurate and efficient, in which the order of convergence R∞,1 ≈ 4 and
the mean absolute error L1 ≈ 2.27 × 10−7 for the number of grid points N = 128
× 128.
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Figure 2: Mean absolute error L1 and maximum absolute error L∞ of wavelet solu-
tions of Eq. (20) with mixed boundary conditions (22) as a function of the number
of grid points in x(y) direction N1/2.

Example 4 Consider the three-dimensional Poisson equation with Dirichlet bound-
ary conditions

∂ 2 p
∂x2 +

∂ 2 p
∂y2 +

∂ 2 p
∂ z2 =−3π

2 sin(πx)sin(πy)sin(πz)

p(x,y,z) = 0, x,y,z = 0,1, x,y,z ∈ [0,1]
(23)

which has the exact solution p(x,y,z) = sin(πx)sin(πy)sin(πz) [Zhang (1998)].
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Table 5: Maximum absolute error L∞ and order of convergence R∞ for problem
(23).

Grid N
Present FOS [Zhang (1998)] CDS [Zhang (1998)] HWM [Shi (2012)]

L∞-error Order R∞ L∞-error Order R∞ L∞-error Order R∞ L∞-error Order R∞

8×8×8 1.89E-04 — 2.35E-04 — 1.30E-02 — 1.35E-04 —
16×16×16 6.71E-06 4.82 1.43E-05 4.04 3.22E-03 2.01 3.55E-05 1.92
32×32×32 2.20E-07 4.93 9.04E-07 3.98 8.04E-04 2.00 — —

Table 5 lists the maximum absolute error L∞ and order of convergence R∞ of the
numerical solutions for the three-dimensional Poisson problem (21) obtained re-
spectively by using the proposed wavelet method and other existing methods. The
results listed in Table 5 show clearly that the present wavelet solutions are more
accurate than those given respectively by the fourth-order compact scheme (FOS)
[Zhang (1998)], the central difference scheme (CDS) [Zhang (1998)], and the Haar
wavelet method (HWM) [Shi, Cao, and Chen (2012)].
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Figure 3: Mean absolute error L1 and maximum absolute error L∞ of wavelet solu-
tions as a function of the number of grid points in x(y, z) direction N1/3.

Example 5 Consider the three-dimensional Poisson equation

∂ 2 p
∂x2 +

∂ 2 p
∂y2 +

∂ 2 p
∂ z2 = ex + ey + ez,x,y,z ∈ [0,1] (24)

subjected to the Dirichlet boundary conditions extracted from the exact solution
p(x,y,z) = ex + ey + ez.
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Figure 3 shows the mean absolute error L1 and maximum absolute error L∞ of the
proposed wavelet solutions as a function of the number of grid points N. From
Figure 3, we can find out that the present wavelet method has a good accuracy and
efficiency for solving the three-dimensional Poisson problem (24), where the order
of convergence R∞,1 ≈ 4 and the mean absolute error L1 can reach 7.830 × 10−9

when the number of grid points N = 32 × 32 × 32.

5 Conclusion

In this paper, an approximation scheme for a L2-function defined on a three-dimen-
sional bounded space by combining techniques of boundary extension and Coiflet-
type wavelet expansion is introduced. Based on such approximation scheme, we
proposed a modified wavelet Galerkin method for the solution of Poisson equations
with various boundary conditions. By numerically solving the one-, two- and three-
dimensional Poisson problems, results demonstrate that the proposed wavelet has
a much better accuracy and convergence rate than many methods developed so far,
and has a good capability in dealing with mixed boundary conditions.
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