
Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

The Accuracy of Mathematical Models in Simulator
Distributed Computing

I. Kvasnica1, P. Kvasnica2

Abstract: The issue of simulation of decentralized mathematical models is dis-
cussed in the paper. The authors’ knowledge is based on a theory of design of
decentralized computer control systems. Their knowledge is gained in the process
of designing mathematical models that are simulated. A decomposed control sys-
tem is required to meet the conditions of observation and control. The methodology
of a multi-model design is based on main principles of object orientation such as
abstraction, hierarchy, and modularity. Modelling on a parallel architecture has an
impact on a simulator system. The system is defined by the equations shown be-
low. An important part is the way of analyzing the simulation method, an analytical
approach, and corresponding software implementation tools.

Keywords: Accuracy of integration; Centralized and decentralized systems; Con-
trol modules; Distributed computing; Modelling and simulation.

1 Introduction

A distributed mathematical model can be simulated using parallel computer archi-
tecture which can be based on multiprocessors; each processor is of multi-core
architecture. Computational power of such systems is higher compared to single-
processor systems, see Duncan, Gordon, Zaluska, and Edwards (1994).

In a process of modelling and simulation of complex systems, various methods of
model design and simulation experiment control can be used. It turns out to be very
important so that several different selected methods and simulation tools could be
combined in a single model, Kvasnica, Páleník, and Čižmár (2007).

The most important concept is the concept of encapsulation allowing hiding of

1 Regional Department for Environmental Issues of Trencin, Hviezdoslavova 3, 911 00 Trenčín,
Slovak Republic. tel: +421-32-7432032, e-mail : kvasnica.igor@gmail.com.

2 Alexander Dubcek University of Trencin, Faculty of Defense Technology, Department of Informat-
ics, Študentská 2, 911 50 Trenčín, Slovak Republic, +421-32-7400704, Fax: +421-32-7400102,
Email: peter1.kvasnica@gmail.com.



448 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

implementation details of model parts (sub-models). It is then possible to change
the underlying implementation of sub-models easily. We use standard terms to
describe the model creation and simulation process, see Hrubý, Kočí, Peringer, and
Rábová (2002):

• A model defines the structure and functionality of a system;

• An environment of a model is connected to an input/output interface of the
model;

• A simulator provides a background for model behaviour implementation;

• An experiment controls the process of simulation via the model;

• A computing environment is a tool for implementation of a model and exper-
iments by it.

We have defined the following categories of simulation abstractions:

• Model abstractions;

• Environmental abstractions;

• Abstractions for describing experiments.

We use a continuous simulation language to solve differential equations.

2 Description of mathematical models

Two most basic algorithms, Forward Euler and Backward Euler, are used in our
solution for numerical integration. A numerical stability domain is introduced as
a pillar to characterize an integration algorithm and a general procedure to find
the numerical stability domain of any integration scheme, see Cellier and Kofman
(2006).

2.1 Principles of numerical integration

A state-space model is as follows:

ẋxx(t) = fff (xxx(t),uuu(t), t) , (1)

Where xxx is a state vector, uuu is an input vector, and t represents time, with a set of
initial conditions:

xxx(t=t0) = xxx0. (2)



The Accuracy of Mathematical Models in Simulator Distributed Computing 449

Let xi(t) represent the ith state trajectory as a function of simulated time t. As long
as the state-space model does not contain any discontinuity in either fi(xxx,uuu, t) or
any of higher derivatives, xi(t) is itself a continuous function of time. Such function
can be approximated by any desired precision by a Taylor-Series expansion of any
given point along its trajectory. As long as the function does not exhibit a finite
escape time, i.e. it approaches infinity for any finite value of time. Let t∗ denote
a point in time, about which we wish to approximate the trajectory using Taylor
Series, and let t∗+h be the point in time, at which we wish to evaluate the approx-
imation, Cellier and Kofman (2006). The value of the trajectory at that point can
then be given as follows:

xi (t∗+h) = xi (t∗)+
dxi (t∗)

dt
·h+ d2xi (t∗)

dt2 · h
2

2!
+ · · · . (3)

Different integration algorithms vary in how they approximate the higher state
derivates, and in the number of terms of Taylor-Series expansion, that they con-
sider in the approximation [Rolf and Staples (1986)].

2.2 The approximation accuracy

If the term n+1 of the Taylor-Series is considered, the approximation accuracy of
the second derivative d2xi(t∗)/d2t = d fi(t∗)/dt should be of order n−2, since this
factor is multiplied by h2. The accuracy of the third state derivates should be of the
order n−3, since this factor is multiplied by h3, etc. In this way, the approximation
is correct up to hn. N is therefore called the approximation order of the integration
method; see Cellier and Kofman (2006).

Many engineering simulation applications require a global relative accuracy of ap-
proximately 0.002. If the local integration error is of size el , then the per-unit-step
integration error assumes the value of ep.u.s = el/h. The global integration error
is proportional to the per-unit-step integration error, as long as the integration error
does not accumulate excessively across multiple steps.

In accordance with the previously made observation, this corresponds to an algo-
rithm with an approximation order of h4 for the local integration error. We should
require for example a local accuracy of 0.0001 [Rolf and Staples (1986)].

In a digital computer, a real number can only be represented with a finite precision.
This type of error is called round-off error. It occurs in one of the two main general
formats that have become common and called floating point.

In common programming languages, there are two formats called single precision
for 32-bit numbers and double precision for 64-bit numbers. The most common
problems resulting from round-off error occur when many steps are involved with
rounding occurring at each step.



450 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

3 An appropriate mathematical model of a simulator system

For notation of mathematical models of a flying simulator, we can use the state
space description. We have a linear controllable non-observed dynamic system,
see Clark (1996):

ẋxx(t) = AAAxxx(t)+BBBuuu(t),

yyy(t) =CCCxxx(t),

xxx(t) = xxx0, (4)

Where: AAA, BBB, CCC, xxx, uuu, and yyy have dimensions (n×n),(r×n),(l×n),(n× l),(m× l),
and (r× l) matrices respectively. The first number in brackets means a number of
matrix rows; second number means a number of matrix columns. When we try and
make the task easier that we will focus on the object of the control, the equation (1)
can have a general shape:

ẋxx = AAAxxx+BBBuuu,

yyy =CCCxxx. (5)

The Eq. 5 represent, in a form of a matrix, an aircraft dynamic system of a flying
simulator comprising of 11 state variable sensors of information, 18 state variables
that express situation coordinates of performing elements in the system. They are
divided into two halves and the rest is divided into 38 state variables that represent
unmeasured noise and sensor failures [Bajborodin (1975)]. Four parts of a piloting
control system are expressed by the state vector n = 4 that represent a state matrix.

3.1 A decentralized mathematical model of an aircraft in a simulator

According to the given facts, the first equation from Eq. 5 can be expressed [Lazar,
Adamčík, and Labún (2007)]:

ẋ1
ẋ2
ẋ3
ẋ4

=


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




x1
x2
x3
x4

 . (6)

Let us decompose the given system into four subsystems. The first one shall be the
subsystem of state variable sensors, the second and the third ones shall be subsys-
tems of performing items (two systems), noise and failures of the apparatus shall
be measured by the fourth one. Thus the subsystems have the order n1 = 1, n2 = 1,



The Accuracy of Mathematical Models in Simulator Distributed Computing 451

n3 = 1, n4 = 1, of course it does not have to be like this. The state space is divided
into 4 parts:

xxx = (x1,x2,x3,x4)
T = (x1x1,x1x2,x1x3, . . . ,x4x4) , (7)

Where xxxixxx j represent the items of a state vector. If i represents order relevancy
n, i.e. the number of the subsystem, then j – stands for sequential number of the
item in the given subsystem. The architecture of the system matrix AAA in the state
space can be formed after multiplying the following shape, see Lazar, Adamčík,
and Labún (2007):

ẋ11 = a11x1x1 +a11x1x2 +a11x1x3 +a11x1x4,

ẋ12 = a12x1x1 +a12x1x2 +a12x1x3 +a12x1x4, (8)
...

ẋ44 = a44x1x1 +a44x1x2 +a44x1x3 +a44x1x4,

Then we decompose 16 subsystems into four parts called isolated subsystems. The
above mentioned process of decomposition is carried out by matrix and vector op-
erations. Sixteen blocks A11,A12, . . . ,A43, A44 of the matrix AAA are marked according
to the order, where:

ẋ11 = A11x11 +A11x12 +A11x13 +A11x14, (9)

ẋ12 = A12x11 +A12x12 +A12x13 +A12x14,

...

ẋ44 = A44x11 +A44x12 +A44x13 +A44x14.

The mathematical description of isolated subsystems has then the following form:

ẋ1 = A′11x1, ẋ2 = A′22x2, ẋ3 = A′33x3, ẋ4 = A′44x4, (10)

Where:

A′11 =


A11
A12
A13
A14

 , A′22 =


A21
A22
A23
A24

 , A′33 =


A31
A32
A33
A34

 , A′44 =


A41
A42
A43
A44

 . (11)

The mutual relations between the first and second isolated subsystems are described
by l12(x) meaning that the equation of the first and second isolated subsystem is:

l12(x) = A′11


x1
x2
0
0

= (A11,A12,A13,A14)
T


x1
x2
0
0

 . (12)



452 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

The analyzed case is simple and well described in the reference of Blakelock
(1991). The capability of being decomposed can be calculated by means of in-
cidental matrices that can be utilized in cases when the mathematical model of the
system is known. Units of incidental matrix are placed when its elements are per-
muted or transformed so that they can appear diagonally. The number of items on
the main diagonal is given by the number of subsystems.

4 A mathematical model of speed and angle of attack in a simulator

The change of parameters of flying objects is described by differential equations
in a mathematical incremental form. To create such system of differential equa-
tions, one must know aerodynamic coefficients, a mathematical model of aircraft
systems and other parameters of aircraft. Mathematical models of a flight simulator
in Laplace transformation, see Blakelock (1991), Krasovkij (1980), are created by
this approach.

4.1 Speed increment dependence

The speed increment is defined by the equation:

∆V (s) =−W δT
V (s)∆δT (s)−W δB

V (s)∆δB(s), (13)

Where W δT
V (s) is the mathematical model of speed (a transfer function) depending

on the fuel supply, δT (s) is the fuel supply, W δB
V (s) is a mathematical model of

speed depending on the elevator angle, δB(s) is the elevator angle. From the math-
ematical model of speed in the longitudinal direction, the fuel supply and angle of
attack can be determined, see Krasovkij (1980):

W δT
V (s) =−aδT

x
∆11

∆
, W δB

V (s) =−aδB
y

∆21

∆
−aδB

mz
∆31

∆
, (14)

Where aδT
x is a speed coefficient with respect to fuel supply, aδB

y is a lift coefficient
with respect to the elevator angle, aδB

mz is a speed angle coefficient with respect to
the elevator angle, ∆(s) – a determinant of the transfer function, ∆11(s), ∆21(s),
∆31(s) – algebraic adjuncts to the determinant ∆(s). The transfer function of fuel
supply can be calculated using the following equation:

∆V δT
V (s) =W δT

V (s)∗∆δT (s)

= 5
s3 +1.12s2 +62.782s+25.32

s4 +1.1338s3 +62.7975s2 +28.6585s+4.09291
∆δT (s).

(15)



The Accuracy of Mathematical Models in Simulator Distributed Computing 453

The transfer function of the elevator is given by:

∆V δB
V (s) =W δB

V (s)∗∆δB(s)

=
−0.11 · (9.81s+620.973)−0.42 · (−9.81s−10.0062)

s4 +1.1338s3 +62.7975s2 +28.6585s+4.09291
∆δB(s).

(16)

Information about mathematical solution of these equations is known [Clark (1996)].
The coefficients for l12(x) defined by the equation (12) are as follows:

A11 = 5
s3 +1.12s2 +62.782s+25.32

s4 +1.1338s3 +62.7975s2 +28.6585s+4.09291
,x1 = ∆δT (s). (17)

A12 =
−0.11 · (9.81s+620.973)−0.42 · (−9.81s−10.0062)

s4 +1.1338s3 +62.7975s2 +28.6585s+4.09291
,x2 = ∆δB(s). (18)

4.2 Angle of attack dependence

The increment of an angle of attack is defined as follows:

∆α(s) =−W δT
α (s)∆δT (s)−W δB

α (s)∆δB(s), (19)

Where W δT
V (s) is a mathematical model of speed (a transfer function) depending on

the fuel supply, δT (s) is the fuel supply, W δB
V (s) is a mathematical model of speed

depending on the elevator angle, δB(s) is the elevator angle. From the mathematical
model of an angle of attack in the longitudinal direction, the fuel supply and the
angle of attack can be determined, see Krasovkij (1980):

W δT
α (s) =−aδT

x
∆12

∆
, W δB

α (s) =−aδB
y

∆22

∆
−aδB

mz
∆32

∆
, (20)

The meaning of coefficients aδT
x , aδB

y , aδB
mz and ∆xx(s) see the paragraph after Eqs.

14. The transfer function of fuel supply can be calculated using the following
equation:

∆α
δT
α (s) =W δT

α (s)∗∆δT (s)

= 5
0.002s2−0.2518s−0.1

s4 +1.1338s3 +62.7975s2 +28.6585s+4.09291
∆δT (s).

(21)

The transfer function of the elevator is as follows:

∆α
δB
α (s) =W δB

α (s).∆δB(s) =

−0.11 · (−s3+0.8862s2+0.012422s−2.4525)−0.42 · (−s2−0.4138s−0.02514)
s4+1.1338s3+62.7975s2+28.6585s+4.09291



454 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

∆δB(s). (22)

Next, we define:

A21 = 5
0.002s2−0.2518s−0.1

s4 +1.1338s3 +62.7975s2 +28.6585s+4.09291
, x1 = ∆δT (s). (23)

A22 =
−0.11 · (−s3+0.8862s2+0.012422s−2.4525)−0.42 · (−s2−0.4138s−0.02514)

s4+1.1338s3+62.7975s2+28.6585s+4.09291
,

x2 = ∆δB(s). (24)

The Eqs.15 and 21 define the responses to the step change of fuel supply in Laplace
transformation ∆δT (s) = 1/s. Equations 16 and 22 define the responses to the step
change of an elevator position in Laplace transformation ∆δB(s) = 1/s.

The stability of linear control system by Root-locus technique of the characteristic
equation is defined. The characteristic equation is the denominator Eq. 15 resp. Eq.
21. If all real parts of the roots of this equation are a negative number, the system is
stable. Roots of the characteristic equation are a pair of complex conjugated poles
−0.229 ± j0.114 and a pair of complex conjugated poles −0.338 ± j7.894.

5 Simulation and visualization of models

Latest computer technologies allow formulation and solutions to a new intricate
problem which depends on construction of complex mathematical models and meth-
ods of their solution. The designing and building a visual model of aircraft process-
es at fuel supply of aircraft engines must be accurate. Getting the exact solution to
this problem requires simultaneous solution for the whole complex of physical and
geometrical problems which is based on significant computing resources, Teresh-
enko (2009).

The simulation and visualization is done using three threads:

• One thread (light weight process) simulates a mathematical model that is
waiting for drawing into a graphical window and it puts the values into a
buffer;

• Second thread (light weight process) uses data in the buffer and draws the
graphs using the GDI+ technology;

• The synchronizing thread controls the main graphical window and its com-
ponents.



The Accuracy of Mathematical Models in Simulator Distributed Computing 455

Sequential run of mathematical model program is characterized by equations com-
puting in single computer time. The code operations are realized sequentially in a
given order. A disadvantage of this method is a power constraint of the processor
that computes the models, see Chapman, Jost, and Van der Pas (2007).

5.1 Parallel execution support

The parallel run of a program code can be the solution of the abovementioned prob-
lem. It can be realized using distributed memory (DM) architecture (MPI Control)
or shared memory (SM) architecture (OpenMP Control) and hybrid architecture
(Hybrid memory).

These simulation computers of a parallel program in distributed computer systems
are identified as node computers [Martincová, Grondžák, and Zábovský (2008)].
They usually consist of a primary input message queue, one or more equivalent
processors and required equipment for communication via patch links.

The threads operate in either serial or parallel modes. In the serial mode, tasks
run sequentially on available resources in the nodes. Input models represent con-
trol values of mathematical models – the fuel supply or the elevator angle. Output
models represent simulated values of mathematical models – the speed or the at-
tack angle. The given system can be simulated by more computers or processors.
In case more processors of a simulator system are involved (P1,P2, . . . ,Pn), they
communicate with each other by means of a SM, see Fig. 1.

Figure 1: Block diagram of processors in a simulation system.

6 The program application created by MPI

The MPI facilitates this approach by providing many wrappers for calls to industrial-
strength open source MPI implementations such as MPICH and LAM-MPI. The
applying standard parallel processing techniques and Message Passing Interface
(MPI) implementations are used. Their applications can benefit the advantages of
parallel computing [Raeth (2010)].



456 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

The abovementioned system affects the multiprocessing program code. Distributed
architecture was realized as connection of five nodes (one is a central computer, the
others are computing nodes), see Fig. 2. One node (N1) is designed as a central
computer and the others are computing ones and each of them is calculating only
one mathematical model. As it results from the expression, the mathematical model
defined by Eq. 17 A11 ∗x1 is simulated by the N2 computer on the second node, Eq.
18 A12 ∗ x2 is simulated by the N3 computer on the third node, the mathematical
model defined by Eq. 23 A21 ∗ x1 is simulated by the N4 computer on the fourth
node resp. Eq. 24 A22 ∗ x2 is simulated by the N5 computer on the fifth node.

Functions send/receive commands are implemented to change messages in the
source code application and are added to run in the nodes. We use two basic func-
tions to send and receive messages [Mpich2 (2008)]:

• MPI_Send (parameters)

• MPI_Recv (parameters),

Where the MPI_Send() function on a side of the sender is responsible for sending
messages. The corresponding MPI_Recv() function is inserted into a target process
to receive messages.

The simulation takes 25 seconds and the intermediate data is sent in periodical time
to the node that presents the received data in a graphical form. The simulation time
is set depending on the integration error value that is less than 0.002 in distributed
simulation methods.

Figure 2: Message passing interface – architecture, Ni – node-computer, Pi – pro-
cessor, Mi – local memory, Huges (2003).

7 The distributed methods

7.1 Computation using the MPI tool

The parallel system based on the standard MPI can be introduced as the first one.
The MPI is a library specification for message passing. Message passing systems



The Accuracy of Mathematical Models in Simulator Distributed Computing 457

provide alternative methods for communication and movement of data among mul-
tiprocessors. Typically it combines local memory and the processor at each node
of the interconnection network. There is no global memory, it is necessary to move
data from one local memory to another by means of message passing, see Chevance
(2005).

There are n nodes which consist of a processor P and a local memory M. N-
odes communicate with each other by means of links and via an interconnection
network. In executing a given program, the program is divided into concurrent pro-
cesses, each is executed in a separate processor. This simultaneous execution of the
same task in multiple processors is used in order to obtain results faster.

The implementation MPICH2 is a portable, high-performance implementation of
the entire MPI-2 standard and consists of a library of routines that can be called
from the program. The TOOLKIT is an integrated suite of tools that supports
measurement, analysis, attribution, and presentation of application performance for
both sequential and parallel programs [Adhianto, Banerjee, Fagan, Krentel, Marin,
Mellor-Crummey, and Tallent (2010)].

Figure 3: Simulation results of Eq. 17 – upper left, 18 – upper right, 23 – bottom
left, 24 – bottom right.



458 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

From the graphical output of the central node, we obtain Fig. 3 as a result of the
simulation. The simulation of a mathematical model using a cluster technology of
a flight simulator is done according to the Eq. 17 and 18 or 23 and 24.

The upper left picture shows the speed increment depending on the fuel supply
and it is equal to 31.0192 [m/s]. The upper right picture shows the speed increment
depending on the elevator and it is equal to−15.6142 [m/s]. The bottom left picture
shows the increment of the angle of attack depending on the fuel supply and it is
equal to −0.1237 [rad]. The bottom right picture shows the increment of the angle
of attack depending on the elevator and it is equal to −0.0714 [rad].

7.2 Computation using the OpenMP tool

Shared memory computing is based on multi-core processors that can issue mul-
tiple instructions per cycle from multiple instruction streams, El-Rewini, Abd-El-
Barr (2005). The same simulation problem described above was also realized on
the SM based on the OpenMP standard that supports multi-platform SM parallel
programming in C/C++.

The presented OpenMP based system is modelled on a computer that consists of
Intel Quad Core Q9450 processor with 4 cores, 2.66 GHz each. Informative simu-
lation results are shown in Fig. 4.

Figure 4: Simulation results of Eq. 17 – left, 23 – right.

The left picture shows the speed increment depending on the fuel supply and it is
equal to 31.0174 [m/s]. The right picture shows the increment of an angle of at-
tack depending on the fuel supply and it is equal to −0.1247 [rad]. The graphical
presentation of a speed increment depending on the elevator is identical to the pre-
sentation in the Fig. 3, top right. A steady state of the speed increment is 15.6134
[m/s]. The graphical presentation of the increment of the angle of attack depending



The Accuracy of Mathematical Models in Simulator Distributed Computing 459

on the elevator is identical to the presentation in the Fig. 3, bottom right. A steady
state of the increment the angle of attack is −0.0721 [rad].

7.3 The hybrid distributed shared memory architecture

The hybrid distributed-shared memory system combines the advantages of archi-
tectures mentioned above. Each node consists of two processor cores.

Two nodes compute four independent mathematical models according to Eq. 17,
18, 23 and 24. The third node collects computed data from other nodes and shows
the simulation results in a graphical form. Each computing node consists of Athlon
X2 processor with two cores that share one memory. The core frequency is 2.6 GHz
and the memory size is 2 GB. All nodes are interconnected via 1 Gbit/s Ethernet.

Graphical results represent their compatibility with previous forms of simulation
and are shown in Fig. 5. The upper left picture shows the increment of speed
depending on the fuel supply: it is equal to 31.0178 [m/s]. The upper right picture
shows the increment of speed depending on the elevator: it is equal to −15.6151

Figure 5: Screenshot of simulation results based on Eq. 17 – upper left, 18 – upper
right, 23 – bottom left, 24 – bottom right.



460 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

[m/s]. The bottom left picture shows the increment of the angle of attack depending
on the fuel supply: it is equal to −0.1248 [rad]. The bottom right picture shows the
increment of the angle of attack depending on the elevator: it is equal to −0.0705
[rad].

8 Summary

The paper introduces three main architectures for efficient simulation of mathemat-
ical models: the DM, the SM and the hybrid one. The simulation is implemented
on known different architectures that support parallel computing. This helps to
overcome physical and architectural limitations of computational power that can
be achieved with a single-processor system.

The use of a processor, a faster cache memory, operating memory access and a
higher transmission capacity are then very suitable for the application. The hybrid
architecture provides a higher transmission capacity and higher speed of computa-
tion.

Modelling of a parallel aspect of decomposed subsystems of a flight simulator in a
form of a mathematical notation was carried out in accordance with Eq. 17, 18, 23
and 24. The results achieved in computation of mathematical models and the use
of these three methods seem to be effective and pragmatic according to the results
of from an integration algorithm.

The general accuracy from the comparison of simulation results of the use of the
three methods is shown in Tab. 1, resulting in the accuracy less than 0.002.

Table 1: Accuracy of simulation results.

Type/ DM SM HYBRID Accuracy Accuracy Accuracy
Model DM-SM DM-HYB SM-HYB

17 31.0192 31.0174 31.0178 0.0018 0.0014 −0.0004
18 −15.6142 −15.6134 −15.6151 0.0008 −0.0009 −0.0017
23 −0.1237 −0.1247 −0.1248 −0.0010 −0.0011 −0.0001
24 −0.0714 −0.0721 −0.0705 −0.0007 0.0009 0.0016

The strengths of the three models are also a combination of both the advantages:
efficiency (memory savings) and ease of programming of a shared-memory method
and scalability of a distributed-memory method. Sometimes we might get an ad-
vantage of faster simulation, but often on account of a defined quality. Generally, it
is also possible to run a program faster because of such factors as availability of a
better bandwidth for intra-node communication that provides extra communication



The Accuracy of Mathematical Models in Simulator Distributed Computing 461

with the MPI across nodes. These facts and accuracy are very good for real-time
simulation.

Acknowledgement: This work was supported by the Slovak Grant Agency for
Science, by the VEGA 4/0330/09 grant.

References

Adhianto, L.; Banerjee, S.; Fagan, M.; Krentel, M.; Marin, G.; Mellor-
Crummey, J., and Tallent, N. R. (2010): HPCTOOLKIT: tools for performance
analysis of optimized parallel programs. Concurrency Computat.: Pract. Exper.,
vol. 22, pp. 685–701. doi: 10.1002/cpe.1553.

Blakelock, J. H. (1991): Automatic control of aircraft and Missiles. Second Edi-
tion, John Wiley & Sons. Inc., New York.

Bajborodin, J. V. (1975): Bortovyje sistemy upravlenja poletom. Transport,
Moskva.

Cellier, F., E.; Kofman, E. (2006): Continuous System Simulation. Basic Princi-
ples of Numerical Integation: New York : Springer, vol. 2, pp. 25–32.

Clark, R. N. (1996): Control System Dynamics. First Ed., Cambirdge University
Press, New York, USA.

Duncan, S. H.; Gordon, P. L.; Zaluska, E. J.; Edwards, S. I. (1994): Parallel
processing in high integrity aircraft engine control. Springer-Verlag, Berlin.

El-Rewini, H.; Abd-El-Barr, M. (2005): Advanced Computer Architecture and
Parallel Processing. John Wiley & Sons, Inc., New York.

Hrubý, M.; Kočí, R.; Peringer, P.; Rábová, Z. (2002): Tools for creating of
multimodels. Kybernetes: The International Journal of Systems & Cybernetics,
vol. 9, pp. 1391–1400.

Huges, C.; Huges, T. (2003): Parallel and Distributed Programming Using C++.
The Safari Press, Addison-Wesley Professional.

Chapman, B.; Jost, G.; Van der Pas, R. (2007): Using OpenMP – Portable
Shared Memory Parallel Programming. The MIT Press, Massachusetts.

Chevance, R. J. (2005): Server Architectures: Symetrical Multiprocessors. Else-
vier, Digital Press.

Krasovskij, A. A. (1950): Sistemy avtomaticeskogo upravlenja poletom i ich
analiticeskoje konstruirovanie, Nauka, Moskva.



462 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.447-462, 2015

Kvasnica, P.; Páleník, T.; Čižmár, M. (2007): Mathematical model of aircraft
and its visualization using MPI. Proceedings of 3rd International Workshop on Grid
Computing for Complex Problems, GCCP Bratislava, pp. 117–125.

Lazar, T.; Adamčík, F.; Labún, J. (2007): Modeling characteristics of the air-
craft control. First Ed. Technical University of Košice.

Martincová, P.; Grondžák, K.; Zábovský, M. (2008): Programming in kernel
of operating system Linux. First Ed. University of Žilina.

McCormic, B. W. (1995): Aerodynamics, Aeronautics and Flight Mechanics.
John Wiley & Sons, Inc., New York, Second Ed., USA.

Mmpich2 (2009): MPICH2 is a high performance and widely portable imple-
mentation of the Message Passing Interface (MPI) standard. [Online]. Available:
http://www.mcs.anl.gov/mpi/mpich2.

Raeth P. G. (2010): Parallel MATLAB using standard MPI implementations. Pro-
ceedings of High Performance Computing Modernization Program Users Group
Conference (HPCMP–UGC), 2010 DoD, pp. 438–441.

Rolfe J. M.; Staples K. J. (1986): Flight Simulation. Cambridge University Press,
Cambridge.

Tereshenko V. (2009): One tool for building visual models. Proceedings of Com-
putational Intelligence, Modelling and Simulation, 2009. CSSim ’09. International
Conference on Brno, pp. 59–62.


