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Kernel-Based Local Meshless Method for Solving
Multi-Dimensional Wave Equations in Irregular Domain
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Abstract: This work explores the application of kernel based local meshless
method for solving multi-dimensional wave equations in irregular domain. The
method is tested for various types of boundary conditions in irregular shaped do-
main. The method is capable of solving multi-dimension large scaled problems in
complex shaped domain.
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1 Introduction

The construction of robust and efficient numerical methods for solving large-scale
wave problems in computational physics is an important and challenging research
topic. The wave equation govern many physical problems such as the stress wave in
an elastic solid, water wave propagation in water bodies, and sound wave propaga-
tion in a medium. The kernel-based numerical methods introduced in Hardy (1971)
for scattered data fitting problems. It was shown in Micchelli (1984) that the system
matrix for the MQ kernel is invertible. The kernels (RBFs) was first used for solv-
ing partial differential equations in the year 1990 [Kansa (1990a,b)]. In this original
work the fluid mechanics problems were solved by approximating the derivatives
by the derivative of MQ kernel functions directly. The convergence theory of ker-
nel based approach was proved in Schaback (2007). During the past three decades
a large number of robust kernel-based approximation methods have been devel-
oped [Atluri and Zhu (1998); Buhmann (2003); Wendland (2004); Fasshauer and
Zhang (2007); Voller, Vertnik, and Šarler (2006); Sarra and Kansa (2009); Beatson,
Davydov, and Levesley (2010); Georgoulis, Levesley, and Subhan (2013); Leves-
ley and Sun (2005); Chen, Fu, and Chen (2014)], These methods have effectively
used for solving many engineering and science problems [Elgohary, Dong, Junkins,
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and Atluri (2014); Dong, Alotaibi, Mohiuddine, and Atluri (2014); Sladek, Stanak,
Han, Sladek, and Atluri (2013); Shibahara and Atluri (2011); Šarler (2005); Yao,
Šarler, and Chen (2011); Yao, Sarler, et al. (2010); Fu, Chen, and Gu (2014); Lin,
Chen, Chen, and Jiang (2013); Haq, Uddin, and Islam (2009); Uddin (2013); Uddin
and Haq (2013)]. The main advantage of using the kernels (RBFs) for the solution
of PDEs is its simplicity, applicability to various PDEs, and effectiveness in dealing
with multi-dimensional problems and complicated domains. In most global kernel-
based methods the differentiation matrices are unsymmetric as well as dense. Due
to the high resolution for large amount of data points it becomes difficult to solve
the problem with global kernel based method. Many robust numerical approxima-
tion methods have been developed to overcome this difficulty some of them are
the transforms based methods and the multipole approaches [Greengard and Strain
(1991); Cherrie, Beatson, and Newsam (2002); Gumerov and Duraiswami (2007)],
the domain decomposition methods [Beatson, Light, and Billings (2001); Kansa
and Hon (2000); Li and Hon (2004)], the partition of unity methods [Wendland
(2002)], the greedy algorithms [Schaback and Wendland (2000); Hon, Schaback,
and Zhou (2003); Ling and Schaback (2008)], the multilevel methods [Fasshauer
(1999); Fasshauer and McCourt (2012)], and the use of locally supported kernel
functions [Wendland (1995); Floater and Iske (1996)]. An other alternative ap-
proach to overcome this difficulty was developed by Tolstykh [Tolstykh (2000)],
here local kernel interpolants in small domains centered around each node is used
to form differentiation weights. This idea has been used to construct various type-
s of local kernel based approximate methods and has been applied successfully
to a wide range of problems. These include convection diffusion [Chandhini and
Sanyasiraju (2007); Stevens, Power, Lees, and Morvan (2009); Šarler and Vert-
nik (2006); Sarra (2012)], incompressible Navier-Stokes [Chinchapatnam, Djidjeli,
Nair, and Tan (2009); Shan, Shu, and Lu (2008); Shu, Ding, and Yeo (2003)], ellip-
tic equations [Tolstykh and Shirobokov (2003); Wright and Fornberg (2006)] and
[Wong, Hon, Li, Chung, and Kansa (1999); Xiao and McCarthy (2003); Brown,
Ling, Kansa, and Levesley (2005)]. In the present work we used the same idea to
construct local kernel based numerical scheme for solving multi-dimensional wave
equations in irregular domain.

2 Local meshless numerical scheme for time dependent PDEs

In this section, we describe a local RBF approximation method for

∂u(x, t)
∂ t

= L u(x, t), x ∈Ω⊂ Rd , t > 0. (1)
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2.1 Spatial approximation

In multivariate scattered data interpolation, we always need to recover an unknown
function u : Rd → R from a given set of N function values {u(x1), . . . ,u(xN)} ⊂
R. Where the scattered centers x1, . . . ,xN ∈ Ω and Ω ⊂ Rd is arbitrary shaped
domain and the centers can be chosen any where in the domain. In the local RBF
approximation method, at each center xi ∈Ω, the local interpolant takes the form

u(xi, t) = ∑
x j∈Ωi

λ j(t)φ(‖xi− x j‖), (2)

where λ i = [λ1, . . . ,λn] is a vector of expansion coefficients, ‖xi− x j‖, denotes the
Euclidean distance between two centers xi and x j, φ(r) is a kernel function defined
for r ≥ 0 and Ωi ⊂Ω is a local domain corresponding to each node xi and contains
n nearest centers around the center xi. The N number of n× n linear systems in
matrix form are given by

ui = Ai
λ

i, i = 1,2, . . . ,N, (3)

where the entries of the matrix Ai are ai
k j = φ(‖xk−x j‖),xk,x j ∈Ωi, the matrix Ai is

called the interpolation matrix, and each system has to be solved for the expansion
coefficients. In order to approximate the linear differential operator L u(x, t), we
have

L u(xi, t) = ∑
x j∈Ωi

λ j(t)L φ(‖xi− x j‖). (4)

The expression in (4) may be given as a dot product of two vectors,

L u(xi, t) = vi ·λ i, (5)

where λ i is the n× 1 vector of expansion coefficients, and vi is 1× n vector with
entries

vi = L φ(‖xi− x j‖), x j ∈Ωi. (6)

To eliminate the expansion coefficients, we have from equation (3)

λ
i = (Ai)−1ui, (7)

we substitute the values of λ i from (7) in (5) to get,

L u(xi, t) = vi(Ai)−1ui = wiui, (8)
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where,

wi = vi(Ai)−1, (9)

is the weight corresponding to center xi. Hence for all centers locations, we have

L u = Wu, (10)

where W is N×N sparse differentiation matrix, each row of the matrix W contains
n non-zeros elements and N−n zeros elements, where n is the number of nodes in
each local domain Ωi.

2.2 Temporal approximation

After spatial local RBF approximation, we obtained the following system of ODEs

∂u
∂ t

= F(u). (11)

In our case F(u) = Wu. To discretize in time we can use any ODE solver like
ode113, ode45 from Matlab. The starting vector will be the initial solution u0.
ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair
[Dormand and Prince (1980)]. It is a one-step solver for computing u(tn), and
it needs only the solution at the immediately preceding time point, u(tn−1). In
general, ode45 is the best function to apply as a first try for most problems. ode113
is a variable order Adams-Bashforth-Moulton PECE solver [Shampine and Gordon
(1975)]. It may be more efficient than ode45 for stringent tolerances and when
the ODE file function is particularly expensive to evaluate. ode113 is a multistep
solver; it normally requires the solution at several preceding time points to compute
the current solution. A good ODE solver will automatically select a reasonable time
step δ t and detect stiffness of the ODE system. For this ODE computation we have
used a fourth-order Runge-Kutta method and selected the time step δ t manually.

r1 = F(un), r2 = F(u+
δ t
2

r1), r3 = F(u+
δ t
2

r2), r4 = F(u+δ tr3),

un+1 = un +
δ t
6
(r1 +2r2 +2r3 + r4). (12)

2.3 Stability of the local meshless numerical scheme

In the present local meshless method of lines our numerical scheme is given by

ut = Wu, (13)
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here the time-dependent PDE is transformed into a system of ODEs in time. The
method of lines refers to the idea of solving the coupled system of ODEs by a
finite difference method in t (e.g Runge-Kutta, etc.). The numerical stability of the
method of lines is investigated by a rule of rhumb. The method of lines is stable if
the eigenvalues of the (linearized) spatial discretization operator, scaled by δ t, lie
in the stability region of the time-discretization operator [Trefethen (2000)].

The stability region is a part of a complex plane consisting of those eigenvalues for
which the technique produce a bounded solution. In the present meshless method
of lines our numerical scheme is given in (11). We can investigate the stable and
unstable eigenvalue spectrum for the given model by computing the eigenvalues of
the matrix W, scaled by δ t.

2.4 Choosing a good value of shape parameter

A variety of kernel functions are available in the literature. In our computation we
used the multiquadrics, φ(r) =

√
1+ c2r2. As usual these RBFs contain a shape

parameter c and solution accuracy greatly depends on this parameter. A variety
of methods are available for choosing good value of shape parameter [Carlson and
Foley (1991); Foley (1994); Rippa (1999); Trahan and Wyatt (2003); Fasshauer
(2007); Scheuerer (2011); Uddin (2014)]. A condition number may be used to
quantify the sensitivity to perturbations of a linear system, and to estimate the ac-
curacy of a computed solution. The conditioning results require that in order for
the system matrix to be well-conditioned that the shape parameter and minimum
separation distance be large. Obviously, both situations cannot occur at the same
time. This observation has been referred to as the uncertainty principle [Schaback
(1995)]. Using this fact, the smallest errors occur when the condition number of
the system matrix is approximately kept in the range 1013 < κ < 1015. The system
matrix is decomposed as U,S,V = svd(Ai). Here svd is the singular value decom-
position of the interpolation matrix Ai. U, V are n×n orthogonal matrices and S is
n×n diagonal matrix contains the n singular values of Ai, and κ = max(S)/min(S)
is the condition number of the matrix Ai. When an acceptable value of shape
parameter is returned by the above algorithm, then the svd is used to compute
(Ai)−1 = (USVT)

−1
= V S−1UT [see Trefethen and Bau III (1997)]. Note that for

orthogonal matrices the inverse of the matrix is equal to its transpose. Consequent-
ly, we can compute the weights wi in (9).

3 Numerical experiments

In this section, we apply the local meshless approximation method described in the
above section to check the accuracy and validity of the present method for the wave
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equations given by.

utt(x,y, t) = α
2

∇
2u(x,y, t), x,y ∈Ω, t > 0, (14)

which may be transformed into a system of two partial differential equations given
by

ut = v, vt = α
2

∇
2u(x,y, t),x,y ∈Ω, t > 0, (15)

where α is speed of the wave.

3.1 The 2d membrane vibrating problem

We consider the 2D membrane vibration problem (14), which has an exact solution
[Young, Gu, and Fan (2009)]

u(x,y, t) =
64
π6

∞

∑
m=1

∞

∑
n=1

1
m3n3 sin(mπx)sin(nπy)cos(

√
m2 +n2παt), (16)

To solve the problem, we used the initial conditions u(x,y,0)= f (x,y), and ut(x,y,0)=
g(x,y,0), along with the boundary conditions u = 0. The N = 625 uniformly dis-
tributed centers in Ω, and 5≤ n≤ 20 nodes in Ωi are used for solving the vibrating
problem (14). The obtained results in the form of the L∞ error norm, the condition
number κ of the interpolation matrix, the shape parameter c of the given kernel,
and the computer time in seconds are shown in Table 1 and Figure 2.

Table 1: Numerical results with different stencil sizes n, corresponding to Problem
3.1: when N = 625, t = 1, δ t = 0.0001, α = 1, domain [0,1]2.

n L∞ κ c C.time(s)
RK4(MQ) 5 3.8266e-004 4.8829e+013 0.0200 2.004643

10 2.9402e-004 5.3690e+013 0.5400 2.057774
15 4.3191e-005 4.2786e+013 1.0800 2.563979
20 2.9205e-005 1.5692e+013 1.6200 2.567946
50 5.8947e-006 1.5551e+013 2.9800 4.839784
60 6.7504e-006 1.1923e+013 3.2300 6.006623
70 1.0156e-005 1.5810e+013 3.3400 7.372028

3.2 Wave propagation problem in two-dimensional rectangular domain

We consider the wave propagation problem in a rectangular domain. The initial
hump displacement is selected at the center of the domain. The smooth wave front
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Figure 1: Centers distributions and a typical stencil associated with a boundary
center (red) and an interior center (green), corresponding to Problem 3.1
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Figure 2: L∞ error norm versus number of nodes N in the domain [0,1]2 for a given
stencil size n.

propagates towards the boundaries with a speed α = 1.5. The hump shape of the
initial displacement and the zero initial velocities u(x,y,0) = e(−4/25)(x2+y2), and
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ut(x,y,0) = 0, and the boundary condition u = 0 are used in the computation. The
N = 1600 uniformly distributed centers in domain Ω= [−10,10]2 and n= 50 nodes
in the local domain Ωi are used. The approximate solution by the present method
in the form of wave propagation are shown in Figure 3.
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Figure 3: The evolution of wave propagation problem in rectangular domain with
zero Dirichlet boundary conditions, corresponding to Problem 3.2.
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Figure 4: The evolution of wave propagation problem in circular domain with zero
Neumann boundary conditions, corresponding to Problem 3.3.

3.3 Wave propagation problem in two-dimensional circular domain

Next we consider the wave propagation problem in a circular domain. The initial
hump displacement is selected at the center of the domain. The smooth wave front
propagates towards the boundaries with a wave speed of α = 1.5. The computa-
tional domain is selected as circular of radius 10 units. The the initial displace-
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ment and the zero initial velocities are selected as u(x,y,0) = e(−4/25)(x2+y2), and
ut(x,y,0) = 0, along with the no flux boundary condition ∇u.n = 0 in the compu-
tations, where n is a unit normal vector to the circular boundary of the circular do-
main. The solution is again advanced in time by fourth-order Runge-Kutta scheme
with time step size δ t = 0.001. We used N = 1600 uniformly distributed centers in
Ω and n = 50 in Ωi. The obtained results in form of wave propagation are shown
in Figure 4.

3.4 Wave propagation problem in two-dimensional L-shaped domain

Here we consider the local meshless scheme for a more complicated wave propaga-
tion problem. In this problem we consider the L-shaped domain with non smooth
boundary. We choose initial Gaussian hump displacement with a center at the point
(-5,5). The computational domain is discretized with N = 1541 equally spaced cen-
ters and the stencil size n = 50 are shown in Fig. 6. The initial displacement and
the zero initial velocity are selected as u(x,y,0) = e(−4/25)(x2+y2), and ut(x,y,0) = 0
respectively. The boundary condition is selected as u = 0 on the boundary ∂Ω. The
local meshless scheme accurately simulate the wave propagation in the L-shaped
domain with a wave speed of α = 2. The simulation of wave propagation in the L-
shaped domain is shown Fig. 6 and the results of the present local meshless scheme
is well agreed with work of Young, Gu, and Fan (2009).
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Figure 5: Centers distributions in circular and L-shaped domain, corresponding to
Problems 3.3 and 3.4 respectively.

4 Conclusions

In this work, the local kernel-based approximation scheme for solving time-dependent
wave equations is applied. Due to the radial kernels the present local scheme has a
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Figure 6: The evolution of wave propagation problem in L-shaped domain with
zero Dirichlite boundary conditions, corresponding to Problem 3.4.

great flexibility to solve multi-dimensional problems with arbitrary shaped domain.
For large scale problems it is not possible to apply the global radial basis func-
tions method which results a dense differentiation matrices. On the other hand the
present local kernel based scheme has the capability of solving large scale problems
because of solving small size linear systems in the local domain. The present lo-
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cal scheme is equally applicable for large scale time-dependent multi-dimensional
problems with irregular shaped domain.
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