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Methods for Solving 2D Fractional Klein-Kramers
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Abstract: In the current paper the two-dimensional time fractional Klein-Kramers
equation which describes the subdiffusion in the presence of an external force field
in phase space has been considered. The numerical solution of fractional Klein-
Kramers equation is investigated. The proposed method is based on using finite
difference scheme in time variable for obtaining a semi-discrete scheme. Also,
to achieve a full discretization scheme, the Kansa’s approach and meshless local
Petrov-Galerkin technique are used to approximate the spatial derivatives. The
meshless method has already proved successful in solving classic and fractional
differential equations as well as for several other engineering and physical prob-
lems. The fractional derivative of equation is described in the Riemann-Liouville
sense. In this paper we use a finite difference scheme to discretize the time fraction-
al derivative of mentioned equation as the obtained scheme is of convergence order
O(τ1+γ) for 0 < γ < 1. Also, we solve the mentioned equation on non-rectangular
domains. The aim of this paper is to show that the meshless methods based on the
strong form i.e. the radial basis functions collocation approach and local weak for-
m i.e. meshless local Petrov-Galerkin idea are also suitable for the treatment of the
fractional Klein-Kramers equation. Numerical examples confirm the high accuracy
and acceptable results of proposed schemes.
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1 Introduction

In recent years there has been a growing interest in the field of fractional calculus
[Miller and Ross (1974); Oldham and Spanier (1974a); Podulbny (1999)]. Frac-
tional differential equations have attracted increasing attention because they have
applications in various fields of science and engineering. Many phenomena in flu-
id mechanics, viscoelasticity, chemistry, physics, finance and other sciences can
be described very successfully by models using mathematical tools from fractional
calculus, i.e., the theory of derivatives and integrals of fractional order. Some of
the most applications are given in the book of Oldham and Spanier (1974b), the
book of Podulbny (1999) and also, Bagley and Torvik (1983). Many considerable
works on the theoretical analysis [Diethelm and Ford (2002); Wess (1996)] have
been carried on, but analytic solutions of most fractional differential equations can
not be obtained explicitly, so proposing new method to finding the numerical so-
lutions of these equations is of practical importance. There are several definitions
of a fractional derivative of order α > 0 [Oldham and Spanier (1974b,a)]. The two
most commonly used are the Riemann-Liouville and Caputo. The difference be-
tween the two definitions is in the order of evaluation. We start with recalling the
essentials of the fractional calculus. The fractional calculus is a name for the theo-
ry of integrals and derivatives of arbitrary order, which unifies and generalizes the
notions of integer-order differentiation and n-fold integration. The classic Klein-
Kramers equation in phase space, as the description of the probability distribution
u(x,y, t) of a Brownian particle, with position x and velocity y, in a fluid, is to the
following form [Gao and Sun (2012)]

∂u(x,y, t)
∂ t

=

[
−γy

∂

∂x
+ γ

∂

∂y

(
ηy− F(x)

m

)
+

γη

mβ

∂ 2

∂y2

]
u(x,y, t), (1)

where m is the mass of the particle, γ is the ratio of the intertrapping time s-
cale and the internal waiting scale, η is the friction constant, β = (κBT̃ )−1, with
κB the Boltzmann constant and T̃ the temperature of the surrounding medium,
F(x) = Φ′(x) is an external field. As said in Deng (2007), anomalous diffusion
is one of the most ubiquitous phenomena in nature, and it appears in a wide variety
of physical situations, for instance, transport of fluid in porous media, diffusion
of plasma, diffusion at liquid surfaces, etc Deng (2007). Also, as mentioned in
Gao and Sun (2012) this model has been widely used in molecular chemical reac-
tions in solvents [Bicout and Berezhkovskii (2001)], dielectric response of dipole
molecules [Coffey, Kalmykov, and Titov (2004)], dynamics of cell migration [Di-
eterich, Klages, Preuss, and Schwab (2008)], biological modeling [Hadeler, Hillen,
and Lutscher (2004)], escape problem over a barrier [Kalmykov, Coffey, and Titov
(2006)], the droplet condensation, evaporation [Widder and Titulaer (1993)]. In the
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classical theory of Brownian transport the phase space dynamics are described by
the deterministic Klein-Kramers equations [Orzeł and Weron (2011)]. The Klein-
Kramers equation for the first time was introduced by Klein in 1922 [Gao and Sun
(2012)]. Many analytic methods were used for solution of Klein-Kramers equa-
tion, but these methods are difficult for application. Therefore, numerical methods
need to be involved. As said in Gao and Sun (2012); Selinger and Titulaer (1984),
the one-dimensional Klein-Kramers equation is equivalent to the Langevin equa-
tion, hence, it can be numerically approximated by solving the stochastic differen-
tial equation. Authors of Selinger and Titulaer (1984) have explored a numerical
technique for determining the structure of the kinetic boundary layer of the Klein-
Kramers equation for noninteracting Brownian particles in a fluid near a wall that
absorbs the Brownian particles. In Trahan and Wyatt (2004) the trajectory method
and a stationary lattice finite difference algorithm are applied in phase space to
solve the classical Klein-Kramers and quantum modified Caldeira-Leggett equa-
tions for two examples: a double-well oscillator in contact with a thermal bath
and the decay of a metastable state. The kinetics of thermally activated processes
are studied in Cartling (1987) by the nonstationary solutions of the Fokker-Planck
equation, or Kramers’ equation, for a particle moving in a bistable potential and
coupled to a heat bath using an alternate direction implicit method. Authors of
Chen, Liu, Zhuang, and Anh (2009) proposed some practical numerical methods
to solve a class of initial-boundary value problems for the fractional Fokker-Planck
equation on a finite domain. Also, Chen, Liu, Zhuang, and Anh (2009) studied the
solvability, stability, consistency, and convergence of these methods.

Recently, the fractional Klein-Kramers equation introduced by Metzler and Klafter
(2000). Incorporating subdiffusive mechanisms into the Klein-Kramers formula
leads to the fractional Klein-Kramers equation [Deng and Li (2011)]. Then, the
equation can effectively describe subdiffusion in the presence of an external force
field in the phase space [Deng and Li (2011)]. As said in Gao and Sun (2012),
the generalized equation of the Rayleigh and Fokker-Planck types could be de-
duced from the fractional Klein-Kramers equation. Interested readers can see Bi-
cout and Berezhkovskii (2001); Coffey, Kalmykov, and Titov (2004); Magdziarz
and Weron (2007); Metzler and Sokolov (2000). For example, the main aim of Gao
and Sun (2012) is to propose a finite difference approach for the fractional Klein-
Kramers equation with appropriate initial and boundary conditions, also, conver-
gence and stability of the scheme are analyzed using the energy method. Authors
of Li, Deng, and Wu (2012) proposed a numerical procedure for solving the Lévy
fractional Klein-Kramers equation using the explicit and implicit finite difference
schemes. The main aim of Liu, Anh, and Turner (2004) is to present a finite differ-
ence scheme for solving the space fractional Fokker-Planck equation (SFFPE) with
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instantaneous source. Authors of Deng and Li (2011) have developed the L1-CDIS
and GL-CDIS schemes to numerically solve the fractional Klein-Kramers equa-
tion, describing the subdiffusion in the presence of the external field in the phase
space. The rigorous stability and error analysis are presented, the two schemes
have the same stability conditions but different convergent order in time direction.
Authors of Orzeł and Weron (2011), using a subordination method, identified a
two-dimensional stochastic process (position, velocity) whose probability density
function is a solution of the fractional Klein-Kramers equation. Authors of Deng,
Chen, and Barkai (2015) discussed the numerical algorithms for the forward and
backward fractional Feynman-Kac equations with fractional substantial derivative
and they used finite difference methods to solve both the forward and backward
fractional Feynmann-Kac equations, and the finite element methods are applied to
solve the backward fractional Feynmann-Kac equation. The main aim of Saadat-
mandi and Dehghan (2010) is to propose a new Legendre operational matrix to the
fractional calculus for solving fractional differential equations. Also we refer the
interested reader to Cui (2012, 2014); Deng (2008) for more research works on the
numerical solution of fractional differential equations and to Esmaeili and Shamsi
(2011) for fractional differential equations.

1.1 A brief review of the meshless method

In recent years radial basis functions (RBFs) have been extensively used in differ-
ent context and emerged as a potential alternative in the field of numerical solution
of PDEs. The use of RBFs in the numerical solution of partial differential equa-
tions (PDEs) has gained popularity in engineering and science community as it is
meshless and can readily be extended to multi-dimensional problems. The key idea
of the meshless methods is that they can obtain accurate and stable solution of in-
tegral equations or partial differential equations with various boundary conditions
with a set of particles without using any mesh [Mirzaei and Dehghan (2010)]. The
most important advantages of meshless methods compared to finite element meth-
ods are: their high-order continuous shape functions, simpler incorporation of h-
and p-adaptivity and certain advantages in crack problems.

A truly meshless method, called the Meshless Local Petrov-Galerkin (MLPG)
method was discussed in depth in Atluri (2004). A local symmetric weak form
(LSWF) for linear potential problems is developed, and a truly meshless method,
based on the LSWF and the moving least squares approximation, is presented for
solving potential problems with high accuracy in Atluri and Zhu (1998). Authors
of Atluri and Shen (2002) studied the efficiency and accuracy of various mesh-
less trial and test functions based on the general concept of the meshless local
Petrov-Galerkin (MLPG) method. Five types of trial functions, and six types of
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test functions are introduced in Atluri and Shen (2002). Recently, many fractional
partial differential equations are solved using meshless approach based on the radi-
al basis functions and moving least squares (MLS) approximation. Authors of Liu,
Liu, Turner, Anh, and Gu (2014) considered a fractional differential equation to
describe a model of mobile/immobile transport with a power law memory function
and solved it using RBFs collocation method on the different domains. Authors of
Gu, Zhuang, and Liu (2011) presented an implicit meshless collocation technique
for time fractional diffusion equation. Also, the stability and convergence of this
meshless technique are investigated theoretically and numerically. Authors of Gu,
Zhuang, and Liu (2010) presented an implicit meshless approach based on the ra-
dial basis functions for numerical simulation of the anomalous sub-diffusion equa-
tion. Also, they discussed on the stability and convergence of their method. Authors
of Liu, Gu, Zhuang, Liu, and Nie (2011) presented an implicit meshless approach
based on the radial basis functions for numerical simulation of time fractional dif-
fusion equation. Authors of Zhuang, Liu, Anh, and Turner (2008) presented an im-
plicit meshless approach based on the moving least squares (MLS) approximation
for the numerical simulation of fractional advection-diffusion equation. A mesh-
less local Petrov-Galerkin (MLPG) method is applied in Sladek, Sladek, Krivacek,
Wen, and Zhang (2007) to solve dynamic plate bending problems described by the
Reissner-Mindlin theory. The meshless local Petrov-Galerkin (MLPG) method is
used in Sladek, Sladek, and Hon (2006) to solve stationary and transient heat con-
duction inverse problems in 2-D and 3-D axisymmetric bodies. Authors of Sladek,
Sladek, Zhang, and Schanz (2006) employed a meshless method based on the local
Petrov-Galerkin approach for the numerical solution of quasistatic and transien-
t dynamic problems in two-dimensional (2D) nonhomogeneous linear viscoelastic
media. Authors of Sladek, Stanak, Han, Sladek, and Atluri (2013) proposed a
meshless local integral equation (LIE) method for numerical simulation of 2D pat-
tern formation in nonlinear reaction-diffusion systems. The local boundary integral
formulation for an elastic body with nonhomogeneous material properties is pre-
sented in Sladek, Sladek, and Atluri (2000). Meshless methods based on the local
Petrov-Galerkin approach are proposed in Sladek, Sladek, and Atluri (2004a) for
solution of steady and transient heat conduction problems in a continuously non-
homogeneous anisotropic medium. The meshless local Petrov-Galerkin method is
used in Sladek, Sladek, Hellmich, and Eberhardsteiner (2007) to analyze transien-
t heat conduction in 3-D axisymmetric solids with continuously inhomogeneous
and anisotropic material properties. A meshless method based on the local Petrov-
Galerkin approach is proposed in Sladek, Sladek, and Atluri (2004b) for solution
of static and elastodynamic problems in a homogeneous anisotropic medium. The
Heaviside step function is used as the test function in the local weak form.
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The approach of meshless method has already proved successful in standard quan-
tum mechanics as well as for solving several other engineering and physical prob-
lems [Dehghan and Shokri (2007); Dehghan and Salehi (2011); Shokri and De-
hghan (2010a)]. Also we refer the interested reader to Abbasbandy, Ghehsareh,
and Hashim (2013, 2012) for more researches work on meshless method of radial
basis functions.

Authors of Dehghan and Shokri (2007) proposed a numerical scheme to solve the
two-dimensional Schrödinger equation using collocation points technique based
on the multiquadrics (MQ) and the Thin Plate Splines (TPS) radial basis func-
tion (RBF). The main aim of Dehghan and Mirzaei (2008) is to employ the mesh-
less local Petrov-Galerkin (MLPG) method for the numerical solution of the two-
dimensional non-linear Schrödinger equation. Authors of Dehghan and Salehi
(2011) combined the boundary knot and the analog equation methods for solving
two-dimensional regularized long-wave equation. A meshless collocation method
based on the radial basis functions is applied in Dehghan and Tatari (2008) for
solving the one-dimensional parabolic partial differential equation subject to given
initial and nonlocal boundary conditions. Authors of Dehghan and Shokri (2008)
proposed a numerical scheme for solving the two-dimensional damped-undamped
sine-Gordon equation in which the presented numerical algorithm is based on the
meshless collocation method using the radial basis functions (RBFs) and the thin
plate splines (TPS) approximations. The main aim of Dehghan and Salehi (2014)
is to develop a meshless local Petrov-Galerkin (MLPG) method based on the shape
functions of the moving least squares reproducing kernel (MLSRK) for solving the
2-D time-dependent Maxwell equations. Authors of Taleei and Dehghan (2014)
introduced an efficient truly meshless method based on the weak form for inter-
face problems as the proposed method combines the direct meshless local Petrov-
Galerkin method with the visibility criterion technique to solve the interface prob-
lems.

The aim of the current paper is to show that the meshless methods based on both
the strong form and local weak form i.e. RBFs collocation approach and meshless
local Petrov-Galerkin technique are also suitable for the treatment of fractional
Klein-Kramers equation which describes the subdiffusion in the presence of an
external force field in phase space [Magdziarz and Weron (2007); ?); Orzeł and
Weron (2011)].

1.2 The main aim of this paper

In this paper, we consider the time fractional Klein-Kramers equation to the fol-
lowing form
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∂u(x,y, t)
∂ t

= 0D1−α
t

[
−γy

∂

∂x
+ γ

∂

∂y

(
ηy− F(x)

m

)
+

γη

mβ

∂ 2

∂y2

]
u(x,y, t)+ f (x,y, t),

0 < x,y < L, 0 < t ≤ T, (2)

with boundary conditions

u(x,y, t) = ψ(x,y), (x,y) ∈ ∂Ω, 0 < t < T, (3)

and initial condition

u(x,y,0) = ω(x,y), 0 < x,y < L, (4)

where 0 < α < 1, and 0D1−α
t u(x,y, t) is the Rieman-Liouville fractional partial

derivative of order 1−α defined by

0D1−α
t u(x,y, t) =

1
Γ(α)

∂

∂ t

t∫
0

u(x,y,η)

(t−η)1−α
dη .

Up to the best of authors’ knowledge, there are many partial differential equations
with fractional derivative that some of them are obtained by substituting the frac-
tional derivative with the classical derivative [Metzler and Klafter (2000)]. But
the fractional Klein-Kramers equation is one of the fractional PDEs that is derived
with physical justification. The interested readers can find more details in Metzler
and Klafter (2000). In the next, we explain some informations taken from Metzler
and Klafter (2000) for deriving the fractional Klien-Kramers equation. The follow-
ing equation is the stochastic differential equation corresponding to the classical
Klien-Kramers

dx
dt

= v,
dv
dt

=−ηv+
F(x)

m
+Γ(t). (5)

As is said in Metzler and Klafter (2000) the Klein-Kramers equation with classical
derivative is derived based on the Chapman- Kolmogorov equation for a Markovian
process [Metzler and Klafter (2000)]

W (x,v, t +∆t) =
∞∫
−∞

d(∆x)
∞∫
−∞

d(∆v)W (x−∆x,v−∆v, t)Ψ(x−∆x,v−∆v,∆x,∆v).

(6)

The transfer kernel in Eq. (6) is thereby given through

Ψ(x−∆x,v−∆v;∆x,∆v) = ψ(x−∆x,v−∆v,∆v)δ (∆x− v∆t). (7)
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in which ψ describes the distribution of transitions with the velocity increment ∆v
for the field variables v and x where the position increment is connected with the
mean time step ∆t through ∆x = v∆t. The coefficients [Metzler and Klafter (2000)]

〈∆v〉=−
(

ηv− F(x)
m

)
∆t,〈

(∆v)2
〉
=

ηkBT
m

∆t +O([∆t]2),
(8)

can be determined by Eq. (5). By some preliminaries, the transfer kernel splits up
into two parts:

Ψt<τ∗(x−∆x,v−∆v;∆x,∆v) = ψ(x−∆x,v−∆v;∆v)δ (∆x− vt), (9)

and

Ψt>τ∗(x−∆x,v−∆v,∆x,∆v) = ψ(x−∆x,v−∆v,∆v)δ (∆x− vτ
∗). (10)

Using the special processes by the generalized Chapman-Kolmogorov equation, we
have [Metzler and Klafter (2000)]

W (x,v, t) =
t∫

0

dt ′
∞∫
−∞

d(∆v)W (x− vτ
∗,v−∆v, t ′)×ψ(x− vτ

∗,v−∆v;∆v)

×w(t− t ′)+φ(t)W0(x,v)

(11)

Now, using the Laplace transformation of Eq. (11) and omitting some small terms,
we arrive at the fractional Klien-Kramer equation as follows [Metzler and Klafter
(2000)]

∂W
∂ t

=0D1−α
t

−v
τ∗

τα

∂

∂x
− 〈∆v〉

τα

∂

∂v
+

1
2

〈
(∆v)2

〉
τα

∂ 2

∂v2

W (x,v, t). (12)

The outline of this paper is as follows:

In Section 2, we explain RBFs approximation method. In Section 3, we obtain
a semi-discrete scheme with convergence order of O(τ1+γ). The implementation
of RBF meshless method for the two-dimensional time fractional Klein-Kramers
dynamics equation is given in Section 4. In Section 5, we explain the moving
least squares approximation. Also, in this section, we express implementing the
meshless local Petrov-Galerkin method for solving the considered model in the
current paper. In Section 6, we report the numerical experiments of solving Eq.
(2) with the methods developed in this investigation for some test problems and
compare the results with those reported in literature. Finally a conclusion is given
in Section 4.
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2 Preliminary of RBFs approximation method

As mentioned in [Liu and Gu (2005)] the definition of a meshfree method is:

A meshfree method is a method used to establish system algebraic
equations for the whole problem domain without the use of a prede-
fined mesh for the domain discretization [Liu and Gu (2005)].

Also, as said in [Liu and Gu (2005)] meshfree methods use a set of nodes scattered
within the problem domain as well as sets of nodes scattered on the boundaries
of the domain to represent (not discretize) the problem domain and its boundaries.
These sets of scattered nodes are called field nodes, and they do not form a mesh,
meaning it does not require any a priori information on the relationship between
the nodes for the interpolation or approximation of the unknown functions of field
variables. In this paper, we use the meshfree method based on RBFs collocation
approach. The reason we use the RBFs collocation method is that it works for
arbitrary geometry with high dimensions and it does not require a mesh at all. The
meshfree method using RBFs is the so-called Kansa’s method [Kansa (1990b,a);
Kansa, Aldredge, and Ling (2009)], where the RBFs are directly implemented for
the approximation of the solution of PDEs. Kansa’s method was developed in 1990,
in which the concept of solving PDEs by using RBFs, especially MQ, was initiated.
As mentioned in Vanani and Aminataei (2008), the MQ approximation scheme was
first introduced by Hardy [Hardy (1971)] who successfully applied this method for
approximating surface and bodies from field data. In this section we introduce the
basic definitions of radial basis functions in general case and we express some basic
theorems for the interpolation error using radial basis functions.

Definition 1. [Fasshauer (2007); Wendland (2005)] A symmetric function φ ∈
Rd ×Rd −→ R is strictly conditionally positive definite of order m, if for all sets
X = {x1, . . . ,xN} ⊂ Rd of distinct points, and all vectors λ ∈ Rd satisfying ∑

N
i=1 λi

p(xi) = 0 for any polynomial p of degree at most m−1 the quadratic form

λ
T Aλ =

N

∑
i=1

N

∑
j=1

λiλ jφ(xi− x j),

is positive, whenever λ 6= 0.

We interpolate a continuous function f : Rd −→ R on a set X = {x1, . . . ,xN} with
choosing the radial basis function for φ : Rd −→ R that is radial in the sense that
φ(x) = Ψ(‖x‖), where ‖.‖ is the usual Euclidean norm on Rd as we will explain in
the next section. Now, we assume φ to be strictly conditionally definite of order m,
then the interpolation function has the following form
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I f (x) =
N

∑
i=1

λiφ(x− xi)+
l

∑
j=1

γ j p j(x),

where l =
(

d +m−1
m−1

)
and {p1, p2, . . . , pl} is a basis of Pmd . The basis problem

is to find N + l unknown coefficients λi and γ j in which N interpolation conditions
are to the following form

I f (xi) = fi, i = 1, . . . ,N,

and for l remaining conditions we use the following equations

N

∑
i=1

λi p j(xi) = 0, 1≤ j ≤ l.

Some popular choices of RBFs include Shokri and Dehghan (2010b) are listed in
the following table where the free parameter c is called the shape parameter [Shokri
and Dehghan (2012)] of the RBFs.

Name of function Definition
Linear r
Cubic r3

Multiquadratics(MQ)
√

r2 + c2

Gaussian(GS) e−cr2

polyharmonic splines r2n ln(r), r2n−1

A mentioned in Rippa (1999) the accuracy of many schemes for interpolating scat-
tered data with radial basis functions depends on a shape parameter, c, of the radial
basis function. Author of Rippa (1999) showed, numerically, that the optimal value
of c depends on the number and distribution of data points, on the data vector, and
on the precision of the computation and he presented an algorithm for selecting
a good value for c that implicitly takes all the above considerations into account.
Also, authors of Huang, Yen, and Cheng (2010) showed, numerically, that RBF in
fact performs better than polynomials, as the optimal shape parameter exists not
in the limit, but at a finite value. Interested readers can see Ling (2012); Ling and
Schaback (2009); Ling and Kansa (2005); Ling, Opfer, and Schaback (2006).

3 Time discretization

In this section, we express a scheme for discretization of Eq. (2). We introduce the
following notation

tk = kτ, k = 0,1, . . . ,N,
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where τ = T/N is the step size of time variable. We need the following definition
and lemma for getting the time-discrete scheme.

Definition 4. [Zhuang and Liu (2009)]. Let y(t) ∈ L1(a,b), the integral

Iα
a+y(t) =

1
Γ(γ)

t∫
a

y(η)

(t−η)1−α
dη , t > a,

where α > 0, is called the Riemann-Liouville fractional integral of order γ .

Lemma 1. [Zhuang and Liu (2009)]. If y(t) ∈C2[0,T ], then

Iα
0+y(tk+1)− Iα

0+y(tk) =
τα

Γ(α +1)

[
y(tk+1)+

k−1

∑
j=0

(λ j+1−λ j)y(tk− j)

]
+Rk,α ,

in which

|Rk,α | ≤Cλkτ
1+α , 1 = λ0 > λ1 > · · ·> λk > 0,λ j = ( j+1)α − jα .

Integrating both sides of Eq. (2) on the [tk, tk+1], gives

u(x,y, tk+1)−u(x,y, tk) =

tk+1∫
tk

f (x,y,s)ds

+ Iα
0+

[
−γy

∂

∂x
+ γ

∂

∂y

(
ηy− F(x)

m

)
+

γη

mβ

∂ 2

∂y2

]
u(x,y, tk+1)

− Iα
0+

[
−γy

∂

∂x
+ γ

∂

∂y

(
ηy− F(x)

m

)
+

γη

mβ

∂ 2

∂y2

]
u(x,y, tk).

Applying Lemma 1 and the following relation

tk+1∫
tk

f (x,y,s)ds = τ f (x,y, tk+1)+O(τ2),

we have

(1−ηµ1)uk+1 +µ1y
∂uk+1

∂x
−µ1

(
ηy− F(x)

m

)
∂uk+1

∂y
−µ2

∂ 2uk+1

∂y2 = uk+

k−1

∑
j=0

(λ j+1−λ j)

{
−yµ1

∂uk− j

∂x
+ηµ1uk− j +µ1

(
ηy− F(x)

m

)
∂uk− j

∂y
+µ2

∂ 2uk− j

∂y2

}
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+ τ f k+1 +Rα , 0≤ k ≤ N−1,

in which |Rα |<Cτ1+α , µ1 =
γτα

Γ(2−α) and µ2 =
γη

mβ

τα

Γ(2−α) .

Omitting the small term Rα , we can obtain the following relation for k = 0,1,2, . . . ,
N−1

(1−µ1η)Uk+1 +µ1y
∂Uk+1

∂x
−µ1

(
ηy− F(x)

m

)
∂Uk+1

∂y
−µ2

∂ 2Uk+1

∂y2

=Uk +
k−1

∑
j=0

(λ j+1−λ j){
−µ1y

∂Uk− j

∂x
+ηµ1Uk− j +µ1

(
ηy− F(x)

m

)
∂Uk− j

∂y
+µ2

∂ 2Uk− j

∂y2

}
+ τ f k+1, 0≤ k ≤ N−1.

(13)

Eq. (13) is the first time-discrete scheme (FTDS), in which the convergence order
in time variable is O(τ1+α).

4 RBF Meshless Method

We assume that Ω is an arbitrary domain in R2. The approximate expansion of
u(xi,yi, tn) is as follows

u(xi,yi, tn) =
M

∑
j=1

cn
jϕ(ri j), (14)

in which

ϕ(ri j) =

√
(xi− x j)

2 +(yi− y j)
2 + c2 =

√
r2 + c2.

For the use of Kansa’s method, we let {(xi,yi)}M
i=1 be M collocation points in Ω in

which {(xi,yi)}MI
i=1 are boundary points and {(xi,yi)}M

i=MI+1 are interior points. For
each point (xi,yi), let us denote

ϕ j(x,y) =
√

(x− x j)
2 +(y− y j)+ c2.

4.1 Full discretization using scheme (13)

In relation (13) for k = 0 we get the following form

(1−ηµ1)U1 +µ1y
∂U1

∂x
−µ1

(
ηy− F(x)

m

)
∂U1

∂y
−µ2

∂ 2U1

∂y2 =U1 + τ f 1, (15)
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and for 1≤ k ≤ N−1 we have

(1−ηµ1)Uk+1 +µ1y
∂Uk+1

∂x
−µ1

(
ηy− F(x)

m

)
∂Uk+1

∂y
−µ2

∂ 2Uk+1

∂y2

=Uk + τ f k+1 +
k−1

∑
j=0

(λ j+1−λ j){
−µ1y

∂Uk− j

∂x
+µ1ηUk− j +µ1

(
ηy− F(x)

m

)
∂Uk− j

∂y
+µ2

∂ 2Uk− j

∂y2

}
.

(16)

Now substituting (14) into (15) and (16) results the following matrix form

Ack+1 = Bk+1, k = 0,1, . . . ,N−1,

in which

A =



ϕ(r1,1) ϕ(r1,2) · · · ϕ(r1,MI+1) · · · ϕ(r1,M)
ϕ(r2,1) ϕ(r2,2) . . . ϕ(r2,MI+1) · · · ϕ(r2,M)

...
...

. . . · · ·
...

ϕ(rMI ,1) ϕ(rMI ,2) · · ·
. . . ϕ(rMI ,MI+1) · · · ϕ(rMI ,M)

L (ϕ(rMI+1,1)) L (ϕ(rMI+1,2)) · · · L (ϕ(rMI+1,MI+1)) · · · L (ϕ(rMI+1,M))

L (ϕ(rMI+2,1)) L (ϕ(rMI+2,2)) · · · L (ϕ(rMI+2,MI+1))
. . . · · · L (ϕ(rMI+2,M))

...
... · · ·

. . .
...

L (ϕ(rM,1)) L (ϕ(rM,2)) · · · L (ϕ(rM,MI+1)) · · · L (ϕ(rM,M))


,

L (ϕ(ri j)) = (1−ηµ1)ϕ j(xi,y j)+µ1yi
∂ϕ j(x,y)

∂x

∣∣∣∣
(x,y)=(xi,yi)

−µ1

(
ηy− F(x)

m

)
∂ϕ j(x,y)

∂y

∣∣∣∣
(x,y)=(xi,yi)

−µ2
∂ 2ϕ j(x,y)

∂y2

∣∣∣∣
(x,y)=(xi,yi)

,

MI +1≤ i≤M, 1≤ j ≤M,

and

ck+1 =
[
ck+1

1 ,ck+1
2 , . . . ,ck+1

M

]T
, Bk+1 =

[
bk+1

1 ,bk+1
2 , . . . ,bk+1

M

]
,

in which

b1
i = ω(x,y)|(x,y)=(xi,yi)

+ τ f 1, MI +1≤ i≤ 1,

and also

bk+1
i =

M

∑
j=1

ck
jϕ(ri j)+ τ f k+1 +

k−1

∑
l=0

(λ j+1−λ j)

{
−µ1y

M

∑
j=1

ck−l
j

∂ϕ(ri j)

∂x
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+µ1η

M

∑
j=1

ck−l
j ϕ(ri j)+µ1

(
ηyi−

F(xi)

m

) M

∑
j=1

ck−l
j

∂ϕ(ri j)

∂y
+µ2

M

∑
j=1

ck−l
j

∂ 2ϕ(ri j)

∂y2

}
,

MI +1≤ i≤M, 1≤ k ≤ N−1,

bk+1
i = ψ(xi,yi),1≤ k ≤ N−1,1≤ i≤MI.

After solving the algebraic system of equations Ack = Bk at each time step, we
can construct the solution using (14). The coefficient matrix, A, is ill-conditioned,
therefore we use the LU decomposition for solving the algebraic system of equa-
tions Ack = Bk.

5 Moving least squares (MLS) shape functions

This subsection is taken from book of Liu and Gu (2005). We consider an unknown
scalar function of a field variable u(x) in the domain Ω. The MLS approximation
of u(x) is defined at x as [Liu and Gu (2005)]

uh(x) =
m

∑
j=1

p j(x)a j(x) = pT (x)a(x), (17)

where p(x) is the basis function of the spatial coordinates and m is the number
of the basis functions. When p(x) = [x,y]T we usually select the following basis
functions [Liu and Gu (2005)]

p(x) = [1, x, y], p(x) = [1, x, y, xy, x2, y2],

also this basis function is built using monomials from the Pascal triangle to ensure
minimum completeness. In Eq. (17), a(x) is the following vector of coefficients

aT (x) = {a1(x) a2(x) · · · am(x)} . (18)

We can obtain the coefficient a by minimizing the following weighted discrete L2-
norm [Liu and Gu (2005)]

J =
M

∑
i=1

W (x−xi)
[
pT (xi)a(x)−ui

]2
, (19)

in which M is the number of nodes in the support domain of x for which the weight
function W (x− xi) 6= 0 and ui is value of u at x = xi. The stationarity of J with
respect to a(x) gives [Liu and Gu (2005)]

∂J
∂a

= 0, (20)
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which leads to the following set of linear equations

A(x)a(x) = B(x)Us, (21)

in which the vector Us is to the following form

Us = {u1 u2 · · · uM} , (22)

and A(x) is called the weighted moment matrix defined as [Liu and Gu (2005)]

A(x) =
M

∑
i=1

W (x)p(xi)p(xi)
T . (23)

Also the matrix B in Eq. (21) is to the following form [Liu and Gu (2005)]

B(x) = [W1(x)p(x1) W2(x)p(x2) · · · WM(x)p(xM)] . (24)

Now, we solve Eq. (21) for a(x) and arrive at

a(x) = A−1(x)B(x)Us. (25)

Substituting the above relation in Eq. (17) we get [Liu and Gu (2005)]

uh(x) =
M

∑
i=1

φi(x)ui = Φ
T (x)Us, (26)

where Φ(x) is the vector of MLS shape functions corresponding to M nodes in the
support domain of the point x and we can write [Liu and Gu (2005)]

Φ
T (x) = [φ1(x) φ2(x) · · · φM(x)] = pT (x)A−1(x)B(x). (27)

The shape function φi(x) for the ith node is defined by

φi(x) =
m

∑
j=1

p j(x)
(
A−1(x)B(x)

)
ji = pT (x)

(
A−1B

)
i. (28)

We use the quartic spline function as the wight function in MLS approximation

W (x−xi) =

{
1−6r2

i +8r3
i −3r4

i , ri ≤ 1,
0, ri > 1,

(29)

in which ri =
‖x−xi‖

rw
, is the size of the support domain for the weight function [Liu

and Gu (2005)].
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Node i

Support 

Boundary 

node

Interior node

Figure 1: Local boundaries and the domain of definition of MLS approximation

5.1 Formulation of meshless methods based on local weak form

The MLPG method is constructed based on the weak form over local sub-domain
such as Ωs that is a small region considered for any point in the global domain.
We have Ω =

⋃n
s=1 Ωs in which the local sub-domains overlap each other. Figure 1,

which is taken from Liu and Gu (2005) illustrates more explanations corresponding
to the local boundaries and the domain of definition of MLS approximation. The
local sub-domains for any region have different geometric shapes such as circle and
rectangular. In this paper we use rectangular shape for any sub-domain. The local
weak form of the time discrete scheme (13) is to the following form:

(1−µ1η)
∫
Ωi

s

Uk+1wdΩ+µ1

∫
Ωi

s

y
∂Uk+1

∂x
wdΩ−µ1

∫
Ωi

s

(
ηy− F(x)

m

)
∂Uk+1

∂y
wdΩ

−µ2

∫
Ωi

s

∂ 2Uk+1

∂y2 wdΩ =
∫
Ωi

s

UkwdΩ+
k−1

∑
j=0

(λ j+1−λ j)

−µ1

∫
Ωi

s

y
∂Uk− j

∂x
wdΩ

+ ηµ1

∫
Ωi

s

Uk− jwdΩ+µ1

∫
Ωi

s

(
ηy− F(x)

m

)
∂Uk− j

∂y
wdΩ+µ2

∫
Ωi

s

∂ 2Uk− j

∂y2 wdΩ


+ τ

∫
Ωi

s

f k+1wdΩ, (30)

where w is the test function and we consider the quartic spline function (29) and
Ωi

s is a rectangular domain over the point i. Now, we select M nodal points on the
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considered domain that some of them are on the boundary of domain. Substituting
the approximate formula (26) into the local integral equation (30) yields

M

∑
l=1

(1−µ1η)
∫
Ωi

s

φlwdΩ+µ1

∫
Ωi

s

∂φl

∂x
wdΩ−µ1

∫
Ωi

s

(
ηy− F(x)

m

)
∂φl

∂y
wdΩ

−µ2

∫
Ωi

s

∂ 2φl

∂y2 wdΩ

Uk+1
l =

M

∑
l=1


∫
Ωi

s

φlwdΩ

Uk
l +

k−1

∑
j=0

(λ j+1−λ j)

−µ1

M

∑
l=1

∫
Ωi

s

y
∂φl

∂x
wdΩ +ηµ1

∫
Ωi

s

φlwdΩ+µ1

∫
Ωi

s

(
ηy− F(x)

m

)
∂φl

∂y
wdΩ

+µ2

∫
Ωi

s

∂ 2φl

∂y2 wdΩ

Uk− j
l

+ τ

∫
Ωi

s

f k+1wdΩ, (31)

in which U p
q = U(xq,yq, tp). Now, doing the numerical integrations we can obtain

the following M by M system

AUk+1 = BUk +Fk+1. (32)

Note for evaluating the integrals that appear in the MLPG method, we use the 8-
points Gauss integration quadrature.

6 Numerical results

In this section we present the numerical results of the proposed methods on some
test problems. We test the accuracy and stability of the method described in this
paper by performing the mentioned scheme for different values of h and τ . We
performed our computations using Matlab 7 software on a Pentium IV, 2800 MHz
CPU machine with 2 Gbyte of memory.

In this paper, we compute the following error norms

L∞ = max
1≤ j≤M−1

∣∣u(xj,T )−U(xj,T )
∣∣ , L2 =

(
M−1

∑
j=1

∣∣u(xj,T )−U(xj,T )
∣∣2) 1

2

.

We calculate the computational orders of the method presented in this article with
the following formula [Cui (2009); Dehghan and Mohebbi (2008); Mohebbi and
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Dehghan (2009)]

C−order = log2

(
‖L∞(16τ,2h)‖
‖L∞(τ,h)‖

)
.

We solve the problem on the regions Ω1 = {(x,y) : 0 ≤ x,y ≤ 1}, Ω2 = {(x,y) :
−0.5 ≤ x,y ≤ 0.5}, Ω3 =

{
(x,y) : x2 + y2 ≤ 1

}
and Ω4 = {(x,y) : y > 0,y+ x 6

1,y− x 6 1}.

6.1 Test problem 1

We consider Eq. (2) with the following form

∂u(x,y, t)
∂ t

= 0D1−α
t

[
−γy

∂

∂y
+ γ

∂

∂y

(
ηy− F(x)

m

)
+

γη

mβ

∂ 2

∂y2

]
u(x,y, t)+ f (x,y, t),

in which

f (x,y, t) = ex+y
[
(1+α)tα +

Γ(2+α)

Γ(1+2α)
t2α

{
γy−1− γ

(
ηy− F(x)

m

)
− γη

mβ

}]
,

where the exact solution is

u(x,y, t) = t1+αex+y,

also, γ = β = η =m = 1 and F(x) = x2. The initial and boundary conditions can be
obtained from the exact solution. We solve this problem with the method presented
in this article with several values of h, τ and α for L = 1 at final time T = 1 on the
rectangular domain Ω1.

Table 1: Errors obtained for Test problem 1 with h = 1/10 and α = 0.5

RBF collocation MLPG
τ L∞ L2 c L∞ L2
1/10 2.7150×10−3 1.2135×10−2 0.5 3.9360×10−2 1.3576×10−1

1/20 1.3916×10−3 5.7516×10−3 0.5 2.1564×10−2 7.5401×10−2

1/40 5.9675×10−4 2.1749×10−3 0.5 1.1532×10−2 4.0632×10−2

1/80 2.2014×10−4 1.3455×10−3 0.5 6.1112×10−3 2.1564×10−2

1/160 1.2480×10−4 4.8787×10−4 0.6 3.2490×10−3 1.1457×10−2

1/320 8.1183×10−5 2.9873×10−4 0.7 1.7623×10−3 6.2724×10−3

1/640 4.7730×10−5 1.9319×10−4 0.8 9.9931×10−4 3.7485×10−3

1/1280 1.2064×10−5 5.5472×10−5 0.9 6.4608×10−4 2.6325×10−3
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Table 2: Errors obtained for Test problem 1 with h = 1/10 and α = 0.1

RBF collocation MLPG
τ L∞ L2 c L∞ L2
1/10 7.6824×10−4 4.6483×10−3 0.5 2.2385×10−3 1.0954×10−2

1/20 5.2809×10−4 3.7015×10−3 0.5 1.8021×10−3 6.1171×10−3

1/40 4.2135×10−4 3.3054×10−3 0.5 1.3231×10−3 4.0233×10−3

1/80 3.8487×10−4 3.1559×10−3 0.6 9.4539×10−4 3.0245×10−3

1/160 1.4828×10−4 1.1811×10−3 0.7 6.9549×10−4 2.4998×10−3

1/320 5.6635×10−5 4.4281×10−4 0.8 5.4270×10−4 2.2220×10−3

1/640 2.1298×10−5 1.6282×10−4 0.8 5.0598×10−4 2.0795×10−3

1/1280 7.4084×10−5 5.4360×10−5 0.9 4.1012×10−4 2.0080×10−3

Table 3: Errors and computational orders obtained with α = 0.25 for Test problem
1

RBF collocation MLPG
L∞ C-order c L∞ C-order

h = τ =
1
4

1.2501×10−4 − 1.3 1.7913×10−2 −

h =
1
8
,τ =

1
64

1.2213×10−5 3.3555 1.3 3.8875×10−3 2.2040

h = τ =
1
8

3.5940×10−4 − 1.3 1.6294×10−2 −

h =
1

16
,τ =

1
128

3.2184×10−5 3.4812 0.9 2.3535×10−3 2.7920

Table 4: Errors and computational orders obtained with α = 0.75 for Test problem
1

RBF collocation MLPG
L∞ C-order c L∞ C-order

h = τ =
1
4

1.4419×10−3 − 1.3 1.1843×10−1 −

h =
1
8
,τ =

1
64

6.9874×10−4 1.0451 1.3 9.9254×10−3 3.5768

h = τ =
1
8

5.1381×10−3 − 1.3 7.2271×10−2 −

h =
1

16
,τ =

1
128

7.3550×10−4 2.8044 0.9 5.5021×10−3 3.7153

Tables 1–4 show the errors obtained using the methods proposed in this article for
Test problem 1. In these tables, we reported values of errors L∞ and L2. Also,
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Tables 3 and 4 show the errors and computational orders obtained for Test problem
1. Figure 2 shows the plots of approximate solution and absolute error using the
MLPG technique with α = 0.1, h = 1/10, τ = 1/64 and c = 0.1 for Test problem
1. The graphs of approximate solution and absolute error using RBF collocation
method with α = 0.35, τ = 1/64 and c = 0.5 on non-rectangular domain are shown
in Figure 3 for Test problem 1. Figure 4 shows the irregular domain considered for
Figure 3.

Figure 2: Graphs of approximate solution and absolute error using MLPG method
with α = 0.1, h = 1/10, τ = 1/64 and c = 0.1 for Test problem 1.

Figure 3: Graphs of approximate solution and absolute error on non-rectangular
domain with α = 0.35, τ = 1/64 and c = 0.5 using RBF collocation method for
Test problem 1.
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Figure 4: The irregular domain considered for Figure 3

6.2 Test problem 2

We consider the 2D fractional Klein-Kremers equation to the following form

∂u(x,y, t)
∂ t

= 0D1−α
t

[
−γy

∂

∂y
+ γ

∂

∂y

(
ηy− F(x)

m

)
+

γη

mβ

∂ 2

∂y2

]
u(x,y, t)+ f (x,y, t),

where

f (x,y, t) = exp

(
−(x−0.5)2

∆
− (y−0.5)2

∆

)[
3t2− Γ(4)

Γ(3+α)

2

(x−0.5)2 yt2+α

−t2+α Γ(4)
Γ(3+α)

−2
(
y− x2) (y−0.5)2

∆
+

2
∆

Γ(4)
Γ(3+α)

− 4(y−0.5)2

∆2
Γ(4)

Γ(3+α)

]
.

The exact solution is a Gaussian pulse with t3 hight centered at x = 0.5 and y = 0.5
to the following form

u(x,y, t) = t3 exp

(
−(x−0.5)2

∆
− (y−0.5)2

∆

)
.

The initial and boundary conditions can be obtained from the exact solution. We
solve this problem with the method presented in this article using several values of
h, τ and α at final time T = 1. The RMS, L∞ and L2 errors and C-order are shown
in Tables 5–8 on the rectangular domain Ω1.

The graphs of approximate solution and its error with α = 0.25, τ = 1/100, c =
0.25 and T = 1 when ∆ = 1/50 and irregular domain for Test problem 2 are shown



502 Copyright © 2015 Tech Science Press CMES, vol.107, no.6, pp.481-516, 2015

Figure 5: Graphs of approximate solution and its error with on irregular domain
α = 0.25, τ = 1/100, c = 0.25 and T = 1 when ∆ = 1/50 using RBF collocation
method for Test problem 2.

Figure 6: The irregular domain considered for Figure 5

Table 5: Errors obtained for Test problem 1 with h = 1/10 and α = 0.15

RBF collocation MLPG
τ L∞ L2 c L∞ L2
1/10 4.2426×10−4 3.0059×10−3 0.1 9.7056×10−2 5.3980×10−1

1/20 4.0142×10−4 2.8929×10−3 0.1 4.3911×10−2 2.1178×10−1

1/40 3.9072×10−4 2.8148×10−3 0.1 1.9429×10−2 1.0757×10−1

1/80 2.2404×10−4 1.0170×10−3 0.1 8.1339×10−3 4.4980×10−2

1/160 2.2333×10−4 1.0083×10−3 0.1 2.9245×10−3 1.7109×10−2

in Figure 5. Figure 6 is the domain considered for Figure 5. Figure 7 presents the
graphs of approximate solution and its error with α = 0.75, τ = 1/100, c = 0.5 and
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Figure 7: Graphs of approximate solution and its error on irregular domain with
α = 0.75, τ = 1/100, c = 0.5 and T = 1 when ∆ = 1/50 using RBF collocation
method for Test problem 2.

Figure 8: The irregular domain considered for Figure 7

Table 6: Errors obtained for Test problem 1 with h = 1/10 and α = 0.85

RBF collocation MLPG
τ L∞ L2 c L∞ L2
1/10 4.0211×10−4 2.9216×10−3 0.10 2.7090×10−2 1.5947×10−1

1/20 1.7495×10−4 7.5604×10−4 0.20 1.2458×10−2 7.3742×10−2

1/40 6.0985×10−5 5.0023×10−4 0.25 5.4064×10−3 3.2617×10−2

1/80 5.7786×10−5 4.7226×10−4 0.25 2.0599×10−3 1.3785×10−2

1/160 5.6170×10−5 4.5819×10−4 0.25 1.2352×10−3 7.9535×10−3

T = 1 when ∆= 1/50 and on irregular domain for Test problem 2. Also, the domain
considered for Figure 7 is demonstrated in Figure 8. Figure 9 shows the graphs of
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Figure 9: Graphs of approximate solution and its error on the triangular domain Ω4
with α = 0.25, h = 1/10, τ = 1/100, c = 0.5 and T = 1 when ∆ = 1/10 (a) and
∆ = 1/50 (b) using RBF collocation method for Test problem 2.

Table 7: Errors and computational orders obtained with α = 0.35 for Test problem
1

RBF collocation MLPG
L∞ C-order c L∞ C-order

h = τ =
1
4

1.1102×10−4 − 0.2 2.6086×10−1 −

h =
1
8
,τ =

1
64

2.0767×10−5 5.7403 0.2 1.0960×10−2 4.5730

h = τ =
1
8

2.1214×10−4 − 0.2 7.0714×10−2 −

h =
1

16
,τ =

1
128

1.6667×10−5 3.6699 0.2 1.6548×10−3 5.4172
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Figure 10: Graphs of approximate solution and its error on the circular domain Ω3
with α = 0.25, h = 1/10, τ = 1/100, c = 0.25, T = 1 and ∆ = 1/10 using RBF
collocation method for Test problem 2.

Table 8: Errors and computational orders obtained with α = 0.55 for Test problem
1

RBF collocation MLPG
L∞ C-order c L∞ C-order

h = τ =
1
4

1.0361×10−2 − 0.2 2.0604×10−1 −

h =
1
8
,τ =

1
64

1.8543×10−4 5.8041 0.2 1.0345×10−2 4.3159

h = τ =
1
8

1.7902×10−3 − 0.2 4.8156×10−2 −

h =
1

16
,τ =

1
128

1.6414×10−4 3.4471 0.2 1.0723×10−3 5.4889

approximate solution and its error on the triangular domain Ω4 with α = 0.25,
h = 1/10, τ = 1/100, c = 0.5 and T = 1 when ∆ = 1/10 (a) and ∆ = 1/50 (b) for
Test problem 2. Also, Figure 10 shows the graphs of approximate solution and its
error on the circular domain Ω3 with α = 0.25, h = 1/10, τ = 1/100, c = 0.25,
T = 1 and ∆ = 1/10 for Test problem 2. Tables 5-8 show the errors obtained using
the methods introduced in this article on Ω1 for Test problem 2. In these tables, we
reported the values of L∞ and L2 errors. Also, Tables 7 and 8 show the errors and
computational orders obtained for Test problem 2. Figure 11 shows the graphs of
approximate solution with α = 0.1, h= 1/40, τ = 1/10 and c= 0.1 when ∆= 1/10
(a), ∆ = 1/50 (b), ∆ = 1/100 (c), ∆ = 1/500 (d) on the region Ω1 for Test problem
2.
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Figure 11: Graphs of approximate solution with α = 0.1, h = 1/40, τ = 1/10 and
c = 0.1 when ∆ = 1/10 (a), ∆ = 1/50 (b), ∆ = 1/100 (c), ∆ = 1/500 (d) using
MLPG method for Test problem 2.

6.3 Test problem 3

We consider Eq. (2) with γ = β = η = m = 1, F(x) = x2, initial condition [Deng
and Li (2011); Gao and Sun (2012)]

u(x,y,0) = δ (x−0.5)δ (x−0.5),

and boundary condition

u(x,y, t) = 0, (x,y) ∈ ∂Ω1.

We obtain the numerical solution of this test where δ (.) denotes the Dirac’s delta
function. For implementing the codes, we note that when ∆→ 0 we have [Gao and
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Figure 12: Graphs of approximate solution and its contour with α = 0.8, h = 1/60,
τ = 1/10 and c = 0.01 when T = 0.001 (a), T = 0.05 (b) and T = 0.5 (c) using
RBF collocation method for Test problem 3.

Sun (2012)]

1
2
√

π∆
exp

(
−(.)2

4∆

)
→ δ (.).
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The exact solution for this problem is not available, therefore we solve this model
using the new numerical method that proposed in the current paper. Figure 12
shows the graphs of approximate solution and its contour with α = 0.8, h = 1/60,
τ = 1/10 and c = 0.01 when T = 0.001 (a), T = 0.05 (b) and T = 0.5 (c) for Test
problem 3. Also, Figure 13 shows the value of U(x,0.5,T ) with α = 0.8 h = 1/60,
τ = 1/10 and c = 0.01 when T = 0.001 (a) and T = 0.005 (b) for Test problem 3.
As mentioned in [Deng and Li (2011); Gao and Sun (2012)], when final time, T
increases the values of U(x,y,T ) decrease.

Figure 13: Value of U(x,0.5,T ) with α = 0.8, h = 1/60, τ = 1/10 and c = 0.01
when T = 0.001 (a) and T = 0.005 (b) for Test problem 3.

6.4 Test problem 4

We consider Eq. (2) in which γ = β = η = m = 1 and F(x) = x2 with initial
condition [Deng and Li (2011)]

u(x,y,0) = δ (x)δ (y),

and boundary condition

u(x,y, t) = 0, (x,y) ∈ ∂Ω2.

Similar to Test problem 3, the exact solution for this problem is not available, there-
fore we solve this test problem using numerical method that developed in this paper.
We obtain the numerical solution of this example where δ (.) denotes the Dirac’s
delta function. Figure 14 shows the graphs of approximate solution and its contour
with α = 0.8, h = 1/60, τ = 1/10 and c = 0.01 when T = 0.001 (a), T = 0.01 (b)
for Test problem 4. Also, Figure 15 shows the values of U(0,y,T ) (left panel) and
U(x,0,T ) (right panel) for Test problem 4.
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Figure 14: Graphs of approximate solution and its contour with α = 0.8, h = 1/60,
τ = 1/10 and c = 0.01 when T = 0.001 (a), T = 0.01 (b) using MLPG method for
Test problem 4.

Figure 15: Values of U(0,y,T ) and U(x,0,T ) for Test problem 4.

7 Conclusion

In this article, we employed two meshless methods that one of them is based on the
strong form i.e. the radial basis functions collocation method and another is based
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on local weak form i.e. meshless local Petro-Galerkin (MLPG) approach for the
solution of the two-dimensional time fractional Klein-Kramers equation. We used
a finite difference scheme in time variable. Also we used the radial basis functions
based on Kansa method and MLPG technique in space variable. We applied a time
discrete scheme for obtaining the approximation of time fractional derivative. The
used scheme is based on Riemann-Liouville fractional derivative. We discretized
the time fractional derivatives of the mentioned equation by integrating both sides
of it. We observed that the convergence order of time discretization for approximat-
ing time fractional derivative is O(τ1+γ). Also we solved the mentioned equation
on irregular domains. We observed that meshless methods can efficiently solve the
mentioned equation on various domains such as triangular and circular domains.
Also numerical results confirm the theoretical results of the methods developed in
the current paper.

Acknowledgement: The authors are grateful to one of the two reviewers for his
(or her) valuable comments and suggestions that improved the paper.
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