
Copyright © 2015 Tech Science Press CMES, vol.108, no.1, pp.49-65, 2015

Extreme Learning Machines Based on Least Absolute
Deviation and Their Applications in Analysis Hard Rate of

Licorice Seeds
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Abstract: Extreme learning machine (ELM) has demonstrated great potential in
machine learning and data mining fields owing to its simplicity, rapidity and good
generalization performance. In this work, a general framework for ELM regres-
sion is first investigated based on least absolute deviation (LAD) estimation (called
LADELM), and then we develop two regularized LADELM formulations with the
l2-norm and l1-norm regularization, respectively. Moreover, the proposed models
are posed as simple linear programming or quadratic programming problems. Fur-
thermore, the proposed models are used directly to analyze the hard rate of licorice
seeds using near-infrared spectroscopy data. Experimental results on eight different
spectral regions show the feasibility and effectiveness of the proposed models.
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estimation, near-infrared spectroscopy

1 Introduction

Extreme learning machine (ELM) [Huang, Siew, and Zhu (2006)] is a popular and
important learning algorithm for single-hidden-layer feedforward neural network-
s (SLFNs) [Huynh and Won (2008); Tiago, Francisco, Rui, and Carlos (2014);
Huang, Song, and You (2015)], and has been successfully applied in regression
and classification problems. Compared with traditional neural networks, the main
advantages of ELM are that it runs fast and is easy to implement. Its hidden nodes
and input weights are randomly generated and the output weights are expressed an-
alytically. ELM overcomes some drawbacks of traditional neural networks, such as
local minima, imprecise learning rates and slow convergence rates [Deng, Zheng,
and Chen (2009); Zhang and Luo (2015); Zhua, Miao, and Qing (2014)].
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ELM outputs its weights based on the least-squares estimation (LSE) [Xiang, Nie,
Meng, Pan, and Zhang (2012)], but LSE is known to be highly sensitive to outliers.
Therefore the traditional ELM is sensitive to noise and outliers, which may lead
to poor performance. To tackle this drawback, the robustness of ELM has been
investigated recently. For example, Huynh and Won proposed a weighted ELM
[Huynh and Won (2008)], Deng et al. presented a regularized ELM [Deng, Zheng,
and Chen (2009)], Zhang et al. developed an approximation algorithm [Zhang and
Luo (2015)], and Horata et al. proposed robust ELM formulations to reduce the
effects of outliers [Horata, Chiewchanwattana, and Sunat (2013); Zhua, Miao, and
Qing (2014)]. These researches show that ELM is obviously affected by outliers,
and thus reducing the effect of outliers is extremely important and necessary to
build a robust ELM.

Least-absolute-deviation (LAD) estimation [Cao and Liu (2009); Yang, Liu, and
You (2011)] is more resistant to outliers than least-squares estimation. The re-
gression coefficients of LAD are estimated by minimizing the sum of the absolute
values of the residuals, which involves nonsmooth optimization problem. Thus
there are relatively few researches in LAD.

Inspired by LAD strategy, we present in this investigation a robust ELM regression
framework based on LAD estimation. Two regularized LADELM formulations are
developed. Furthermore, the proposed models are reformulated as convex program-
ming with low computational burden.

Near-infrared (NIR) spectroscopy [Wang, Xue, and Sun (2012); Yang, Gao, and
Sun (2015)] is based on the absorption of electromagnetic radiation ranging from
4000 to 12000cm−1. NIR spectra can provide rich information on molecular struc-
ture. Recently, NIR spectroscopy has demonstrated great potential in the analysis
of complex samples owing to its simplicity, rapidity and nondestructivity, and has
been successfully applied to analyze the chemical ingredients or quality parameters
of compounds.

Licorice is a traditional Chinese herbal medicine. Its seed is characterized by hard-
ness. Usually, the hard rate of licorice-seed is determined by soaking the seeds,
although this method is time-consuming and sometimes destroys the seeds. There-
fore, developing a fast and nondestructive analysis technique for determining hard
rate of licorice seeds is important and could promote the application of hard seeds
in cultivation.

The main contributions of this work are summarized as follows:

• We first present an ELM framework based LAD regression (called LADELM)
and then develop two regularized LADELM formulations with l2-norm and
l1-norm regularization respectively.
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• We reformulate the proposed models into as simple linear programming or
quadratic programming problems with global solutions.

• The proposed models can yield robust solutions and thus are more resistant
to outliers.

• The proposed methods are directly applied to analyze the hard rate of licorice
seeds using NIR spectroscopy data.

Throughout the paper we adopt the following notations. An arbitrary dimension
vector of ones is denoted by e and | · | denotes absolute value operator.

The rest of the paper is organized as follows: Section 2 briefly summarizes ELM.
Section 3 proposes a robust ELM framework based on LAD. Section 4 further
develop two regularized LADELM formulations. Experiments for licorice-seed
hard rate are analyzed in Section 5. Finally, we conclude this work and provide
some ideas for future research in Section 6.

2 Background

2.1 Extreme learning machine (ELM)

ELM is a type of SLFNs and has been successfully applied to both classification
and regression problems. Here, we give a brief definition of ELM regression; a
more detailed description of ELM is available in the literature [Huang, Siew, and
Zhu (2006); Jose, Martinez, and Pablo (2011)].

The essence of ELM is that its hidden-layer parameters are not necessarily tuned,
and training error is minimized. Specifically, given a set of N patterns: {(xi, ti),xi ∈
Rn, ti ∈ R, i = 1, · · · ,N}, where xi is the input vector, and ti is the target value. The
goal of regression problem is to find a relationship between xi and ti, (i = 1, · · · ,N).
We expect to find a standard SLFN with L hidden nodes to approximate these N
patterns with zero error, which means that the desired output for the j-th pattern is

L

∑
i=1

βig(wi · x j +bi) = t j, j = 1, · · · ,N (1)

where wi is the weight vector connecting the i-th hidden node with the input node,
and bi denotes the bias term of the i-th hidden node. The βi is the output weight
from the i-th hidden node to the output node. The g(x) is an activation function
and g(wi · x j + bi) is the output of the i-th hidden node. The linear system (1) is
equivalent to the following matrix equation

Hβ = T (2)
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with

H =

 g(w1 · x1 +b1) . . . g(wL · x1 +bL)
... . . .

...
g(w1 · xN +b1) . . . g(wL · xN +bL)


N∗L

,T =

 t1
...

tN


where β = (β1,β2, · · · ,βL)

T . H is defined as the hidden layer output matrix, the
i-th column of which is the i-th hidden node output with respect to the input xi. The
T is the desired output.

Huang et al. pointed out that the input weights wi and hidden layer biases bi for
the SLFN are not necessarily tuned during training and may be assigned values
randomly. Based on this scheme, Huang et al. proposed a simple SLFN algorithm,
called ELM, the goal of which is to find a least-squares solution of the linear system
(2). This can be posed as the following optimization

min
β

‖Hβ −T‖2
2 (3)

which is a normal quadratical programming with no constraints. With HT H being
positive definite, its optimal solution β̂ can be obtained by

β̂ = H†T where H† = (HT H)−1HT (4)

where H† is the Moore-Penrose generalized inverse of matrix H. The regression
function of ELM is given by

f (x) =
L

∑
i=1

β̂ig(wi · x+bi) (5)

2.2 Regularized extreme learning machine

To prevent overfitting data, the regularized ELM were investigated in literature
[Deng, Zhang, and Chen (2009); Jose, Martinez, and Pablo (2011)]. A type version
of the regularized ELM models is

min
β

µ‖β‖2
2 +‖T −Hβ‖2

2 (6)

where µ > 0 is a tuning parameter that balances l2-norm regularization and em-
pirical error. The problem (6) is also a convex optimization and thus it has global
optimal solution. When µ = 0, it is equivalent to the original ELM. Thus, model
(6) is an expansion of the traditional ELM (3).
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3 Extreme learning machine based on LAD method (LADELM)

Least-squares estimation (LSE) is suitable for the situations where the distribution
of residual error assumes as a zero-mean Gaussian distribution. However in prac-
tical applications, this assumption is unrealistic. Least absolute deviations (LAD)
method is more resistant to outliers and noise than LSE. LAD estimation, as a ro-
bust alternative to LSE, can overcome the shortcoming of LSE. Thus we replace
the l2-norm with the l1-norm in ELM regression (3) to obtain a robust ELM based
on LAD, called LADELM:

min
β

‖Hβ −T‖1 (7)

This involves a nonsmooth problem, and thus it is generally difficult to optimize.
In the following section, we reformulate this problem as a linear programming.

Specifically, by introducing an additional variable z ∈ Rn with component z j ( j =
1, · · · ,N) such that the absolute values of the components for vector Hβ−T satisfy:

|
L

∑
i=1

βig(wi · x j +bi)− t j| ≤ z j, j = 1, · · · ,N (8)

then problem (7) can be reformulated as the following constrained optimization in
variable (β ,z)

min
β ,z

eT z

s. t. |
L

∑
i=1

βig(wi · x j +bi)− t j| ≤ z j (9)

j = 1, · · · ,N

This is a linear programming and can be quickly solved. LADELM (7) can yield
a robust solution since it is based on LAD strategy. Thus LADELM (7) is more
resistant to outliers and noise.

Given a set of training samples {(xi, ti), i = 1, . . . ,N}, the algorithm for LADELM
(7) is summarized as follows:

Algorithm 1

• Choose a suitable hidden-layer units number L and an activation function
g(x). Assign randomly the hidden-unit parameters (wi,bi), i = 1, . . . ,L.

• Calculate the hidden layer output matrix H.
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• Solve the linear programming (9) to obtain the output weight β̂ , and then the
β̂ is the optimal solution of LADELM (7).

• Use the model f (x) = ∑
L
i=1 β̂ig(wi · x+bi) to make regression prediction.

4 Regularized extreme learning machine based on LAD method

In this section, we consider two regularized LADELM regression formulations with
l2-norm and l1-norm regularization respectively.

4.1 Regularized extreme learning machine based on LAD method

To prevent overfitting data, we add the l2-norm regularization into the objective
function of LADELM (7), and then obtain a regularized LADELM, called
LADRELM

min
β

‖T −Hβ‖1 +C‖β‖2
2 (10)

where C > 0 is a tuning parameter that balances l2-norm regularization and empir-
ical error. Similarly, by introducing an additional variable p with components p j

( j = 1, · · · ,N) satisfying

|
L

∑
i=1

βig(wi · x j +bi)− t j| ≤ p j, j = 1, · · · ,N (11)

the problem (10) is posed as the following optimization in variable (β , p)

min
β ,p

eT p+C‖β‖2
2

s. t. |
L

∑
i=1

βig(wi · x j +bi)− t j| ≤ p j (12)

j = 1, · · · ,N

This is a quadratic program problem with global optimal solution, and thus it is
easy to solve. In this investigation, we only report the numerical simulation results
for this problem. When C = 0, problem (10) is equivalent to the original LADELM
(7). Thus RLADELM (10) is an expansion of LADELM. Moreover, LADRELM
is superior to the regularized ELM (6)by obtaining a robust solution.

4.2 Sparse extreme learning machine based on LAD method

In this section, we consider a sparse LADELM model based on the l1-norm regu-
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larization. In particular, we incorporate the robust l1-norm (‖β‖1) into the objective
function for LADELM (7), and then get a sparse LADELM (called LADSELM)

min
β

‖Hβ −T‖1 +λ‖β‖1 (13)

Where parameter λ > 0 balances the empirical risk and the l1-norm of the output
vector β . Similarly, by introducing an additional variable q with components q j

satisfying:

|
L

∑
i=1

βig(wi · x j +bi)− t j| ≤ q j, j = 1, · · · ,N (14)

the problem (13) is reformulated as

min
β ,q

eT q+λ‖β‖1

s. t. |∑L
i=1 βig(wi · x j +bi)− t j| ≤ q j (15)

j = 1, · · · ,N

Furthermore, by adding a variable u with components u j satisfying |βi| ≤ ui, LAD-
SELM (13) can be expressed as:

min
β ,q,u

eT q+λeT u

s. t. |∑L
i=1 βig(wi · x j +bi)− t j| ≤ q j, j = 1, · · · ,N (16)

|βi| ≤ ui, i = 1, · · · ,L

This is also a linear programming in variable (β ,q,u) and can be quickly solved.

Note that LADSELM (13) is entirely different from the traditional regularized
ELM (6) which is based on LSE and the l2-norm regularization. The main ben-
efits of the proposed LADSELM are summarized as follows:

• LADSELM is superior to the traditional ELM (3) because it is based on
LAD. Thus it leads to a more robust solution and can reduce the sensitivity
against outliers and noise.

• One appealing feature of l1-norm regularization is that it can force sparsity.
Thus LADSELM can yield a sparse model representation since it incorpo-
rates the l1-norm regularization into its objective function. Therefore, LAD-
SELM can control the tradeoff between the number of hidden-layer nodes
and the empirical risk.
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• LADSELM has low computational burden, only requiring to solve a linear
programming.

Given a set of training samples {(xi, ti), i = 1, . . . ,N}, according to the analysis
above, the algorithm for solving LADSELM (13) summarized as follows:

Algorithm 2

• Choose a suitable activation function g(x) and the number of hidden nodes
L. Assign randomly hidden-layer parameters (wi,bi), i = 1, . . . ,L.

• Calculate the hidden layer output matrix H.

• Solve the linear programming (16) to obtain the output weight β̂ .

• Use the model f (x) = ∑
L
i=1 β̂ig(wi · x+bi) to make regression prediction.

5 Experiments

5.1 Sample set

The licorice seeds used in this experiment were harvested between 2002 and 2007,
from various locations within China, including the Xinjiang municipality, Ningxia
province, Inner-Mongolia municipality, Gansu province, Shanxi province and Hei-
longjiang province. The licorice-seed hard rate varied from 0.3% to 99.3%. After
removing impurities, the seeds were put in a sample pool with the a diameter of
50mm. A total of 112 licorice seeds were used in the experiment.

The NIR spectra were acquired by using a spectrometer fitted with a diffuse re-
flectance fiber probe. Spectra were recorded over a range of 4000 to 12000cm−1

with a resolution of 8cm−1. Each spectrum was the average of 32 scans. This
procedure was repeated four times for each sample: twice from the front at differ-
ent locations and twice from the rear at different locations. A final spectrum was
taken as the mean spectrum of these four spectra. Consequently, the spectral data
set contains 112 samples measured at 2100 wavelengths in the range of 4000 to
12000cm−1. The NIR spectra of the licorice seeds are shown in Figure 1.

To evaluate the performance of the proposed models, numerical experiments are
carried out on eight different spectral regions: 4000-6000cm−1, 6000-8000cm−1,
8000-10000cm−1, 10000-12000cm−1, 6000-10000cm−1, 4000-8000cm−1, 4000-
10000cm−1 and 4000-12000cm−1; denoted A-H, respectively. Information on them
is summarized in Table 1.
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Figure 1: The near-infrared spectra of licorice samples.

Table 1: Near-infrared spectral sample regions of licorice seeds

Dataset Spectral range(cm−1) Number of samples Number of wavelengths
region A 4000–6000 112 525
region B 6000–8000 112 525
region C 8000–10000 112 525
region D 10000–12000 112 525
region E 6000–10000 112 1050
region F 4000–8000 112 1050
region G 4000–10000 112 1575
region H 4000–12000 112 2100

5.2 Software and computing

We use MATLAB2012a to analyze the experiment results. The initial spectra were
digitized by OPUS 5.5 software. After digitization, each spectrum in the 4000-
12000cm−1 wavelength range was represented as a column vector; the length of
the vector was defined by the number of wavelengths. The following toolboxes
were used in this investigation:

MATLAB Statistics Toolbox.

MATLAB Linear Programming Toolbox.

MATLAB Quadratic Programming Toolbox.

5.3 Experimental design

To evaluate the proposed models, we specify the evaluation criteria before present-
ing the experiment results. Without loss of generality, let m be the number of test
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samples; yi denotes the real-value of sample xi; ŷi denotes the prediction value of xi

and ȳ = 1
m ∑yi is the average value of y1,y2, . . . ,ym. We use the following criteria

to evaluate the algorithms [Peng (2010)]:

• SSE: the sum-squared error of test, defined as

SSE =
m

∑
i=1

(yi− ŷ)2 (17)

SSE represents the fitting precision. Generally, the smaller the SSE, the better
the estimation. However, an excessively small SSE value means that the
regressor is probably overfitting.

• SST: the sum-squared deviation of test samples, defined as

SST =
m

∑
i=1

(yi− ȳ)2 (18)

SST reflects the underlying variance of the test samples.

• SSR: the sum-squared deviation, defined as

SSR =
m

∑
i=1

(ŷi− ȳ)2 (19)

SSR reflects the explanation ability of the regressor. A larger SSR means that
more statistical information was obtained from the test samples.

• SSE/SST: the ratio of the SSE to the SST of the test samples.

• SSR/SST: the ratio of the SSR to the SST of the test samples.

In general, a small SSE/SST means the estimates are consistent with the
real values. Typically the SSR/SST increases as the SSE/SST decreases. In
fact, an extremely small value for the SSE/SST is not desirable because it
probably means that the regressor is overfitting. Therefore, a good estimator
should strike the balance between the SSE/SST and SSR/SST.

• Average percent of selected hidden nodes numbers (PSHN).

In this investigation, we select sigmoid function

g(w,b,x) =
1

1+ exp(−(wT x+b))
(20)
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as the activation function in hidden layer. Moreover, we apply a tenfold cross-
validation to the experiments.

The parameter λ in LADSELM implements a tradeoff between the empirical risk
and the number of hidden-layer nodes. In general, when λ is large, the risk mini-
mization is predominant leading to smaller regression error. Thus, the parameter λ

should be optimized beforehand. The relationship between the SSE and parameter
λ is illustrated in Fig. 2, from which we know that the SSE decreases when λ

goes from 1 to 1000; at the same time, LADSELM produces smaller errors when
λ > 1000. These findings help to select the value of λ in the following benchmark
experiments.

In addition, the performance of the proposed LADELM and LADRELM also de-
pends on the choice of the number of hidden nodes L. In this work, the value
L is adjusted from the set {20,40,60,80,100,112,500,1000} by a tenfold cross-
validation. In each spectral region, the SSE is calculated and the optimal L is
selected to minimize the SSE. The parameter L in the other models is set to be the
same as LADELM.

Figure 2: SSE versus parameter λ for LADSELM in region F.

For comprehensive evaluation, we compare the proposed models with the following
baseline models: LSE, ELM, LAD, robust ELM (RELM) [Horata, Chiewchanwat-
tana, and Sunat (2013)] and linear support vector regression (SVR) [Sangwook,
RheeMan, and Minho (2015)] with parameter ε = 0.001. Experiment results on
eight different spectral regions are reported in Table 2.
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Table 2: Comparisons of eight algorithms: LSM, LAD, SVR, ELM, RELM,
LADELM, LADRELM and LADSELM in linear case.

Regions Methods A B C D E F G H
LSM 35.34 45.00 83.54 164.93 40.34 31.27 32.67 52.49
LAD 34.82 27.77 38.68 104.37 36.69 23.93 31.86 43.20

SSE SVR 33.77 34.36 75.30 99.13 40.38 32.55 43.52 41.55
(%) ELM 27.24 18.49 33.56 104.72 24.44 21.55 27.33 28.81

RELM 18.55 18.84 31.03 103.61 21.69 19.19 22.11 23.43
LADELM 14.33 17.08 21.05 79.77 19.23 16.26 17.75 25.84

LADRELM 14.06 16.85 20.49 68.40 17.92 14.11 17.10 20.56
LADSELM 13.87 16.56 19.57 60.12 17.99 13.57 16.79 20.23

LSM 12.49 12.55 24.02 49.15 14.10 10.86 11.59 17.05
LAD 9.80 9.71 12.69 39.72 13.19 8.07 9.60 14.05

SSE/SST SVR 10.23 11.94 27.08 38.57 12.94 10.65 16.19 12.76
(%) ELM 8.39 8.57 11.89 39.12 8.56 7.20 8.96 9.69

RELM 5.95 7.26 9.89 33.15 7.03 6.38 8.29 8.50
LADELM 4.87 6.91 8.55 31.00 6.11 6.19 6.73 8.34

LADRELM 4.94 6.28 7.64 30.12 5.43 6.14 6.30 8.05
LADSELM 4.88 6.11 7.13 26.15 5.72 6.11 5.41 7.89

LSM 70.23 90.63 79.33 68.25 91.15 77.61 87.68 71.97
LAD 91.56 107.09 96.41 68.90 103.39 95.78 100.44 92.42

SSR/SST SVR 80.97 82.78 82.00 65.20 86.06 93.02 76.51 80.38
(%) ELM 96.84 90.12 93.93 71.56 101.36 96.00 94.31 92.91

RELM 94.01 91.41 91.01 93.00 93.00 96.62 92.61 91.40
LADELM 95.02 94.10 92.44 70.99 93.88 94.11 93.06 92.68

LADRELM 92.06 91.59 93.80 70.85 93.29 94.02 95.82 93.77
LADSELM 93.70 94.15 92.64 71.92 93.57 93.86 93.67 92.33

To examine the sparseness of LADSELM, the average value of the PSHN is used as
a measure of performance. We compare the performance of ELM, LADELM and
LADSELM in the four broad spectral regions E, F, G, and H. Moreover, we choose
two different values L, L = sample numbers and L = the number of wavelengths.
The average value of the PSHN on tenfold cross-validation is reported in Table 3.

In addition, we compare the proposed models with other models (LSE, LAD, SVR,
ELM and RELM) with respect to the percent reduction in the SSE for LADELM
and LADSELM. And the results are illustrated in Fig. 3 and Fig. 4 respectively.
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Table 3: Comparisons of LAD, ELM and LADELM in terms of PSHN.

Regions Methods E F G H
Hidden nodes numbers ELM 100 100 100 100
L = sample numbers LADELM 80 69 70 56

LADSELM 78 81 76 74
Hidden nodes numbers ELM 88.76 80.86 76.38 70.90
L = wavelength numbers LADELM 79.05 64.00 56.00 61.00

LADSELM 46.00 29.43 38.29 35.00

Figure 3: Percent reduction in the SSE of LADELM versus other models.

5.4 Experiment results

5.4.1 Comparisons of the proposed models with other models

As expected, the above results show that the proposed models perform satisfactori-
ly. The results are summarized as follows:

• Comparisons of the proposed models with the baseline models: LSE, LDA
and SVR

Compared with the baseline models (LSE, LAD and SVR), the above results
show that the proposed models (LADELM (7), LADRELM (10) and LAD-
SELM (13)) achieve remarkable improvements in generalization for all eight
spectral ranges.

Compared with LSE, the proposed LADELM, LADRELM and LADSELM



62 Copyright © 2015 Tech Science Press CMES, vol.108, no.1, pp.49-65, 2015

Figure 4: Percent reduction in the SSE of LADSELM versus other models.

decrease averagely the SSE by 55.59%, 59.48% and 60.77% , respectively.
Especially, in the high-frequency region C, the values of the SSE decrease by
74.80%, 75.47% and 76.57%, respectively. At the same time, three models
reduce the SSE/SST and SSR/SST in all eight spectral regions. Especially in
region C, LADSELM and LADSELM decrease averagely the SSE/SST by
64.4%, 68.19% and 70.31%, respectively. Moreover the SSR/SST decreases
more than 90% in seven of eight spectral regions.

Compared with SVR, the proposed LADELM and LADSELM decrease av-
eragely the SSE by 52.74% and 56.32%, respectively. Meanwhile, the per-
formance of LADSELM and LADSELM are significantly superior to SVR
in terms of the SSE/SST and SSR/SST analysis.

Compared with LAD, the proposed LADELM, LADRELM and LADSELM
reduce averagely the SSE by 41.33%, 46.42% and 48.39%, respectively. In
terms of the SSE/SST, the proposed LADELM and LADSELM outperform
clearly LAD in all eight spectral regions.

• Comparisons of the proposed models with the traditional ELM models

As expected, Table 2 illustrates that the proposed models achieves better per-
formance than the traditional ELM (3) in all eight regions. To be more specif-
ic, compared with ELM, the proposed models, LADELM, LADRELM and
LADSELM, decrease averagely the SSE by 25.92%, 32.27% and 34.48%,
respectively. Moreover, three proposed models outperform clearly the ELM
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(3) with respect to the SSR/SST. Especially in the two high-frequency re-
gions C and D, the proposed LADSELM decreases the SSE/SST by 40.03%
and 33.15%, respectively. At the same time, the three proposed model out-
perform ELM with respect to the SSR/SST in six of the eight regions.

• Comparisons of the proposed models with other robust ELM model

The performance of LADELM is superior to that of the robust ELM (RELM)
[Horata, Chiewchanwattana, and Sunat (2013)] in seven of the eight spectral
regions (the exception is region H). LADSELM yields smaller regression er-
ror than RELM, and decreases averagely SSE by 25.04% in eight regions.
Compared with RELM in the two high-frequency regions C and D, LAD-
SELM decreases the SSE by 36.93% and 41.97% respectively, and decreases
the SSE/SST by 9.63% and 21.11% respectively. Finally, the performance of
LADSELM is similar to that of RELM with respect to SSR/SST.

• Comparisons of ELM, LADELM, and LADSELM with respect to the PSHN.

In terms of the PSHN criterion, Table 3 shows that the proposed LAD-
SELM (13) outperforms significantly the ELM (3) and LADELM (7), where-
as
LADELM performs slightly better than ELM (3) in four spectral regions.
These results suggest that LADSELM can select fewer hidden-node number-
s than LADELM and ELM.

5.4.2 Comparisons of the three proposed models

The above results illustrate that the proposed LADSELM (13) and LADRELM (10)
outperform LADELM (7) with respect to the SSE and SSE/SST in seven of eight
regions, whereas there is no significant difference with respect to the SSR/SST.
Compared with LADELM, two models LADSELM and LADRELM decrease av-
eragely the SSE by 11.01% and 8.03% respectively. These results suggest that the
regularized LADELM improves the generalization for analysis of the licorice-seed
hard rate using NIR spectroscopic data. Moreover according to the above analysis,
the effectiveness of the proposed methods can be arranged in the following order

LADSELM ≥ LADRELM ≥ LADELM

6 Conclusions and Future Directions

We propose a robust ELM framework based on LAD regression. Moreover the
proposed framework is used for the direct analysis the hard rate of licorice seeds
using near-infrared spectroscopy data. We rigorously verify the proposed strategy



64 Copyright © 2015 Tech Science Press CMES, vol.108, no.1, pp.49-65, 2015

in different spectral regions. The main results of this work are summarized as
follows:

• A robust ELM framework is first proposed based on LAD regression, called
LADELM. Then we develop two regularized LADELM formulations with
the l2-norm and l1-norm regularization, respectively.

• The proposed models are more resistant to outliers and noise than the original
ELM which is based on LSE.

• Compared with the original ELM, the proposed LADRELM improves re-
gression accuracy. The proposed LADSELM can yield a sparse solution due
to incorporating l1-norm regularization in its objective function.

• Three proposed ELM models can be reformulated as simple linear program-
ming or quadratic programming problem, and thus are easy to solve.

• The proposed models are applied directly to analyze licorice-seed hard rate
using near-infrared spectroscopy technology. Experiments results in different
spectral regions show that the proposed methods obtain better generalization
than traditional methods.

Analyzing licorice-seed hard rate is an important part of seed testing. The results
presented herein show that it is possible to analyze licorice-seed hard rate by us-
ing the proposed modles and near-infrared spectroscopy technology. We hope that
this work will help further investigations of the hard rate of crop seeds and pro-
mote the application of hard seeds in cultivation. The question of building ELM
classification framework based on LAD will be studied in the future work.
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