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Approximation of Unit-Hypercubic Infinite
Noncooperative Game Via Dimension-Dependent

Samplings and Reshaping the Player’s Payoffs into Line
Array for the Finite Game Simplification

Vadim V. Romanuke1

Abstract: The problem of solving infinite noncooperative games approximately
is considered. The game may either have solution or have no solution. The ex-
isting solution may be unknown as well. Therefore, an approach of obtaining the
approximate solution of the infinite noncooperative game on the unit hypercube is
suggested. The unit-hypercubic game isomorphism to compact infinite noncoop-
erative games allows to disseminate the approximation approach on a pretty wide
class of noncooperative games. The approximation intention is in converting the in-
finite game into a finite one, whose solution methods are easier rather than solving
infinite games. The conversion starts with sampling the players’ payoff functions.
Each dimension of the player’s pure strategies unit hypercube is sampled with its
own sampling constant, being the number of equal-measure intervals between the
selected points along the dimension. There are stated requirements for the suffi-
ciently accurate sampling. Having got the finite game on hypercubic lattice after
the sampling, every player’s payoff multidimensional matrix is reshaped to reduce
number of its dimensions down to the number of players. Dimensionality reduc-
tion will commonly accelerate computations, connected with the approximate so-
lution consistency. The introduced consistency mechanism rejects the finite game
solution, pretended to being the initial game approximate solution, if the solution
depends vastly on the sampling steps. If the solution is weakly consistent then,
changing the sampling steps minimally, there are non-decreasing difference of the
players’ payoffs and difference of the players’ equilibrium strategies and cardinali-
ties of their supports. If the solution is consistent then the non-decreasing property
holds stricter for cardinalities of the supports and their upper densities.
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1 Problem of infinite noncooperative games solution

Any infiniteness in game modeling is hard and heavy to handle it. On the one hand,
it is difficult to solve infinite noncooperative games analytically. On the other hand,
often the infinite game solution appears impossible for its full practical realization,
because an infinite support of the equilibrium strategy is practiced only over a zero-
measure subset of objects. Moreover, any of these objects (pure strategies) cannot
be taken for infinite number of times. Therefore noncooperative game approxima-
tion aims at two goals: to solve the game easier and to implement the solution as fast
as possible [Osborne (2003)]. And thus easy-and-fast solution is standing against
the genuine solution. The matter is that some of important features of the genuine
solution may be lost after approximation. It is crucial in rational resources alloca-
tion problems [Gąsior and Drwal (2013); Ye and Chen (2013)] with two sides of
interest, military processes organization and jurisprudence, involving a few play-
ers [Suzdal (1976); Calvert, McCubbins, and Weingast (1989)], socio-economic
and ecological gaming models with more players [Friedman (1998); Vorob’yov
(1985)], multiagent modeling [Fujii, Yoshimura, and Seki (2010)], multiobjective
optimization under uncertainty [Amaziane, Naji, Ouazar, and Cheng (2005); Li and
Li (2010); Li, Li, Sun, Luo, and Zhang (2010); Li, Zhao, and Ni (2013); Zhu, Li-
u, Wang, and Yu (2004); Li, Luo, and Sun (2011); Trapani, Kipouros, and Savill
(2012)], etc. So, there is needed a balanced way in searching easy-and-fast solution
by approximating infinite noncooperative games.

2 Solving infinite noncooperative games approximately

Not every approximate solution of infinite noncooperative game implies the play-
ers’ finite supports [Bernhard and Shinar (1990); Chakrabarti (1999)]. Solving
approximately can be either a method of thorough manipulation with infinite non-
cooperative game [Reny (1999); Mallozzi, Pusillo, and Tijs (2008)] or mapping
this game into finite one [Zielonka (1998); McNaughton (1993)], whereupon it
may be solved as approximately as well as exactly (analytically). Surely, get-
ting the finite game is strongly preferable. However, there is no general theory
of solving finite noncooperative games. It even is unclear what this theory could
have been. Solving a noncooperative game always is springing up as an original
problem, needing usually specific reasonings [Osborne (2003); Vorob’yov (1985);
Kostreva and Kinard (1991); Pavel (2007)]. Surely, these reasonings depend on
the type of equilibrium, including utility, stability, or equity. Particularly, finding
Nash equilibrium solutions in even the finite noncooperative game bears a com-
putational difficulty [Osborne (2003); Vorob’yov (1985); Han, Zhang, Qian, and
Xu (2012); Chen and Deng (2007)]. Just when the player has minimal number of
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pure strategies, and there are no more than three players, the solution is analytical
and there is a known technique of its visualization [Vorob’yov (1985); Vorob’yov
(1984); Romanuke (2010)]. Thus, solving dyadic games with three players is vi-
sualized on the cube of situations in mixed strategies, whereas dyadic games with
four players and more are solved purely in analytics, requiring more computational
resources [Vorob’yov (1984); Browning and Colman (2004)]. But finite noncoop-
erative games with greater numbers of pure strategies at their players (three and
more) are much harder to solve them [Osborne (2003); Han, Zhang, Qian, and X-
u (2012); Vorob’yov (1984); Nisan, Roughgarden, Tardos, and Vazirani (2007)].
Nonetheless, difficulties in solving infinite noncooperative games are hardly com-
parable to those ones while a finite game is solved.

Compact games, having solutions at least in mixed strategies for measurable pay-
off functions [Osborne (2003); Vorob’yov (1985); Vorob’yov (1984); Kukushkin
(2011); Stoltz and Lugosi (2007)], cannot be solved by a universal algorithmic
approach, unless they are finite games. But compact games have ε-equilibrium
situations with finite supports. Therefore they are reduced via constructing ε-nets
[Vorob’yov (1984); Giannopoulos, Knauer, Wahlström, and Werner (2012)] for
some ε > ε0, where ε0 > 0 is a minimal distance between two strategies of the
player by Helly metric [Vorob’yov (1984)]. However, it is unknown how to se-
lect ε0. An overestimated value ε0 drives to rough approximation, where some of
important features of the genuine solution may be lost. And too small value ε0 pro-
vokes either long-convergent method for approximate solution of the finite game or
enormous computational spendings to get that finite game exact solution.

3 Tasks for the goal attainment

Let there be the noncooperative game with N ∈N\{1} players. And let n-th player
act within the unit Mn-dimensional hypercube

Hn =
Mn

������������������
m=1

[0; 1]⊂ RMn by Mn ∈ N and n = 1, N. (1)

Thus pure strategy of n-th player is Mn-dimensional point

Xn = [xnm]1×Mn
∈ Hn

and in the situation

X = {Xn}N
n=1 ∈

N
������������������
n=1

Hn =
∑

N
i=1 Mi

������������������
d=1

[0; 1]⊂ R∑
N
i=1 Mi (2)
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n-th player gets the payoff Kn (X). Consequently, each of the measurable and
bounded payoff functions {Kn (X)}N

n=1 is defined on the unit (∑N
i=1 Mi)-dimensional

hypercube

H =
N
������������������
n=1

Hn =
∑

N
i=1 Mi

������������������
d=1

[0; 1]⊂ R∑
N
i=1 Mi . (3)

And the tuple〈
{Hn}N

n=1 , {Kn (X)}N
n=1

〉
(4)

is the noncooperative game on hypercube (3). This game is isomorphic [Osborne
(2003); Vorob’yov (1985); Vorob’yov (1984)] to noncooperative games, defined
on compact subspaces in R∑

N
n=1 Mn , whereon payoff functions are measurable and

bounded. The goal is to convert the infinite noncooperative game (4) on unit hy-
percube (3) into a finite game, whose formal representation shall be as simple as
possible. The finite game solution of a certain type should reflect all significant
features of the game (4) genuine solution. In this way the game (4) is going to
be approximated, overlapping the easy-and-fast conception with solution genuine-
ness. For that the players’ payoff functions are going to be sampled finitely, with
the pre-assigned constant sampling step in each of ∑

N
i=1 Mi dimensions, regarding

special requirements to the sampling, which are to ensure sufficient accurateness
for practice experience. Next task is to reconfigure the sets of the players’ pure
strategies in the finite game for its total simplification, which will allow to get rid
off dimensionalities and to have the single dimension at each player. Eventually,
every player’s finite equilibrium strategy in the finite game as the approximation of
the initial infinite game (4) mustn’t be too dependent upon the sampling constants.
Hence requirements to every strategy support should be stated so that it would be
independent upon the sampling constants within some tolerable dependence.

4 Sampling the players’ payoff functions

Let S〈n〉m be the sampling constant in m-th dimension of hypercube (1). The sam-
pling constant S〈n〉m is number of equal-measure intervals between the selected points
in m-th dimension of hypercube (1), and 1

S〈n〉m
is the constant sampling step in

(m+∑
n−1
i=1 Mi)-th dimension of hypercube (3) ∀m = 1, Mn and ∀n = 1, N. Of

course, endpoints of every unit segment of hypercube (1) are included into the
sampling necessarily. Then S〈n〉m ∈ N for tolerating the utmost case of sampling.
Thus m-th dimension of hypercube (1) for n-th player as the unit segment [0; 1] is
sampled with the constant sampling step 1

S〈n〉m
. Instead of this segment, whose values



Approximation of Unit-Hypercubic Infinite Noncooperative Game 117

constitute m-th component of the n-th player’s pure strategy Xn, there is the set of
points

L〈n〉m

(
S〈n〉m

)
=
{

x〈sm〉
nm

}S〈n〉m +1

sm=1
by x〈sm〉

nm =
sm−1

S〈n〉m

∀m = 1, Mn and ∀n = 1, N.

Following this, the n-th player’s pure strategies set becomes

L〈n〉
({

S〈n〉m

}Mn

m=1

)
=

Mn

������������������
m=1

L〈n〉m

(
S〈n〉m

)
=

Mn

������������������
m=1

{{
x〈sm〉

nm

}S〈n〉m +1

sm=1

}
⊂ Hn. (5)

And so the n-th player’s payoff function is sampled, fixing its payoff values

Kn (X) by Xn ∈ L〈n〉
({

S〈n〉m

}Mn

m=1

)
and letting the game (4) be converted into the finite one〈{

L〈n〉
({

S〈n〉m

}Mn

m=1

)}N

n=1
, {Kn (X)}N

n=1

〉
by Xn ∈ L〈n〉

({
S〈n〉m

}Mn

m=1

)
. (6)

Note that the finite game (6) is defined on hypercubic lattice

L

({{
S〈n〉m

}Mn

m=1

}N

n=1

)
=

N
������������������
n=1

L〈n〉
({

S〈n〉m

}Mn

m=1

)
=

N
������������������
n=1

Mn

������������������
m=1

{{
x〈sm〉

nm

}S〈n〉m +1

sm=1

}
⊂ H

(7)

now.

Clearly that constants{{
S〈n〉m

}Mn

m=1

}N

n=1
(8)

shouldn’t be assigned arbitrarily. They must be such that specificities of the player-
s’ payoff functions {Kn(X)}N

n=1 would be preserved. These specificities consist
mainly in local extremums and gradient over hypersurfaces {Kn(X)}N

n=1. Sup-
posing that these hypersurfaces are differentiable with respect to any of variables
{{xnm}M

m=1}N
n=1 and there exist mixed derivatives of each of functions {Kn(X)}N

n=1
by any combination of variables {{xnm}M

m=1}N
n=1 in any situation (2), where every
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variable is included no more than just once, there are the following requirements.

Formally, ∀sm = 1, S〈n〉m there ought to be

∂ ∑
N
i=1 MiKn (X)

∂x11∂x12 . . .∂x1M1∂x21∂x22 . . .∂x2M2 . . .∂xN1∂xN2 . . .∂xNMN

> 0 or

∂ ∑
N
i=1 MiKn (X)

∂x11∂x12 . . .∂x1M1∂x21∂x22 . . .∂x2M2 . . .∂xN1∂xN2 . . .∂xNMN

6 0

∀xnm ∈
[
x〈sm〉

nm ; x〈sm+1〉
nm

]
, ∀m = 1, Mn, ∀n = 1, N. (9)

But requirements (9) are obviously satisfied only if there are no extremums or dis-
continuities on any of intervals
{{(

x〈sm〉
nm ; x〈sm+1〉

nm

)}S〈n〉m

sm=1

}Mn

m=1


N

n=1

.

So they can hardly be satisfied, unless there are two players and minimum of hy-
percube (3) dimensions. Far more real requirements are that on every of segments
{{[

x〈sm〉
nm ; x〈sm+1〉

nm

]}S〈n〉m

sm=1

}Mn

m=1


N

n=1

fluctuations of the players’ payoff functions would be no greater than some α > 0.

Properly, ∀sm = 1, S〈n〉m there ought to be∣∣∣∣∣ ∂ ∑
N
i=1 MiKn (X)

∂x11∂x12 . . .∂x1M1∂x21∂x22 . . .∂x2M2 . . .∂xN1∂xN2 . . .∂xNMN

∣∣∣∣∣6 α

∀xnm ∈
[
x〈sm〉

nm ; x〈sm+1〉
nm

]
, ∀m = 1, Mn, ∀n = 1, N. (10)

Based on practical reasonings,

α 6 β ·

(
max

n∈{1,N}
max
X∈H

Kn (X)− min
n∈{1,N}

min
X∈H

Kn (X)

)

by, say, β = 0.05, β = 0.01, β = 0.005 or β = 0.001, what shall be sufficiently
accurate for practice experience. However, the parameter α may be taken lesser
to have the game approximate solution consistent enough, what is going to spoken
about below.
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5 Reshaping multidimensional matrices of players’ payoff values

In the finite game (6), the n-th player’s payoff function, defined on hypercubic
lattice (7), is represented as (∑N

i=1 Mi)-dimensional matrix

Pn (S0) =
[

p〈n〉J (S0)
]
F0

(11)

with denotation

S0 =

{{
S〈n〉m

}Mn

m=1

}N

n=1
= {S0,n}N

n=1 (12)

of the format

F0 =
N
������������������
n=1

Mn

������������������
m=1

(
S〈n〉m +1

)
,

whose (∑N
i=1 Mi)-position indices

J = { jd}∑
N
i=1 Mi

d=1 by jk ∈
{

1, S〈r〉m +1
}

at k = m+
r−1

∑
i=1

Mi

∀m = 1, Mr and ∀r = 1, N

(13)

determine the matrix element

p〈n〉J (S0) = Kn (X) by xrm =
jk−1

S〈r〉m

. (14)

In computations, there is a known rule telling that manipulating with a many single-
dimensional objects is more convenient than manipulating with single multidimen-
sional object [Hoffbeck, Sarwar, and Rix (2001); Rahman and Valdman (2013);
Trapani, Kipouros, and Savill (2012)]. Practically it is explained with that the
greater supplementary dimensions of a matrix the longer computations might be.
This computational retardation is easy exampled in Matlab environment. Suppose

that a 12-dimensional
12
������������������
d=1

4-matrix represents the player’s payoff values in 3-person

game (each player’s pure strategy is of four dimensions with four points in every di-
mension). While operating on AMD Athlon II X2 250u Processor with 2 GB RAM
within 64-bit Windows 7, 1400 Matlab operations of summing and extracting mean,
finding minimal and maximal elements of three such matrices take about 3756
seconds, whereas the same takes about 2919 seconds over three six-dimensional

6
������������������
d=1

16-matrices, reshaped before. Moreover, reshaping these
12
������������������
d=1

4-matrices into
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three-dimensional
3
������������������
d=1

256-matrices reduces the operation time down to 2691 sec-

onds. Therefore matrices {Pn (S0)}N
n=1 should be reshaped to reduce number of

their dimensions ultimately. The minimal number of dimensions, apparently, is
number of players. Here maintenance of one-to-one indexing is provided with the
next theorem.

Theorem 1. There is a one-to-one indexing map of F0-matrix (11) into matrix of
the format

L0 =
N
������������������
r=1

Mr

∏
m=1

(
S〈r〉m +1

)
.

This map is reversible.

Proof. Let F0-matrix (11) be reshaped into L0-matrix

Gn (S0) =
[
g〈n〉I (S0)

]
L0

(15)

whose elements

g〈n〉I (S0) = p〈n〉J (S0) (16)

have N-position indices, gathered within the set

I = {ur}N
r=1 by ur =

Mr

∑
m=1

(
m−1

∏
w=1

(
S〈r〉Mr−w+1 +1

))
· ( jM0−m+1− sign(m−1))

at M0 =
r

∑
i=1

Mi ∀r = 1, N. (17)

Having denoted

Qn (S0,n) =
Mn

∏
m=1

(
S〈n〉m +1

)
,

the convolution mapping (17) shows that ur = 1, Qr (S0,r). Reversely, let the func-
tion ψ (a, b) by b 6= 0 round the fraction a

b to the nearest integer towards zero. And
put another function

ρ (a, b) = a−b ·ψ (a, b) . (18)
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By the function (18), the last index in indicating the n-th player’s aggregate index
un for matrix (11) is

jM0 = ρ

(
un, S〈n〉Mn

+1
)
+
(

S〈n〉Mn
+1
)(

1− sign
[
ρ

(
un, S〈n〉Mn

+1
)])

at M0 =
n

∑
i=1

Mi.

(19)

The rest Mn−1 indices are

jM0−m = 1+ρ


un− jM0−

m−1

∑
w=1

(
w

∏
w1=1

(
S〈n〉Mn−w1+1+1

))
· ( jM0−w−1)

m

∏
w=1

(
S〈n〉Mn−w+1+1

) , S〈n〉Mn−m+1


∀m = 1, Mn−1. (20)

Thus convolving statement (17) along with expansion (19) and (20) give the one-
to-one reversible map of set J = { jd}∑

N
i=1 Mi

d=1 into set I = {ur}N
r=1. The theorem has

been proved.

Theorem 1 establishes correspondence of subset of indices

{ jk}∑
n
i=1 Mi

k=1+∑
n−1
i=1 Mi

⊂ J (21)

to a pure strategy of n-th player and backwards, n = 1, N. This simplifies game (6)
formalism ultimately, mapping the game〈{

L〈n〉
({

S〈n〉m

}Mn

m=1

)}N

n=1
, {Pn (S0)}N

n=1

〉
(22)

into〈{{
z〈n〉un

(S0,n)
}Qn(S0,n)

un=1

}N

n=1
, {Gn (S0)}N

n=1

〉
, (23)

where the n-th player’s pure strategy z〈n〉un (S0,n) corresponds to its strategy Xn in the
initial game (4), whose components are{

xnm =
jk−1

S〈n〉m

}Mn

m=1

at k = m+
n−1

∑
i=1

Mi by n = 1, N

due to subset (21) and index un correspondence.
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6 Consistency of equilibrium strategy support, approximating the unknown
genuine equilibrium strategy

Without mentioning a method of solving the finite game (23), there is supposition
of that the game (23) solution{{

p∗n
(

z〈n〉un
(S0,n)

)}Qn(S0,n)

un=1

}N

n=1
(24)

is known by the probability p∗n(z
〈n〉
un (S0,n)) of applying the pure strategy z〈n〉un (S0,n)

in an equilibrium strategy of n-th player{
p∗n
(

z〈n〉un
(S0,n)

)}Qn(S0,n)

un=1
. (25)

And may the support of the n-th player’s strategy (25) be the set

supp
{

p∗n
(

z〈n〉un
(S0,n)

)}Qn(S0,n)

un=1
= Z∗n (S0) =

{
z〈n〉u∗n

(S0,n)
}

u∗n∈U∗n (S0)
(26)

with its cardinality |U∗n (S0)|, whence

p∗n
(

z〈n〉un
(S0,n)

)
> 0 ∀un ∈U∗n (S0) (27)

and

p∗n
(

z〈n〉un
(S0,n)

)
= 0 ∀un /∈U∗n (S0) .

For seeing whether the strategy support (26) is independent upon the sampling
constants (8) within some tolerable dependence, consider δ -neighboring to (23)
game〈{{

z〈n〉un

(
Sδ ,n

)}Qn(Sδ ,n)

un=1

}N

n=1
, {Gn (Sδ )}N

n=1

〉
with denotations

Sδ =

{{
S〈n〉m +δ

}Mn

m=1

}N

n=1
=
{

Sδ ,n
}N

n=1 by δ ∈ Z,

Qn
(
Sδ ,n

)
=

Mn

∏
m=1

(
S〈n〉m +δ +1

)
,

Gn (Sδ ) =
[
g〈n〉I (Sδ )

]
Lδ

,
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Lδ =
N
������������������
r=1

Mr

∏
m=1

(
S〈r〉m +δ +1

)
,{{

p∗n
(

z〈n〉un

(
Sδ ,n

))}Qn(Sδ ,n)

un=1

}N

n=1
, (28)

supp
{

p∗n
(

z〈n〉un

(
Sδ ,n

))}Qn(Sδ ,n)

un=1
= Z∗n (Sδ ) =

{
z〈n〉u∗n

(
Sδ ,n

)}
u∗n∈U∗n (Sδ )

, (29)

where |U∗n (Sδ )| is cardinality of the set (29), and (∑N
i=1 Mi)-position indices (13)

are mapped into N-position indices (17) by putting S〈n〉m ≡ S〈n〉m + δ into (13), (14),
(16), (17), (19), (20).

An aggregate feature of situation (28) or supports {Z∗n (Sδ )}N
n=1 is the i-th player’s

payoff, being taken in this situation:

v∗i (Sδ ) = ∑
I={ul}N

l=1

ul=1,Ql(Sδ , l)

(
g〈i〉I (Sδ ) ·

N

∏
n=1

p∗n
(

z〈n〉un

(
Sδ ,n

)))

= ∑
I∗(Sδ )={u∗l :u∗l ∈U∗l (Sδ )}N

l=1

(
g〈i〉I∗(Sδ )

(Sδ ) ·
N

∏
n=1

p∗n
(

z〈n〉u∗n

(
Sδ ,n

)))
, i = 1, N.

Apparently, there can be selected such constants (8), for which at least
∃n0 ∈

{
1, N

}
such that payoffs v∗n0

(S0) and v∗n0
(S1) will be significantly different.

In other words, decreasing sampling steps minimally may give payoffs {v∗n (S1)}N
n=1

as if they do not relate to payoffs {v∗n (S0)}N
n=1. Similarly, decreasing sampling steps

minimally may give an equilibrium situation{{
p∗n
(

z〈n〉un
(S1,n)

)}Qn(S1,n)

un=1

}N

n=1
, (30)

whose configuration is hardly comparable to the corresponding configuration of
situation (24). Therefore, approximating the unknown genuine equilibrium strat-
egy requires two items. Firstly, payoffs {v∗n (S0)}N

n=1 and {v∗n (S1)}N
n=1, taken in

situations (24) and (30), should be sufficiently close in R-metric. Secondly, sit-
uations (24) and (30) themselves should be sufficiently close uniformly and in
{L2 (Hn)}N

n=1-metrics.

Of course, the spoken sufficient closeness is relative, meaning that the attribute val-
ue (every player’s payoff and its strategy) differentiates no greater as the numbers
of the set (12) increase minimally (in comparison to that when they decrease min-
imally). Relativity is unavoidable because neither genuine payoffs {v∗∗n }

N
n=1 in the
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game (4), nor limits

lim
δ→∞

v∗n (Sδ ) ∀n = 1, N (31)

are known, where v∗∗n is the n-th player’s payoff in the equilibrium situation, being
approximated with (28) by δ ∈Z. The same concerns δ -neighboring situation (28),
whose convergence by δ → ∞ to the genuine equilibrium situation in the game (4)
is not proved.

Sufficient closeness of the players’ payoffs is that

|v∗n (S0)− v∗n (S1)|6 |v∗n (S−1)− v∗n (S0)| ∀n = 1, N. (32)

Sufficient closeness of situations, giving those payoffs in (32), needs consideration
of the player’s strategy finite support as a hypersurface. Henceforward in the finite
game (23), let n-th player have a piecewise linear hypersurface σn (un, S0), whose
vertices are in points{{[

jk−1

S〈n〉m

]
1×Mn

∈ RMn : k = m+
n−1

∑
i=1

Mi, m = 1, Mn

}
, p∗n

(
z〈n〉un

(S0,n)
)}

in the space RMn+1. The n-th player’s strategy support (26) scores up |U∗n (S0)|
vertices of the hypersurface σn (un, S0) with (27), wherein they correspond to point
with denotation

X〈q〉n (S0) =
[
x〈q〉nm (S0)

]
1×Mn

=

[
j〈q〉k (S0)−1

S〈n〉m

]
1×Mn

∈ Hn by

k = m+
n−1

∑
i=1

Mi and m = 1, Mn

for q = 1, |U∗n (S0)| while every index u∗n ∈U∗n (S0) is expanded into Mn indices by
Theorem 1. Properly speaking, the set{

X〈q〉n (S0)
}|U∗n (S0)|

q=1
⊂ Hn (33)

is the n-th player’s equilibrium strategy support in the game (6). And let the set
(33) be sorted into the set

{
X̄〈q〉n (S0)

}|U∗n (S0)|

q=1
=

{[
j̄〈q〉k (S0)−1

S〈n〉m

]
1×Mn

}|U∗n (S0)|

q=1

=
{

X〈q〉n (S0)
}|U∗n (S0)|

q=1
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by k = m+
n−1

∑
i=1

Mi and m = 1, Mn (34)

so that the value

min
q1∈{q+1, |U∗n (S0)|}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S0)− j̄〈q1〉

k (S0)

S〈n〉m

)2

(35)

is reached at q1 = q+ 1 for each q = 1, |U∗n (S0)|−1 and n = 1, N. This is be-
ing made for evaluating sufficient closeness of finite strategies, when the sampling
constants (8) vary minimally. Partially, this sufficient closeness is that

max
Hn
|σn (un, S0)−σn (un, S1)|6 max

Hn
|σn (un, S−1)−σn (un, S0)| (36)

and

‖σn (un, S0)−σn (un, S1)‖6 ‖σn (un, S−1)−σn (un, S0)‖ in L2 (Hn) . (37)

Fully, the upper support density shall also not decrease by the decreased sampling
steps minimally:

max
q∈{1, |U∗n (S1)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S1)− j̄〈q+1〉

k (S1)

S〈n〉m +1

)2

6

max
q∈{1, |U∗n (S0)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S0)− j̄〈q+1〉

k (S0)

S〈n〉m

)2

∀n = 1, N. (38)

The definition below, engaged sufficient closeness in every player’s payoff and its
strategy, is to see whether (24) is worth to count it the approximate solution of the
game (4).

Definition 1. The solution (24) of the game (23) is called weakly consistent for
being the approximate solution of the game (4) if the inequalities

|U∗n (S1)|> |U∗n (S0)| ∀n = 1, N (39)

are true along with (32) and (36)–(38). Every strategy and its support in weakly
consistent solution are called weakly consistent.
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Inequalities (39) express a natural requirement that cardinality of every player’s
strategy support shall not decrease as the sampling steps by constants (8) decrease
minimally. Weakness of consistency has been inserted inasmuch as requirements of
the non-decreasing upper support density and support cardinality in (38) and (39)
can be strengthened.

Definition 2. The weakly consistent solution (24) of the game (23) is called
consistent for being the approximate solution of the game (4) if the inequalities

|U∗n (S0)|> |U∗n (S−1)| ∀n = 1, N (40)

and

max
q∈{1, |U∗n (S0)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S0)− j̄〈q+1〉

k (S0)

S〈n〉m

)2

6 (41)

max
q∈{1, |U∗n (S−1)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S−1)− j̄〈q+1〉

k (S−1)

S〈n〉m −1

)2

∀n = 1, N

are true. Every strategy and its support in consistent solution are called consistent.

Well, consistency or, accurately, S0-consistency subtends five stands, implicating
the sets {S−1, S0, S1}. All issues from the player’s support: the support configu-
ration, generating the payoffs in the equilibrium situation, the support cardinality,
and the upper support density. Appositely, the support density is treated absolute,
using Euclidean distance between points of the support. This has been acted for
distinguishing the upper support density of the player’s completely mixed strategy
as the sampling constants (8) vary. Hence the assertion below forces itself.

Theorem 2. If weakly consistent strategy is completely mixed then it is consistent.

Proof. Let weakly consistent equilibrium strategy (25) of n-th player be com-
pletely mixed. Then

|U∗n (S0)|= Qn (S0,n) .

Easily noting that

Qn (S0,n) =
Mn

∏
m=1

(
S〈n〉m +1

)
>

Mn

∏
m=1

S〈n〉m = Qn (S−1,n)
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and

Qn (S−1,n)> |U∗n (S−1)| ,

have

|U∗n (S0)|= Qn (S0,n)> Qn (S−1,n)> |U∗n (S−1)| , (42)

what confirms the inequality (40). Because strategy (25) is completely mixed, its
support is the set (5). Consequently, indices

{{
j̄〈q〉k (S0)

}
k∈B

}|U∗n (S0)|

q=1
at B =

{
m+

n−1

∑
i=1

Mi

}Mn

m=1

∀n = 1, N

with their values{{
j̄〈q〉k (S0) ∈

{
1, S〈n〉m +1

}}
k∈B

}|U∗n (S0)|

q=1

are such that there is the single k0 ∈ B such that

j̄〈q+1〉
k0

(S0) = j̄〈q〉k0
(S0)+1

and

j̄〈q+1〉
k (S0) = j̄〈q〉k (S0) ∀k ∈ B\{k0}

for all q = 1, |U∗n (S0)|−1. So that√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S0)− j̄〈q+1〉

k (S0)

S〈n〉m

)2

=
1

S〈n〉m0

by m0 = k0−
n−1

∑
i=1

Mi ∀q = 1, |U∗n (S0)|−1 (43)

and, subsequent upon (42),

max
q∈{1, |U∗n (S0)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S0)− j̄〈q+1〉

k (S0)

S〈n〉m

)2

=

max

{
1

S〈n〉m

}Mn

m=1

=
1

min
{

S〈n〉m

}Mn

m=1

.

(44)



128 Copyright © 2015 Tech Science Press CMES, vol.108, no.2, pp.113-134, 2015

Value (43) is clear to be minimal upper support density. According to this,

max
q∈{1, |U∗n (S−1)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S−1)− j̄〈q+1〉

k (S−1)

S〈n〉m −1

)2

>

max

{
1

S〈n〉m −1

}Mn

m=1

=
1

min
{

S〈n〉m −1
}Mn

m=1

.

Once again easily noting that

max

{
1

S〈n〉m

}Mn

m=1

=
1

min
{

S〈n〉m

}Mn

m=1

<
1

min
{

S〈n〉m −1
}Mn

m=1

= max

{
1

S〈n〉m −1

}Mn

m=1

(45)

have the inequality (41) confirmed. The theorem has been proved.

For the completely mixed strategy, inequalities (40) and (41) hold true strictly. Ap-
positely, the case when inequalities (32) and (36)–(39) hold true strictly might have
been called strict weak consistency, and strict consistency would have been on strict
inequalities (32) and (36)–(41). That could be used in proving some limit theorems,
but now questions of consistency computational approach are of higher importance.

Theorem 3. If the game〈{{
z〈n〉un

(S1,n)
}Qn(S1,n)

un=1

}N

n=1
, {Gn (S1)}N

n=1

〉
(46)

has a completely mixed equilibrium situation, then for checking weak S0-consistency
of the same equilibrium type situation it is sufficient to check inequalities (32), (36),
(37).

Proof. Apparently,

|U∗n (S1)|= Qn (S1,n)> Qn (S0,n)> |U∗n (S0)| ∀n = 1, N

and

max
q∈{1, |U∗n (S1)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S1)− j̄〈q+1〉

k (S1)

S〈n〉m +1

)2

=
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max

{
1

S〈n〉m +1

}Mn

m=1

=
1

min
{

S〈n〉m +1
}Mn

m=1

<

max
q∈{1, |U∗n (S0)|−1}

√√√√√ ∑
k=m+∑

n−1
i=1 Mi,m=1,Mn

(
j̄〈q〉k (S0)− j̄〈q+1〉

k (S0)

S〈n〉m

)2

∀n = 1, N

with applying (42) and (44) and (45) to the completely mixed strategies. So, in-
equalities (38) and (39) hold true, and there remain the inequalities (32), (36), (37)
to be checked whether the game (23) solution (24) is weakly S0-consistent. The
theorem has been proved.

The proved assertions help either in reducing computations on consistency or re-
jecting the non-consistent solutions faster. Being valid on completely mixed strate-
gies, they operate the support cardinality and upper support density. The investiga-
tor is brought to control inequalities (32), (36), (37), though.

7 Discussion and conclusive remarks

This article concerns conversion of the unit-hypercubic infinite noncooperative
game into a finite game. Validity of the conversion is grounded on sampling the
players’ payoff functions regularly, whereupon the obtained finite game solution is
checked for its consistency. The equilibrium type is not specified nevertheless. It
may be as Nash equilibrium type, as well as a lot of the refined or modified prin-
ciples of optimality, allowing to smooth differences in utility and equity: strong
Nash equilibrium [Suh (2001); Tian (2000)], Pareto equilibrium [Gąsior and Drwal
(2013); Vorob’yov (1984,1985); Scalzo (2010); Zhu, Liu, Wang, and Yu (2004);
Li, Luo, and Sun (2011); Trapani, Kipouros, and Savill (2012)], perfect Bayesian
equilibrium [Fudenberg and Tirole (1991); Battigalli (1996)], Mertens-stable equi-
librium [Kohlberg and Mertens (1986)], Markov perfect equilibrium [Castro and
Brandão (2000); Haller and Lagunoff (2010)], etc.

The proposed approximation of the infinite noncooperative game allows to solve
the finite game easier thanking to that every player’s payoff sampled function is re-
shaped into the line array, whereas computations over the multidimensional matrix
with minimally possible number of dimensions are faster. Theorem 1 guarantees
that the reshaping is the one-to-one indexing map, which is reversible. Reversibil-
ity is necessary in restoring the finite game (22) solution from the solution (24) of
its simplified analogue (23).

Also the proposed approximation of the infinite noncooperative game calls for con-
sistency of equilibrium strategy support, approximating the unknown genuine e-
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quilibrium strategy. Weak consistency by Definition 1 signifies that difference of
the players’ payoffs and difference of the players’ equilibrium strategies and car-
dinalities of their supports are non-decreasing. This property becomes stronger by
consistency in Definition 2, which imparts relative independence to the approxi-
mate solution upon the sampling steps within their minimal neighborhood in each
of dimensions of hypercube (3).

In checking weak S0-consistency of the approximate solution, there are 5N inequal-
ities (32) and (36)–(39) to be checked. The check consecution starts with checking
the inequalities (39), needing only solution of 1-neighboring to (23) game. If they
all are true then inequalities (32) are checked, where (−1)-neighboring to (23)
game is solved. If inequalities (32) are true then the support sufficient closeness in
inequalities (36) and (37) is checked. And it is efficient that the problem (35) for
sorting points (33) in the set (34) be solved after the sufficient closeness of equi-
librium strategies is verified. Eventually, inequalities (38) are checked. Checking
S0-consistency should always follow the fact that the solution is weakly consistent.
It starts with inequalities (40). If they all are true then inequalities (41), related
to sorting problems, are checked. Namely the stated consecutions are preferable,
because the easiest requirements are checked before the more complicated ones in
order to prevent needless huge computations.

Deficiently, existence of limits (31) and their convergence to the genuine players’
payoffs protrudes non-proved. Poorly that the limits

lim
δ→∞

σn (un, Sδ ) ∀n = 1, N

existence and their convergence to the being approximated equilibrium strategies
have been left non-proved as well. Besides, it is unclear whether consistent strategy
support causes at least the weak consistency of the other strategy support. Say,
could a player’s strategy support be inconsistent while the rest of N − 1 players
have their supports (weakly) consistent? Or else: shall a player use its (weakly)
consistent strategy while the rest of N−1 players have inconsistent supports? After
all, the consistency paradigm can be regarded not only to equilibrium strategies but
also to others (for instance, when a player decides to spring off an equilibrium
situation).

In spite of everything, either conditions within Definition 1 or conditions with-
in Definition 2 suggest a proper approximation of the infinite noncooperative game
(4). The game (4) isomorphism to noncooperative games by measurable and
bounded payoff functions, defined on compact subspaces in R∑

N
n=1 Mn , ensure dis-

semination of that approximation approach on compact games. Further to this, the
stated method of converting the unit-hypercubic infinite noncooperative game into
the finite game lets have an equilibrium solution to the conflict object, even when
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the game (4) is solved in ε-equilibrium situations or doesn’t have solution at all.
And every player, having the finite strategy support, will practice it freer unlike
practicing on infiniteness or with continuous variates. Computing the factual so-
lution stays for finite noncooperative game solvers [Osborne (2003); Vorob’yov
(1984); Nisan, Roughgarden, Tardos, and Vazirani (2007); Kuhn (1961); Konto-
giannis, Panagopoulou, and Spirakis (2009)], wherein the computation period is
shortened due to the minimized number of dimensions.

The game approximation is going to be brought forward: for each player, there will
not be necessarily equal-measure intervals between the selected points in every di-
mension of the player’s pure strategies hypercube. This will let have irregular mul-
tidimensional hypercubic lattice instead of hypercube (1) wherewith to construc-
t payoff matrices regarding straightforwardly any specificities, local extremums,
and gradient over hypersurfaces {Kn (X)}N

n=1, getting rid off requirements (9) and
(10). Additionally, the stated S0-consistency, implicated the sets {S−1, S0, S1} or
δ -neighboring to (23) games by δ ∈ {−1, 0, 1}, is going to be extended out to
δ -neighborhoods, considering wider symmetric ranges of δ .
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