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Conjugate Heat Transfer in Uniformly Heated Enclosure
Filled with Micropolar Fluid

H. Imtiaz1 and F. M. Mahfouz2

Abstract: This paper investigates numerically the conjugate heat transfer in a
concentric enclosure that is formed between two concentric cylinders and filled
with micropolar fluid. The wall of inner cylinder is considerably thick, while the
wall of outer cylinder is very thin. The inner cylinder is heated from inner side
through constant heat flux, whereas the outer cylinder is cooled and maintained at
constant temperature. The induced buoyancy driven flow and associated conjugate
heat transfer are predicted numerically by solving flow and energy governing equa-
tions considering a combination of finite difference and Fourier spectral methods.
The study investigates the effect of controlling parameters on both flow and ther-
mal fields, keeping focus on inner wall temperature. The controlling parameters
are Rayleigh number Ra, dimensionless thickness of inner wall, inner cylinder flu-
id thermal conductivity ratio Kr, and material parameters of micropolar fluid (λ , B
and D). The study shows that the steady dimensionless mean inner wall tempera-
ture φ̄I decreases with increase in Kr and Ra, and decrease in the vortex viscosity
D. The study also shows that the increase in thickness of inner wall at Kr < 1 leads
to increase in steady φ̄I . While in case of Kr > 1, for a given value of Ra and D,
φ̄I assumes maximum value at certain thickness of inner wall. In general, the study
demonstrates that, for same geometrical and flow parameters, φ̄I is more in case of
micropolar fluids as compared to Newtonian fluids.

Keywords: Conjugate heat transfer, concentric annulus, thermal conductivity ra-
tio, Rayleigh number, micropolar fluid, natural convection.

1 Introduction

Free convection in a concentric enclosure constitutes an important heat transfer
problem for engineering purposes. Its possible applications include nuclear reac-
tors, food processing devices, underground power transmission, etc. Numerous
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investigations have been done pertinent to free convection in concentric enclo-
sure. Most of the studies done by Kuehn and Goldstein (1976), Mahfouz (2012),
Abbott (1964), Grigull and Hauf (1966), Mack and Bishop (1968), Kuehn and
Goldstein (1978), Walton (1980), Farouk and Güceri (1982), Tsui and Trembaly
(1983), Mizushima, Hayashi and Adachi (2001), ElSherbiny and Moussa (2004),
Alshahrani and Zeitoun (2005), Padilla, Campregher and Silveira-Neto (2006),
Hassan and Al-lateef (2007), El-Sherbiny and Moussa (2004), Ha and Kim (2004),
Oztop, Zhao and Bo (2009) and Oztop and Abu-Nada (2008) considered heating
the inner wall of the enclosure at constant wall temperature, while few studies con-
ducted by Kumar (1988), Castrejon and Spalding (1988), Yoo (2004), Yoo (2003)
and Ho, Lin and Chen (1987) considered heating the inner wall at constant heat
flux. The results of these studies, however, were limited to enclosures that contain
Newtonian fluids and thus were not suitable to give predictions in case of heteroge-
neous mixture that include liquid crystal, exotic lubricants, animal blood, suspen-
sion solutions, etc. Such mixtures are used in chemical, food and pharmaceutical
industries. In order to predict the behavior of such mixtures, Eringen (1964, 1972)
introduced the theory of micropolar fluids. This theory includes modifications of
conventional governing equations of Newtonian fluid flow to account for micro-
scopic effects. These modifications require solving an additional transport equation
representing the principle of conservation of local angular momentum.

The study of both flow and heat convection problems related to micropolar fluids
up to 1973 was compiled by Ariman and Turk (1973). Gorla and Takhar (1987) in-
vestigated the free convection boundary layer flow of micropolar fluid past slender
bodies. Gorla (1988) studied the effects of buoyancy force on forced convection
along a vertical cylinder. Hassanien and Gorla (1990) analyzed the mixed convec-
tion boundary layer flow of a micropolar fluid near a stagnation point on a hor-
izontal cylinder. They showed that micropolar fluids display drag reduction and
reduced surface heat transfer rate as compared to Newtonian fluids. Bhattacharyya
and Pop (1996) investigated free convection from cylinders of elliptic cross-section
in micropolar fluids. Mahfouz (2003) investigated the transient and steady free
convection from isothermal cylindrical tubes placed in infinite medium of microp-
olar fluid. Mahfouz (2004) analyzed the natural convection from an elliptic tube
with major axis horizontal and placed in a micropolar fluid. Molla, Hossain and
Paul (2006) investigated the free convection laminar boundary layer flow from a
horizontal circular cylinder with a uniform surface temperature in presence of heat
generation. Recently, Mahfouz (2013a) studied free convection within an eccentric
annulus filled with micropolar fluid, heated at constant wall temperature. Mah-
fouz (2013b) also studied buoyancy driven micropolar fluid flow within uniformly
heated eccentric annulus.
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It can be seen from literature studies that it has been the common practice of au-
thors to ignore the thickness of wall through which heat is conducted to the fluid.
Therefore, in these studies, thermal boundary conditions are employed on the in-
terface between the wall and fluid, and thus the energy equation is solved alone
in fluid domain. Such practice leads to erroneous heat transfer results in case of
high pressure industrial applications (core of nuclear reactor is example) in which
significant wall thickness is necessary for safe operation. These applications re-
quire coupling the solution of convective heat transfer in the fluid domain with the
solution of conduction heat transfer in the solid wall and this practice is named as
conjugate heat transfer.

The only study which considered the conjugate heat transfer in the annulus filled
with micropolar fluid was done by Imtiaz and Mahfouz (2014). In that study, the
authors investigated conjugate heat transfer in concentric annulus by heating the
annulus at constant wall temperature. It seems, to the best of our knowledge, that
the problem of conjugate heat transfer in a uniformly heated concentric annulus
filled with micropolar fluid has not yet been studied, which provides motivation to
analyze this particular problem. For industrial applications related to concentric
annulus heated from its inner wall at constant heat flux, the aim is to eliminate any
chance of unwanted overheating of inner wall of the annulus. Therefore, this study,
besides investigating the flow and thermal fields within the annulus, also considers
the effect of various controlling parameters on the steady inner wall temperature.
These controlling parameters are Rayleigh number Ra, thickness of inner wall, in-
ner wall-fluid thermal conductivity ratio Kr, and material parameters of micropolar
fluid (λ , B and D). The previous studies by Mahfouz (2003, 2004, 2013a, 2013b)
and Imtiaz and Mahfouz (2014) have indicated that the most important material
parameter of micropolar fluid is the vortex viscosity D of the fluid. Thus, this study
focuses on the effect of D on flow and thermal fields.

2 Problem description and governing equations

Fig. 1 shows geometry of problem under consideration, which is annular space
between two concentric cylinders. This annular space contains micropolar fluid in
it. The inner thick cylinder is heated from its inner side through constant heat flux,
while the outer very thin cylinder is cooled and kept at constant low temperature To.
The fluid motion is assumed two dimensional and laminar, and the density of fluid
is assumed constant except for buoyancy term which varies according to Boussi-
nesq approximation. The governing equations of motion and energy can be written
in cylindrical coordinates in form of vorticity, stream function, microrotation and
temperature.
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Figure 1: Physical domain and coordinate system
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σ is the component of microrotation vector, whose direction of rotation is in the
r−θ plane. j,γ and Kv are the material parameters of micropolar fluid. The radial
and tangential components of buoyancy force are Fr = ρgβ (T −To)cosθ and Fθ =
−ρgβ (T −To)sinθ , respectively.
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In this study, the following dimensionless parameters will be used
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Using the above dimensionless parameters and the modified polar coordinates (ξ =
lnR,θ ), equations (1)–(5) can be written in following form:
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Energy equation for fluid in the annulus
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where Pr = ν/α is the Prandtl number and Ra = 8gβ (ri)
4qi/k f να is the Rayleigh

number. The definition of RaL = gβ (ro− ri)
4qi/k f να is found in study conducted

by Ho, Lin and Chen (1987) and thus is used here for validation study.

2.1 Initial and boundary condition

The inner cylinder surface is assumed to be heated instantaneously at time t = 0,
while the fluid around the cylinder is assumed initially at rest and at the ambient
temperature (i.e. φ = 0). The boundary conditions are based on no-slip, imperme-
ability on the inner and outer walls. These conditions can be expressed as

At ξ = ξi = 0 ψ =
∂ψ

∂θ
= 0,

∂ψ

∂ξ
= 0 and

∂φ

∂ξ
=−1/Kr (11a)
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At solid - fluid interface, ξ = ξs f
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At ξ = ξo, ψ =
∂ψ

∂θ
= 0,

∂ψ

∂ξ
= 0, φ = 0 (11c)

For micro-rotation, M, no spin conditions are assumed at fluid adjacent walls, that
is

M = 0 at ξ = ξs f (11d)

M = 0 at ξ = ξo (11e)

where Kr = ks/k f .

2.2 Method of solution

The technique used to solve the governing equations (6–10) along with the bound-
ary conditions equation (11) is based on using the Fourier Spectral Method. In this
technique, the stream function, vorticity, microrotation and temperature are approx-
imated as Fourier series expansions. The same approach is used by Mahfouz (2004)
and Badr (1985). The dimensionless stream function, vorticity, microrotation and
temperature are approximated as:

ζ =
N

∑
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gn sin(nθ) (12a)

ψ =
N

∑
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fn sin(nθ) (12b)

M =
N

∑
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Rn sin(nθ) (12c)

φ =
Ho

2
+

N

∑
n=1

Hn cos(nθ) (12d)

where fn, gn, Rn, Ho and Hn are the Fourier coefficients and all are functions of
ξ and t. The values of dimensionless stream function, vorticity, microrotation and
temperature in equations (6–10) are replaced by their respective Fourier coefficients
in relations (12a–12d). The integration of the resulting equations (after multiplying
each side at a time by 1, sin(nθ), cos(nθ)) with respect to θ between the limits 0
and 2π results in the following set of differential equations:
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where S1n, S2n, S3n and S4n are all easily identifiable functions of ξ and t. The
boundary conditions for all the functions presented in equations (13–17) are ob-
tained from boundary conditions (11) and can be expressed as
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At ξ = ξo; fn =
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Integrating both sides of equation (15) with respect to ξ (after multiplying by e−nξ )
from ξ = ξs f to ξ = ξo and using the boundary conditions represented by equation
(18) gives the following integral conditions∫

ξo

ξs f

e(2−n)ξ gndξ (19)
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The above integral condition is used for calculating the values of the function gn

on outer surface of solid part of the annulus, whereas gn on outer thin wall of the
annulus is calculated by solving equation (15) directly. The details of the method
of solution and numerical treatment are more or less similar to those explained in
Badr (1985) and Badr and Dennis (1985).

Once the temperature distribution is determined, the heat transfer parameters can
be estimated. In case of CHF, the total heat transfer rate from the inner wall is
known and the most important parameter from practical point of view is the inner
surface temperature of the inner wall, φI, which should be inspected to avoid the
unwanted over heating of the surface. The value of φI is calculated from equation
(12d) and the mean dimensionless temperature of the inner wall is then calculated
as:

φI =
1

2π

∫ 2π

0
φIdθ (20)

The steady local heat flux distribution along the outer wall can be expressed in
terms of heat flux ratio as, qr = qo/qi where qi is the constant heat flux applied to
the inner surface of inner wall.

3 Results and discussion

Many numerical experiments have been performed to solve the governing equa-
tions along with the boundary conditions for investigating the effect of controlling
parameters on both flow and thermal fields. These controlling parameters are Ra,
Pr, Rr (= ro/ri), Kr (= ks/k f ), Rs (= rs f /ri) and material parameters of micropolar
fluid (λ , B and D). The study considers Ra up to 105, a range of Rs from 1.1 to 1.5,
and a range of Kr from 0.5 to 100. The range of dimensionless material parameter
D is taken from 0 to 10. The other parameters Rr, λ , B and Pr are fixed at 2.6, 1, 1,
and 0.7, respectively.

Before generating the numerical results, the validity of the numerical technique has
been first assessed by comparing the present results with the results in the studies
conducted by Yoo (2004, 2003) and Ho, Lin and Chen (1987). Due to absence of
experimental and numerical results for the problem considered, numerical results
are validated by comparing the present results with the numerical results for the
case of concentric annulus that contains Newtonian fluid and has zero inner wall
thickness. These comparisons are presented in Figs. 2 and 3. Fig. 2 shows good
qualitative agreement between present distributions of streamlines and isotherms
with the corresponding numerical results of Yoo (2004). While Fig. 3 shows very
good quantitative agreement between the present results for local inner wall tem-
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perature distribution and the corresponding numerical results of Ho, Lin and Chen
(1987).

(a) (b)

Figure 2: Steady streamlines (left half) and isotherms (right half) at RaL = 4x104,
Rr = 5.0, Rs = 1 and Kr = 1 (a) Present and (b) Yoo (2004)

Figure 3: Dimensionless inner wall temperature and comparison with Ho, Lin and
Chen (1987) results at Rr = 2.6, Rs = 1, and Kr = 1

After validating the numerical method, the effect of controlling parameters on both
flow and thermal fields is considered. Fig. 4 shows the effect of micropolar param-
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eter D on the steady distributions of streamlines and isotherms for the case of Ra =
105, Kr = 1.0, Rs = 1.5 and at D = 0, 1, 3, and 5.

ϕmax = 0.97, ψmax = 10.40 at D =0 ϕmax = 0.94, ψmax = 6.80 at D =1

ϕmax = 1.15, ψmax = 4.40 at D =3 ϕmax = 1.15, ψmax = 3.34 at D =5

Figure 4: Right side is streamlines ∆ψ = 1.0 and left side is isotherms ∆φ = 0.1
for the case of Ra = 105, Rs = 1.5 at D = 0, 1, 3, and 5

The figure shows only one half of each field due to vertical symmetry of the prob-
lem. Right half of the figure shows the streamlines, while left half presents the
isotherms. It can be seen that the value of ψmax reduces from 10.40 to 3.34 as D in-
creases from 0 to 5. This indicates that the intensity of convection current decreases
with the increase in D. Low convection currents make heat process dominated by
conduction and increase the total thermal resistance, which leads to increase in
the temperature levels as well as increase in maximum temperature (φmax increases
from 0.97 to 1.15 as D increases from 0 to 5) as can be seen in the figure. It can also
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be noted from the isotherms that the domination of conduction makes the thermal
plume diminish and with the increase in D, the isotherms tend to concentric circles.

Fig. 5 shows the effect of D on vorticity and microrotation for the case of Ra =
105, Kr = 1.0, Rs = 1.5 and at D = 0, 1, 3, and 5. The maximum magnitude of
vorticity and microrotation observed in flow can be represented by ζmax and Mmax
respectively. Fig. 5 shows that ζmax changes from 460 to 8.4 as D changes from 0 to
5. This decrease in vorticity can be attributed to the decrease in convection currents
intensity as D increases. Fig. 5 also shows that Mmax increases from 0 to 8.4 as D
increases from 0 to 5. It concludes that although maximum vorticity decreases with
increase in D, the maximum spin velocity represented by microrotation increases.

D=0, Newtonian (M=0), and ζ
max

= 460 D=1, Mmax = 6.0, and ζ
max

= 260

D = 3, Mmax = 8.2 , and ζ
max

= 168 D = 5, Mmax = 124 , ζ
max

= 8.4

Figure 5: Steady patterns of steady equi-vorticity (right) and equi-microroatation
(left) in case of Ra = 105, Rs = 1.5, and at D = 0, 1, 3 and 5
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The decrease of convection intensity as a result of reduction of velocity components
can be inferred from Figs. 6 and 7. These figures also show that as D increases, the
radial velocity component along θ = 0◦ (Fig. 6) and tangential velocity component
along the line of θ = 90◦ (Fig. 7), clearly reduces.

The local interface temperature Φs f distribution along the fluid side of the inner
wall for the same case is shown in Fig. 8. The figure shows that the high sur-
face temperature in the top region of thermal plume (around θ = 0◦) decreases
monotonically along the surface towards almost stagnant and isothermal lower re-
gion (around θ = 180◦). The figure also shows clearly that as D increases, the
local interface temperature increases at the corresponding points. This is due to
the increase in fluid effective viscosity, which weakens the convection currents and
increases the convection thermal resistance.
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Figure 6: The steady dimensionless radial velocity distribution along θ = 0◦ at
different values of D

Fig. 9 shows the local heat flux distribution along the outer wall for the same
case. It can be seen that the heat flux is high around the stagnation point created
due to impact of upward induced flow with the outer wall, while it assumes lower
values at almost stagnant lower region. The already heated upward flow coming
along the sides of inner wall, when stagnates at the cold outer wall around θ =
0◦, high temperature gradient is created and in turn high heat flux is produced.
After stagnation and during its downward motion along the outer wall, the flow
temperature continuously reduces, resulting in continuous decrease in temperature
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Figure 7: The steady dimensionless tangential velocity distribution along θ = 90◦

at different values of D
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Figure 8: The steady dimensionless temperature distribution along the interface at
different values of D

gradient that results in continuous decrease in the heat flux along the wall. In the
upper region, the convection currents work together with conduction to increase
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the heat flux, while in the lower region the convection currents, though are weak,
work opposite to the heat conduction, which reduces the heat flux. Therefore, as
D increases the intensity of convection currents relatively decreases and as a result
the heat flux decreases in the upper region, while the opposite occurs in the lower
region as can be seen in the figure.

0.0

0.4
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Ra=1x104 ,Rr=2.6
Kr=1.0,  Rs=1.5

D=0

D=1

D=3

D=5

0                     60                  120                 180
θ

Figure 9: The steady heat flux ratio distribution along the outer wall at different
values of D
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Figure 10: The steady dimensionless temperature distribution along radial direc-
tions θ = 0◦, θ = 90◦ at different values of D
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Table 1: Effect of Ra, Rs and D on φI at Kr = 0.5 and Kr = 1.5

Ra D
φI

Rs = 1.1 Rs = 1.3 Rs = 1.5 Rs = 2.0
Kr = 0.5 Kr = 1.5 Kr = 0.5 Kr = 1.5 Kr = 0.5 Kr = 1.5 Kr = 0.5 Kr = 1.5

0 1.05045 .91643 1.21753 .86753 1.36069 .81994 1.64830 .72418
103 0 1.03328 .90579 1.21456 .86476 1.36028 .81959 1.64830 .72418

1 1.04564 .91837 1.21676 .86681 1.36059 .81986 1.64830 .72418
3 1.04904 .92169 1.21733 .86733 1.36066 .81992 1.64830 .72416
5 1.04975 .92244 1.21744 .86744 1.36067 .81993 1.64832 .72417

104 0 .77910 .65336 1.09181 .74566 1.33004 .79152 1.64829 .72415
1 .87440 .74903 1.16118 .81414 1.35145 .81142 1.64830 .72416
3 .96313 .83760 1.19861 .84975 1.35809 .81756 1.64830 .72416
5 1.00041 .87431 1.20813 .85869 1.35947 .81882 1.64832 .72418

105 0 .54848 .42172 .86744 .51890 1.14354 .60503 1.64547 .72152
1 .59622 .46759 .91331 .56521 1.19444 .66069 1.64756 .72348
3 .65695 .53642 .98306 .63552 1.25914 .71833 1.64811 .72399
5 .69889 .57848 1.02529 .67322 1.29244 .72241 1.64823 .72409

Fig. 10 shows the dimensionless temperature distribution in the radial directions
θ = 0◦, θ = 90◦ and at different values of D. It can be inferred from the figure
that temperature levels in both solid wall and fluid domain increase as D increases.
The increase in D generally weakens the convection currents and thus increases the
thermal resistance, which in turn increases the temperature levels.

The effect of D and other controlling parameters on the mean dimensionless inner
wall temperature φI is listed in Tab. 1 at Kr = 0.5 and Kr = 1.5. Quick inspection of
Tab. 1 shows that in general, the value of φI gets smaller in case of higher conduc-
tivity of inner wall. The table also shows that φI increases as D increases, whereas
it decreases with the increase in Ra. It should be noted, as explained in Mahfouz
(2012, 2013b), that the decrease in φI with the increase in Ra does not mean that
the mean inner wall temperature (Ts) itself decreases. It only indicates that mean
dimensionless inner wall temperature φI decreases. The table clearly shows that
the effect of D on φI becomes more significant in case of high Ra and small Rs. In
latter cases, the convection currents play important role in heat transfer process. As
Rs increases the fluid domain gets narrower, and thus the convection currents get
weaker (even at high Ra). The weakening of convection currents makes the ther-
mal resistance mainly dominated by conduction. The domination of conduction on
thermal resistance at large Rs is reflected in the table, where it can be observed that
there is almost no effect of both Ra and D on φI at relatively large values of Rs (for
all values of Ra and D at Rs = 2, φI ∼= 1.64 at Kr = 0.5 and φI ∼= 0.72 at Kr = 1.5).
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The effect of inner wall thickness in terms of Rs on φI can also be observed in Tab.
1. The table shows that φI increases as Rs increases for all values of Ra and D,
when the inner wall thermal conductivity is lower than that of the fluid, i.e. Kr =
0.5. This is due to the significant increase in total conduction resistance. In case of
Kr > 1, the table shows that in pure conduction regime (Ra = 0) and conduction
dominated regimes Ra ≤ 103 as Rs increases φI decreases due to decrease in the
total thermal resistance. While in case of convection dominated regime Ra = 105,
the table shows that as Rs increases φI increases due to relative increase in the total
thermal resistance. It should also be noted for convection dominated regime that the
convection resistance is very small for low values of Rs. This resistance increas-
es as Rs increases with a rate more than that of the decrease of total conduction
resistance, which leads to relative increase of total thermal resistance.
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Figure 11: The steady mean dimensionless temperature of inner wall at Ra = 104,
Kr = 1.5 and at different values of D

In case of moderate Ra (Ra = 104), Tab. 1 shows that as Rs increases, φI increases
and then decreases again, indicating the existence of maximum value of φI at cer-
tain Rs . To delineate this point further, some detailed calculations were carried out
at Ra = 104 and Kr = 1.5 with a step of 0.1 for Rs, and the results are presented
in Fig. 11. The figure clearly shows that φI is maximum at certain value of Rs.
This maximum value for φI , as can be observed in the figure, is D dependent; as D
increases the value of Rs, at which φI is maximum, decreases. Existence of maxi-
mum φI at certain Rs can be explained based on the fact that φI is controlled by two
resistances, namely, the conduction (in both solid wall and fluid) and convection
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resistances. The effect of Rs on these two resistances is different. As Rs increases,
the conduction resistance decreases (since Kr > 1), while the convection resistance
increases. The opposite effect of Rs on the two resistances creates a maximum φI

at a certain value of Rs for every value of D.

Tab. 2 shows detailed results for the effect of Kr on φI at different values of Ra
and D, whereas Rs is fixed at 1.3. It can be seen that φI decreases with the increase
in Kr. This decrease in φI is faster in the lower range of Kr. For instance: 70%
reduction in φI is observed at Ra = 105 and D = 1, when Kr increases from 0.25 to
10, in which 65% of this reduction occurs as Kr increases from 0.25 to 2.0, while
only 5% reduction occurs, when Kr changes from 2.0 to 10. Moreover, the table
shows that the decrease in φI as Kr increases becomes more observable because Ra
increases and/or D decreases.

Table 2: Effect of Kr on φI at Rs = 1.3 and at different values of Ra and D

Ra D φI

Kr = 0.25 Kr = 2.0 Kr = 5.0 Kr = 10.0
0 1.74229 .82368 .74422 .70900

103

0 1.73924 .82100 .74191 .71476
1 1.74150 .82297 .74362 .71636
3 1.74207 .82353 .74410 .71665
5 1.74218 .82360 .74412 .71651

104

0 1.61546 .70354 .63233 .61363
1 1.68502 .77150 .69745 .67494
3 1.72302 .80639 .72898 .70344
5 1.73269 .817510 .73674 .71009

105

0 1.39179 .47577 .40120 .37879
1 1.43697 .52227 .45244 .42524
3 1.50713 .59280 .51926 .49331
5 1.54422 .63073 .55814 .53886

The effect of Kr on φ along radial directions (θ = 0◦ and θ = 90◦) is shown in Fig.
12. It can be inferred from the figure that the mean temperature of inner wall (at
R = 1) is higher for small values of Kr due to the higher conduction resistance in
this case. The figure also shows that the temperature gradient within inner wall is
greater in case of small Kr and gets smaller as Kr increases, reaching almost zero
gradient at high Kr. It can also be observed that Kr has negligible effect on φ in the
fluid domain.
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Figure 12: The steady dimensionless temperature distribution along radial direc-
tions θ = 0◦, θ = 90◦ at different values of Kr

4 Conclusion

This paper investigates numerically the conjugate heat transfer in a concentric en-
closure that is formed between two concentric cylinders having radius ratio of 2.6
and filled with micropolar fluid. The wall of inner cylinder has considerable thick-
ness, while the wall of outer cylinder is very thin. The inner cylinder is heated
from inner side through constant heat flux, whereas the outer cylinder is cooled and
maintained at constant temperature. The induced buoyancy driven flow and asso-
ciated conjugate heat transfer are predicted numerically by solving flow and ener-
gy governing equations considering a combination of finite difference and Fourier
spectral methods. The study investigates the effect of controlling parameters on
both flow and thermal fields with focus on inner wall temperature. The controlling
parameters are Rayleigh number Ra, dimensionless thickness of inner wall, inner
cylinder-fluid thermal conductivity ratio Kr, and material parameter of micropolar
fluid D. Ra is considered up to 105, Rs is considered from 1 to 2, Kr is considered
between 0.25 and 10, while D is considered up to 5. The study shows that steady
mean inner wall dimensionless temperature φI decreases as Kr or Ra increases,
whereas it decreases as D decreases. Generally, the study demonstrates that, for
same geometrical and flow parameters, φI is more in case of micropolar fluids as
compared to Newtonian fluids. The study also shows that with the increase in thick-
ness of inner wall at Kr < 1, the steady φI increases. While in case of Kr > 1, the
steady φI assumes maximum value at certain thickness of inner wall in a moder-
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ate range of Ra. This critical thickness is dependent on value of D, where as D
increases the critical thickness decreases. This study will be helpful in optimizing
the design parameters (such as thickness and thermal conductivity of inner wall) of
concentric annuli filled with either Newtonian or micropolar fluid associated with
high pressure industrial applications.

Nomenclature

ro Radius of outer cylinder
ri Inner radius of inner cylinder
rs f Outer radius of inner cylinder
Rr Radius ratio (= rs f /ri)
L Difference of radius (= ro− ri)
Vr, Vθ Dimensionless radial and tangential components of velocity
Ra Rayleigh number (= 8gβ (ri)

4qi/k f να)
RaL Rayleigh number based on L (= gβ (ro− ri)

4qi/k f να)
Rs Dimensionless outer radius of inner wall cylinder (= rs f /ri)
Kr Inner cylinder-fluid thermal conductivity ratio (= ks/k f )
ks Thermal conductivity of inner thick wall cylinder
k f Thermal conductivity of fluid in heated enclosure
g Gravitational acceleration
Kv, D Vortex viscosity and dimensionless vortex viscosity
To Temperature of outer thin wall cylinder
j,B Micro-inertia density and dimensionless micro-inertia density
Fr Radial component of buoyancy force (= ρgβ (T −To)cosθ )
Fθ Tangential component of buoyancy force (=−ρgβ (T −To)sinθ )
t Dimensionless time
T Temperature
Pr Prandtl number (= ν/α)
N Dimensionless microrotation
r Dimensionless radial coordinate (r/ri)
gn, fn,Rn, Fourier coefficients
Ho,Hn

qr Heat flux ratio
qo Heat rejected from outer cylinder
qi Heat flux applied to the inner surface of inner wall

Greek symbols
ζ ′ζ Vorticity and dimensionless vorticity
ψ ′,ψ Stream function and dimensionless stream function
φ Dimensionless temperature
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β Coefficient of thermal expansion
ρ Density
τ Time
θ Angular coordinate
αs Thermal diffusivity of inner cylinder
α Thermal diffusivity of fluid between concentric cylinders
γ,λ Spin gradient viscosity and dimensionless spin gradient viscosity
ν Kinematics viscosity
ξ Dimensionless logarithmic coordinate (= lnR)
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