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Abstract: This paper improves the adaptive metamodel-based global algorith-
m (AMGO), which is presented for unconstrained continuous problems, to solve
mixed-integer nonlinear optimization involving black-box and expensive function-
s. The new proposed method is called as METADIR, which can be divided into
two stages. In the first stage, the METADIR adopts extended DIRECT method to
constantly subdivide the design space and identify the sub-region that may contain
the optimal value. When iterative points gather into a sub-region to some extent,
we terminate the search progress of DIRECT and turn to the next stage. In the sec-
ond phase, a local metamodel is constructed in this potential optimal sub-region,
and then an auxiliary optimization problem extended from AMGO is established
based on the local metamodel to obtain the iterative points, which are then applied
to update the metamodel adaptively. To show the performance of METADIR on
both continuous and mixed-integer problems, numerical tests are presented on both
kinds of problems. The METADIR method is compared with the original DIREC-
T on continuous problems, and compared with SO-MI and GA on mixed-integer
problems. Test results show that the proposed method has better accuracy and
needs less function evaluations. Finally, the new proposed method is applied into
the component size optimization problem of fuel cell vehicle and achieves satisfied
results.
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1 Introduction

With the development of computer technique, engineers can adopt a variety of mod-
eling and simulation software to construct accurate analysis models of different
fields, such as Computational Fluid Dynamics models [Li, Zhao, and Ni (2013)].
and Finite Element Analysis models [Jie, Wu, and Ding (2014)]. These simulation
models generally have higher complexity and cost a lot of computation overhead.
So when solving the optimization design involving these simulation models, the
metamodel technique is usually adopted to approximate the expensive black-box
analysis model in order to reduce the computational cost and shorten the design
cycle. And the metamodel-based optimization algorithm has been well studied and
widely used in dealing with continuous variable problems for the last 30 years [Gu,
Li, and Dong (2012); Donald, Schonlau, and Welch (1998); Wang and Shan (2007);
Wu, Luo, Zhang, and Zhang (2014)]. However, the study about applying the meta-
model technique into the mix-integer optimization is a new area of optimization
method based on metamodel technique. And it has gradually aroused the interest
of researcher in recent six years. Hemker, De Gersem, von Stryk, and Weiland
(2008) took use of surrogate model to approximate the simulation based objective
function in the optimization design of superconductive magnet and then employed
the branch and bound method the deal with the approximate MINLP. Holmström,
Quttineh, Edvall (2008) extended the adaptive RBF method into mixed-integer con-
strained problems, and adopted the commercial TOMLAB optimization environ-
ment to solve the sub-MINLPs in the search process. Davis and Ierapetritou (2009)
applied the Kriging and RSM metamodel into the branch and bound framework
to solve problems with continuous and binary variables. Rashid, Ambani, and
Cetinkaya, (2012) took use of multi-quadric RBF metamodel to approximate the
actual expensive model and construct two auxiliary MINLP to determine the itera-
tive points. SO-MI method was presented by Müller, Christine, and Piché (2013)
to deal with the mixed-integer nonlinear problems involving expensive black-box
functions. In SO-MI, Müller adopted the random sampling strategy for determining
the iterative points rather than using the conventional MINLPs sub-solvers.

In this paper, we propose a metamodel based optimization method to solve the
MINLP involving black-box and expensive functions, which is called as Metamodel-
Direct method for MINLP (METADIR). The new proposed method can be divided
into two stages and is the extension of the adaptive metamodel-based global al-
gorithm(AMGO) [Jie, Wu, and Ding (2014)], which is presented to deal with un-
constrained continuous problems. In the first stage, the METADIR method firstly
adopts improved DIRECT algorithm to subdivide the design space and identify the
sub-region that may contain the optimal value. When the iterative points gather
into the potential optimal sub-region to some extent, we terminate the subdivision
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and turn to the second phase. In this stage, the local metamodel is constructed
in this sub-region. Then an auxiliary MINLP problem, extended from AMGO, is
established based on the local adaptive metamodel to obtain the iterative points.
Repeatedly update the metamodel using the iterative points, and finally the ap-
proximate optimal solutions are obtained when meeting the terminal condition-
s. Numerical tests are presented on both continuous and mixed-integer problems.
The METADIR method is compared with original DIRECT method on continuous
problems and compared with GA and SO-MI methods on MINLP problems. Tests
result show that the proposed method has satisfactory accuracy and cost less func-
tion evaluations. Finally, the new proposed method is applied into the component
size optimization problem of fuel cell vehicle and achieves satisfied results.

The remainder of the paper is organized as follows: The basic terminology involved
in the algorithm will be described in section 2; Section 3 will detail the new pro-
posed method; In section 4, we will give the numerical tests of the algorithm and
the engineering application is given in section 5. Finally, the conclusions will be
presented in section 6.

2 Basic terminology

2.1 Mixed integer nonlinear programs (MINLP)

The generalized MINLP problem can be expressed as below:

min f (x,y)
s.t. gi(x,y)≤ 0, i = 1,2, . . . ,m (1)

−∞ < xl ≤ x≤ xu < ∞

−∞≤ yl ≤ y≤ yu ≤+∞

yi ∈ N, i = 1, . . . ,n

Where the design variables X = [x,y] ∈ Rd , x and y are continuous and integer
variables respectively, and where f (x,y), g(x,y) are the objective function and
constraint functions that may be nonlinear and multimodal, xl,yl and xu,yu denote
the lower and upper bounds of the variables, n is the number of the integer variables.
In this paper, we assume that f (x,y), g(x,y) are defined and deterministic for all
X ∈ [Xl,Xu]. So the relaxation problem of the MINLP in equation (1) can be given
as:

min f (x,y)
s.t. gi(x,y)≤ 0, i = 1,2, . . . ,m (2)

−∞ < xl ≤ x≤ xu < ∞
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−∞≤ yl ≤ y≤ yu ≤+∞

2.2 RBF metamodel

In this paper, the RBF metamodel is adopted to approximate the original expensive
function. Radial basis function is an interpolation model using a weighted sum
of simple basis functions attempting to emulate a complex or black-box function
[Broomhead and Lowe 1988]. The RBF metamodel is easy to construct, and can
dispose high dimension and high order problems effectively. Krishnamurthy (2003)
presented the polynomial augmented RBF, which can provide better approximat-
ing precision. The RBF model with second-order polynomial we adopted can be
described as:

f̃ (x) =
N

∑
w=1

λwφ(rw)+
m

∑
r=1

Pr(x)γr (3)

Where x is design variable of n dimension, and Pr(x) is the monomial term in
the second-order polynomial and γr is the coefficient corresponding to Pr(x). The
number of polynomial coefficients is m = (n+ 1)(n+ 2)/2. The points which are
sampled and evaluated can be described as S = {x1,x2, . . . ,xN}, and rw = ‖x−xw‖;
φ is the basis function and the most common basis functions are listed as following:

Linear φ(x) = x

Cubic φ(x) = (x+ c)3

Thin plate spline φ(x) = x2 ln(c∗ x)

Gaussian φ(x) = e−c∗x2

Multiquadric φ(x) =
√

x2 + c2

Inverse multiquadric φ(x) =
1√

x2 + c2

2.3 AMGO method

The AMGO method is presented to solve unconstrained optimization involving
expensive black-box function. The AMGO adopts LHD sample method to obtain
the initial data, and then construct the initial metamodel. In the searching process,
an auxiliary function, which is given in equation (4), is established to determine
the iterative point. The iterative points are then used to update the metamodel. The
steps above are repeated until meeting the terminal conditions.

min f̃ (x)Lt

s.t. l≤ x≤ u
(4)
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where L is the distance factor, and t is the exponent. The expression of L is list
below:

L=


dismax−δ

‖u− l‖
, f̃ (x)> 0

1− dmax−δ

‖u− l‖
, f̃ (x)≤ 0

, δ=
N

min
i=1

(‖x−xi‖),dismax=max{δ : x ∈ S}, t>0

(5)

In equation (5), δ is the minimum distance between design point x with sampled
points xi(i = 1,2, . . . ,N), and dismax is the maximum distance among the sampled
points xi(i = 1,2, . . . ,N).

The exponent t is applied to adjust the global and local search abilities of AMGO
method in searching process. In each cycle, exponent t employs a range of values
τττ = {τ1,τ2, . . . ,τl} (where l is the length of distance exponent array τττ), starting
from 0 to a larger one.

2.4 DIRECT algorithm method

The DIRECT algorithm is presented by Jones, Perttunen, and Stuckman (1993)
based on lipschitz optimization, which doesn’t depend on the expression of ob-
jective function. The DIRECT is initially proposed to solve bound constrained
problems and is then extended to handle with nonlinear constrained optimization
described in (2) by optimizing the L1 penalty functions [Donald (2004)] given be-
low:

min F(x) = f (x)+λ max(g(x),0) (6)

−∞ < xl ≤ x≤ xu < ∞

where λ is a user-supplied penalty parameter

In the optimization process, DIRECT determines the Lipschitz constant adaptively
to balance the global and local search ability. The basic thought of this method
is: (1) Transform the search space to be unit hypercube. (2) Then trisect the search
space, calculate the function value of central point in each sub-hypercube and deter-
mine the potentially optimal sub-hypercube. (3) The potentially optimal rectangles
will be further divided into smaller hypercube in which the central points will be
samples. (4) Repeat (2–3) until the termination conditions is met.

3 Metamodel based method for mixed integer nonlinear optimization

In this work, the problems we studied are mix-integer nonlinear optimization in-
volving black-box or expensive simulation based function. And if the constraints
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of the design problem are computation-intensive functions, they will be added in-
to objective functions as Lagrange penalty terms. In the engineering application,
some design problems are based on complex simulation models, such as CFD or
FEA model, which would cost huge computational overhead in the optimization de-
sign process and greatly increased the product development cycle. So our goal is to
develop a global optimization algorithm that can obtain reasonably good solutions
under less expensive function evaluations. The METADIR method firstly adopt-
s the DIRECT algorithm to subdivide the original design space. As continually
explore the design space, the sample points will gradually gather in to some sub-
region that contains the potential global minimum. However, the DIRECT method
usually cost a lot of evaluation points to get convergence. So in METADIR, we stop
the DIRECT process when the density of sample points in some region achieve to
some extent, and take use of metamodel technique to establish a fine surrogate
model in this local region. Then construct the auxiliary optimization problem ac-
cording to the metamodel and update the metamodel. Repeat this procedure and
finally we will obtain the approximate optimal solution of the original problem.
In METADIR, the auxiliary function we established is extended from the AMGO
method for unconstrained continuous problems.

3.1 DIRECT method for MINLP

The DIRECT method requires no knowledge of the information of objective func-
tion expression, and determines the iterative points barely based on current sam-
ples data. So it’s suitable for black-box functions or simulation based problems. In
this work, the DIRECT algorithm is extended to solve the mixed-integer nonlinear
problem. The main barrier when adopting original DIRECT in MINLP problem is
that some of the variables are continuous but the others are discrete integer. So the
improvement is mainly on the treatment of integer variable. In the DIRECT search
process, the relaxed NLP (2) of original problem is solved firstly and then round the
variables y obtained. When dividing the hyper-rectangle, the length of hyper-cubic
corresponding to integer variable is equal to the number of integer variable values.
The basic steps of DIRECT method for MINLP can be described as:

Step 1. Construct the hyper-cubic H0 according to the bound of variables, calculate
center point Xc0. If the y of Xc0 is not integer, round the Xc0. Set center Xc0
as the initial sample point

Step 2. Compute the function value f (Xc0), gi(Xc0) and F(Xc0), set fbest = f (Xc0)
then initialize k = 0

Step 3. Add the initial hyper-cubic into the set of potential optimal hyper-cubic S.
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Step 4. Repeat following steps until meet the termination condition

Step 4.1. For each hyper-cubic H j in set S, calculate the vector ṽ j of center
point Xc j to rectangular vertexes. Take the module v j of ṽ j as the
measure for the size of hyper-cubic H j. Obtain the dimension to
subdivide the H j according to maximum component in ṽ j. If the
selected dimension to subdivide corresponds to the continuous
variable, then trisect the hyper-cubic H j. However, if the selected
dimension to subdivide corresponds to the integer variable, and

(a) If the number of possible value of the integer variable num≥
3, then symmetrically divide the H j into three hypercube.

(b) If the number of possible value of the integer variable num =
2, then divide the H j into two hypercube.

(c) If the number of possible value of the integer variable num =
1, then this dimension in H j will no longer chosen to subdi-
vide, and re-select the dimension to subdivide H j according
to ṽ j.

Step 4.2. Calculate the center points of new hypercube obtained, and if the
y of these center points are not integer, round these center points.
Compute the function value of these points; sort these hypercube
according to the function value of center points for each module
v j.

Step 4.3. Update the fbest , set k = k+1, and clear the set of potential opti-
mal hyper-cubic S.

Step 4.4. For different v j, select the hyper-cubic with minimal function
value on center point into set S.

3.2 Local refine using metamodel-based method

In the search process of DIRECT, the iterative points will gradually gather into
the area around current minimum. But it will cost many sample points when the
sub-hypercube divided is small enough to terminate the search progress and obtain
the optimal point. For optimization problem involving expensive function, this will
bring great computational cost. Figure 1 [Finkel (2003)] shows the distribution of
sample points when solving GP function with DIRECT under 11 iterations. From
figure 1, we can see that there are so many sample points located into the local area
which contains the optimum before the algorithm stops.

In this paper, we consider when the sample points gather into some sub-region
to some extent, an accurate metamodel is constructed to approximate the original
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Figure 1: Distribution of sample points on GP.

expensive function in this local region. Then the metamodel based optimization
method is applied to further refine the solution in this potential optimal area. Since
the AMGO algorithm has a favorable performance in solving continuous problems,
so we extend it to deal with MINLP problems to search the optimum in the local
region. And the following auxiliary problem is then presented to obtain the iterative
points. By continually updating the metamodel and solving this auxiliary problem,
the approximate solution of original MINLP problem is obtained.

max f̃ (x,y)Lt

s.t. gi(x,y) (7)

−∞ < xl ≤ x≤ xu < ∞

−∞≤ yl ≤ y≤ yu ≤+∞

yi ∈ N, i = 1, . . . ,n

where the expression of L and the description of exponent t are given in section 2.3.

3.3 Basic flow of the METADIR algorithm

In the new proposed algorithm, to ensure the final solution is feasible, one feasible
point is required in the initial stage. Then the extended DIRECT method is applied
to divide the design space and identify the potential optimal region. When detect a
lot of sample points gathering into some local region, we stop the DIRECT search
process and take use of metamodel to approximate the original problem in this
local area. The density function of the sample points in the region is adopted to
judge whether to terminate DIRECT search process and construct the accurate local
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surrogate model. The density function of the sample points in the region is defined
as:

ρ = n(P)/V (H) (8)

where n(P) is the number of sample points in hyper cubic H, and V (H) is the hyper
volume of hyper cubic H.

We calculate the hyper volume of hyper-cubic that contains the current best point
and the 2d sample points closest to the current best point. Then the density function
of this local region ρlocal and the average density function of the whole design space
ρave is obtained. If ρlocal ≥ 5ρave, then terminate the DIRECT search process. The
specific procedure and flow chart of the METADIR algorithm are given below.

YES

NO
W hether terminate the

DIRECT progress?

Output approximate global
optimum

Set the bound of design
variables and input

feasible point

Apply the DIRECT method to divide
the design space and identify the

potential optimal region

Calculate the density function of
the potential optimal region

Construct/Update the
metamodel in this local region

Solve the auxiliary problem to
obtain the iterative point

W hether meet the
termination conditions ?

NO

YES

Figure 2: Flowchart of the METADIR method.
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Step 1. Set the bound of design variables and input the known feasible points.

Step 2. Take use of extended DIRECT to continually divide the potential optimal
region and update the fbest .

Step 3. Calculate the density function of sample points in current optimal region
and decide whether terminate the DIRECT searching process. If yes, turn
to step 4. Otherwise, turn to step 2.

Step 4. Construct/Update the local metamodel in the sub region.

Step 5. Solve the auxiliary problem in equation (7) to obtain the iterative points
and update the fbest .

Step 6. Determine whether meeting the termination conditions? If yes, output the
best point obtained; otherwise, turn to step 4.

4 Examples and discussion

In this section, the new proposed method is applied on four standard continu-
ous numerical functions and compared with original DIRECT method, then a se-
ries of MINLP problems are chosen to test and compare the performance of the
METADIR and the SO-MI methods. In the tests, we terminate the algorithms
when the given maximal function evaluation number is achieved. All the exper-
iments are performed on MatlabTM 2014, the DIRECT toolbox is obtained from
http://www4.ncsu.edu/eos/users/c/ctkelley/www/Finkel_Direct, and the SO-MI
toolbox is provided at http://www.mathworks.com/matlabcentral/fileexchange/
38530-surrogate-model-optimization-toolbox, and the GA code we used is the
build-in version in global optimization toolbox in MatlabTM 2014. In METADIR,
the distance exponent array τττ is set to be {0.01,0.1,1,10}.

4.1 Continuous problems

The functions we chosen to test the performance of proposed method on solving
continuous problems are Branin, Hartman3, G4 and Pressure vessel design func-
tion. The Basic information of these functions is given in table 1.

Since DIRECT is a deterministic optimization method, we just need run one trial
when test the performance of DIRECT on the benchmark functions. And 20 trials
are performed on the new proposed method in order to reduce the effect of random
error. Figures 3–6 show the search process of DIRECT method and the averaged
optimal value obtained by the METADIR method.

Figures 3–6 demonstrate that the new proposed method performs better than DI-
RECT algorithm on the all test problems, and the accuracy and rate of convergence
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Table 1: Basic information of the continuous test problems.

Test function
Number of
variables

Known
optimum

Domain

Branin 2 0.397887 [−5,10]× [0,15]
Hartman3 3 −3.86278 [0,1]2

G4 5 5804.45 [78,102]× [33,45]× [27,45]2

Pressure vessel
design function

4 −30665.539 [−5,10]× [0,15]
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Figure 3: Test results on Branin func-
tion.
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Figure 4: Test results on Hartman3
function.
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Figure 5: Test results on G4 function.
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Figure 6: Test results on PVD function.

by METADIR are both excel that by DIRECT. In the four continuous problems we
adopted, Branin and Hartman3 are simple unconstrained functions, while G4 and
PVD are nonlinear constrained problems. On Branin and Hartman3, tests result
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show that the proposed method is slightly better than DIRECT on both accuracy
and rate of convergence. From figure 5, we can see that DIRECT method cannot
solve G4 problem effectively, while the METADIR method can rapidly converge
around the global optimum after identifying the potential region. And as shown in
figure 6, the accuracy and search rate of METADIR is much better than DIRECT
on PVD function.

4.2 Mixed-integer problems

In this part, the new proposed method is tested on a serial of mixed-integer problem-
s, and compared with the GA and SO-MI algorithms. These functions have already
applied into the numerical test of Müller’s research [Jones, Donald R. (2004)]. The
expressions of these problems are given below:

Problem 5

min f (x,y) = 5.3578547x2
1 +0.8356891y1x5 +37.293239y1−40792.141 (9)

s.t. 0≤ 85.334407+0.0056858y2x3 +0.006262y1x2−0.0022053x1x3 ≤ 92

90≤ 80.51249+0.0071317y2x3 +0.0029955y1y2−0.0021813x2
1 ≤ 110

20≤ 9.300961+0.0047026x1x3 +0.0012547y1x1−0.0019085x1x2 ≤ 25

y1 ∈ {78,79, . . . ,102},y2 ∈ {33,34, . . . ,45} and x1,2,3 ∈ [27,45]

Problem 6

min f (x,y) =
5

∑
i1

log(yi1−2)2 +
5

∑
i2

log(xi2−2)2 +
5

∑
i1

log(10− yi1)

+
5

∑
i2

log(10− xi2)
2−

5

∏
i1

y0.2
i1

5

∏
i2

x0.2
i2

(10)

s.t. yi1 ∈ {3,4, . . . ,9}, i1 = 1, . . . ,5

xi2 ∈ [3,9], i2 = 1, . . . ,5

Problem 7

min f (x,y) = (y1−10)2 +5(y2−12)2 + y4
3 +3(x1−11)2

+10x6
2 +7x2

3 + x4
4−4x3x4−10x3−8x4

(11)

s.t. 2y2
1 +3y4

2 + y3 +4x2
1 +5x2 ≤ 127

7y1 +3y2 +10y2
3 + x1− x2 ≤ 282

23y1 + y2
2 +6x2

3−8x4 ≤ 196

4y2
1 + y2

2−3y1y2 +2y2
3 +5x3−11x4 ≤ 0
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yi2 ∈ {−10,−9, . . . ,10}, i2 = 1,2,3

xi1 ∈ [−10,10], i1 = 1,2,3,4

Problem 8

min f (x,y) = 2y1 +3y2 +1.5y3 +2x1−0.5x2 (12)

s.t. y1 + y3 ≤ 1.6

1.333y2 + x1 ≤ 3

− y3− x1 + x2 ≤ 0

x1,x2 ∈ [0,1], yi ∈ {0,1, . . . ,10}, i = 1,2,3

Problem 9

min f (x,y) = 3.1y2
1 +7.6y2

2 +6.9y2
3 +0.004y2

4 +19x2
1 +3x2

2 + x2
3 +4x2

4 (13)

s.t. yi1 ∈ {−10,−9, . . . ,10}, i1 = 1,2,3,4

xi2 ∈ [−10,10], i2 = 1,2,3,4

Problem 10

min f (x,y) =
5

∑
i2=1

(y2
i2− cos(2πyi2))+

7

∑
i1=1

(xi1− cos(2πxi1)) (14)

s.t. yi2 ∈ {−1,0, . . . ,3}, i2 = 1, . . . ,5

xi1 ∈ [−1,3], i1 = 1, . . . ,7

When testing on problems 5–10, the maximum number of function evaluations is
set to be 200. For each test problem, 20 trials are executed in order to reduce
the effects of random error in test process. The mean and the standard deviation
of optimum obtained by the three methods are given in table 2. In addition, the
corresponding average number of function evaluation and the standard deviation
are also calculated and listed.

Tests results in table 2 show that the new proposed method performs better than
GA on all the six functions and better than SO-MI on problems 5–8. For problem
5, METADIR can rapidly converge, and the optimal point obtained by METADIR
is better than that found by SO-MI and GA. When solving problem 6, the GA
algorithm cannot found a satisfied solution under 200 function evaluations. But
both METADIR and SO-MI can obtain an approximate optimal point, of which
the function value is very close to global optimum. For test problem 7, the new
proposed method is slightly better than SO-MI on both accuracy and search speed,
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while the performance of GA is very poor. Data in table also shows that METADIR
can find significantly better solution than all other two methods on problem 8.
When handling problems 9 and 10, SO-MI performs the best, and METADIR is
slightly better than GA. On the test of problems 9 and 10, both GA and the new
proposed method are not converge under the given function evaluation.

5 Application in component size optimization of fuel cell vehicle

Since the FCV is one of the most promising solutions to the atmospheric pollution
and energy crisis, the research about FCV has attracted the interest of engineering in
modern automobile industry. In this section, the new proposed METADIR method
is further applied into the component size optimization problem under ADVISOR
platform. The configuration of Fuel Cell Vehicle is given in figure7 below:

Figure 7: Configuration of Fuel Cell Vehicle.

5.1 Descriptions of FCV size optimization problem

In order to acquire better fuel economy and maintain satisfactory vehicle perfor-
mance, the optimal design of component size of power system in FCV is very
crucial. Since the optimization design based prototyping is expensive and time con-
suming, so simulation model based optimization process is widely used in modern
vehicle design [Shiau and Michalek (2010)]. ADVISOR is an effective simulation
platform for vehicle design and analysis, which is developed by national renew-
able energy laboratory of USA based on Matlab/Simulink environment. The block
diagram of the Fuel Cell Vehicle in ADVISOR is given in figure8:
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Figure 8: The block diagram of Fuel Cell Vehicle.

In this section, the goal of this optimization is to maximize the fuel economy of the
vehicle under the given performance constraints, the detailed information about the
design variables are listed in table 3.

Table 3: Design variables.

Variable name bound descriptions types

fc_pwr_scale [1.0,3.0] scaling factor for power
continuous

variable

mc_trq_scale [0.8,2.5] torque scaling factor
continuous

variable

ess_module_num [20,35] number of modules in a pack
integer
variable

ess_cap_scale [0.333,2.0]
scaling factor for rated

capacity of the cell
continuous

variable

And the optimization problem can be expressed as:

min f = FuelConsumption(x)

Subject to following constraints:

(1). The accelerationtime from 0–96.5km/h <= 11.2s

(2). The accelerationtime from 64–96.5km/h <= 4.4s

(3). The accelerationtime from 64–96.5km/h <= 20.0s

(4). The gradeability at 88.5km/h with 408kg cargo >= 6.5%

(5). Difference between requested speed and the actual speed at every second <=
3.2km/h

(6). Difference between final and initial battery state of charge (SOC)<=0.5%
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From the descriptions of the optimization problem above, it is can be seen that the
analytical expressions of objective and constraint functions are unknown. The ob-
jective and constraint function values are obtained by performing the “test_procedure”,
“acceleration test” and “grade-ability test” simulation in Advisor platform. And the
basic parameters of the test FCV is listed in table 4.
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Figure 9: Iteration curve of FCV sizing optimization.

Table 4: Vehicle parameters.

Parameter value
Frontal Area(m2) 3.2

Air Drag Coefficient 0.5
Front Weight Fraction 0.6

Wheel Radius(m) 0.42
Rolling Resistant Coefficient 0.009

Wheelbase 3.2
Center of Gravity Height 0.7
Vehicle glider mass(kg) 1226.41

5.2 Results and analysis

The new proposed method is compare with real-code GA algorithm in this optimal
design, and the maximum number of iteration in METADIR and GA is set to 100.
The number of population in GA is 20.The iteration curve is given in figure 9 and
the performance of optimized vehicle model obtained by the METADIR and GA
methods are given in table 5.
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Table 5: Optimization Results.

Performance index Initial model
Model obtained
by METADIR

Model obtained
by GA

Fuel consumption
(Hydrogen)

65.2(L/km) 54.4(L/km) 59.4(L/km)

0-96.6km/h 11.5(s) 10.3(s) 10.8
64.4-96.6km/h 5.9(s) 5.3(s) 5.6

0-137km/h 22.6(s) 20.5(s) 21.4
Grade-ability 9.8% 9.8% 10.8%

Difference of SOC 3% 0.188% 0.48%
Max difference of speed 3.2km 0.38km 0.7km

Simulation time – 5.1h 36.8h
Simulation numbers – 184 2000

It can be seen from table 5 that the new proposed METADIR method has better
convergence performance than GA in solving the given sizing optimization prob-
lem. The fuel consumption of mode obtained by METADIR is 15.56% better than
the initial model, and is 8.41% better than the model obtained by the GA method.
And both the vehicle models obtained by METADIR and GA meet the given per-
formance constraints. But the number of simulation and computational time cost
by MEATDIR are both much lesser than that cost by GA.

Then the performance of vehicles obtained by GA and METADIR is further com-
pared bellow. Figure 10 gives the working efficiency section of Fuel Converter, and
figures 11–12 describe the discharging and charging efficiency of storage batter.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Power (kW)

E
ffi

ci
en

cy
 (%

)

Fuel Converter Operation
ANL Model - 50kW (net) Ambient Pressure Hydrogen Fuel Cell System

eff vs. power curve
actual operating points

(a) GA model

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Power (kW)

E
ffi

ci
en

cy
 (%

)

Fuel Converter Operation
ANL Model - 50kW (net) Ambient Pressure Hydrogen Fuel Cell System

eff vs. power curve
actual operating points

(b) METADIR model

Figure 10: The scatter chart about Efficiency/Power of Fuel Converter.
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From figure 10, it is can be seen that the working efficiency section of fuel con-
verter of vehicle obtained by METADIR is better than that of vehicle obtained by
METADIR. In addition, figure11 and figure12 show that the storage batter in GA
vehicle model will conduct frequently charging and discharging when the FCV is
running. However, the storage batter in METADIR vehicle model will discharge
firstly, and when the SOC reduces to some extent, the storage batter will be charged,
which is beneficial to improve the working life of storage battery.
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Figure 11: The scatter chart of storage batter discharging efficiency.
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Figure 12: The scatter chart of storage batter charging efficiency.

6 Conclusions

Metamodel based method in solving optimization problems involving expensive
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function and mixed-integer design variables have gradually aroused researchers’
interest. In this paper, an improved adaptive metamodel-based global algorithm
named as METADIR is proposed to handle mixed-integer nonlinear optimization
problems involving expensive black-box function.

In the searching process of METADIR, the improved DIRECT method is firstly
applied to constantly subdivide the original design space and identify the potential
optimal region. When the sample points gather around the current optimal point to
some extent, we terminate the subdivision and turn to construct local metamodel
in the potential optimal region obtained. In METADIR, the density function of the
sample points in the region is adopted to decide whether to stop the subdivision
process. After establishing the metamodel, the auxiliary function of AMGO is
extended into MINLP problems to determine the iterative points, and the new data
are then applied to update the metamodel.

The new proposed method is firstly compared with original DIRECT in solving
continuous problems. Test results show that the METADIR method can better
handle with the given four numerical functions, and the computational cost of
METADIR is also less than original DIRECT. Then the METADIR is tested on six
mixed-integer functions, and compared with SO-MI and GA methods. In the trials,
the new proposed method performs better than GA on all the six test problems, and
exceeds SO-MI on 4 out of six benchmark functions. Finally, the METADIR is ap-
plied to solve the sizing optimization problem in fuel-cell vehicle along with GA.
The experiments indicated that the proposed method can obtain a slightly better
solution than GA under less function evaluations.

In summary, this algorithm has a satisfactory precision and low computational cost,
which makes it can widely applied in design optimization problems with black-box
function involving continuous or mix-integer design variables.
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