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Meshless Local Petrov-Galerkin Method for Rotating
Timoshenko Beam: a Locking-Free Shape Function

Formulation

V. Panchore1, R. Ganguli2, S. N. Omkar3

Abstract: A rotating Timoshenko beam free vibration problem is solved using
the meshless local Petrov-Galerkin method. A locking-free shape function formu-
lation is introduced with an improved radial basis function interpolation and the
governing differential equations of the Timoshenko beam are used instead of the
alternative formulation used by Cho and Atluri (2001). The locking-free approx-
imation overcomes the problem of ill conditioning associated with the normal ap-
proximation. The radial basis functions satisfy the Kronercker delta property and
make it easier to apply the essential boundary conditions. The mass matrix and the
stiffness matrix are derived for the meshless local Petrov-Galerkin method. Results
are validated for the fixed-free boundary condition with published literature.

Keywords: Meshless local petrov-galerkin method; Radial basis function; Rotat-
ing timoshenko beam; Finite element method; Free vibration.

1 Introduction

The meshless methods show considerable improvements over the conventional fi-
nite element method: remeshing of the structure is avoided, the problem of large
deformation can be addressed properly whereas in the finite element procedure el-
ements get distorted, and higher order derivatives of field variable are continuous.
The meshless local Petrov-Galerkin method is a truly meshless method, which does
not require any background mesh while integrating the weak form of an equation
[Atluri et al. (2013)]. The meshless Petrov-Galerkin method is suitable for various
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combinations of test functions and trial functions [Atluri and Shen (2002); Atluri
(2004)].

The rotating Timoshenko beam analytical solutions are difficult to obtain and the
semi-analytical solutions were obtained using the power series method [Stafford
and Giurgiutiu (1975); Du, Lim, and Liew (1994); Banerjee (2001)]. The Timo-
shenko rotating beam free vibration problem was solved using the finite element
method [Yokoyama (1988); Rao and Gupta (2001)]. An additional term ρIΩ2θ

was included in the Timoshenko rotating beam formulation, which does make a
contribution at the high rotational speed and the differential transform method was
used to solve the free vibration problem [Kaya (2006)]. A comparison was made
by Kumar and Ganguli (2012) among the rotating Euler-Bernoulli beam, the rotat-
ing Timoshenko beam and the stiff-string to develop the new basis functions for the
finite element formulation of the rotating beams. The violin string shape functions
were developed for the rotating Timoshenko beam by Kumar and Ganguli (2011).
Recently, closed form solutions for the rotating Timoshenko beam were found by
Sarkar and Ganguli (2014). However, meshless methods have not found usage in
the rotating Timoshenko beam literature.

The idea of the meshless methods was first introduced by Nayroles, Touzot and Vil-
lon (1992) with the diffused element method, where a smooth approximation of the
field variable was considered based on the nodal distribution and the higher order
derivatives were found to be continuous. The element-free Galerkin method which
required a background mesh while integrating the weak form was another step to-
wards the evolution of the meshless methods [Belytschko, Lu, and Gu (1994)]; but
with the moving squares interpolation, it was difficult to apply the essential bound-
ary conditions.

Typically, moving least squares interpolation is used with the meshless local Petrov-
Galerkin method. The radial basis function interpolation is an alternative option
and the application of the essential boundary conditions with the radial basis func-
tion interpolation is easier because it does satisfy the Kronecker delta property. The
radial basis functions were used along with the collocation method to develop the
time integration schemes and the accuracy of the method is independent of the ini-
tial guess [Elgohary, Dong, Junkins and Atluri (2014a); Elgohary, Dong, Junkins,
and Atluri (2014b)]. An approximation with the combination of the polynomial
basis function and the radial basis function overcomes the problem of singulari-
ty linked with the polynomial basis function approximation, and the higher order
derivatives of shape functions can be easily obtained [Wang and Liu (2002)].

The meshless local Petrov-Galerkin method was successfully applied to the non-
rotating and the rotating thin beam problems [Atluri, Cho, and Kim (1999); Raju,
Phillips, and Krishnamurthy (2004); Panchore, Ganguli, and Omkar (2015)]. The
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thin and thick plate problems were solved by Li, Soric, Jarak, and Atluri (2005),
where a three dimensional locking-free meshless Petrov-Galerkin formulation was
developed. The meshless Petrov-Galerkin method was mixed with the finite dif-
ference method and with the collocation method for the solid mechanics problems
[Atluri, Liu, and Han (2006a); Atluri, Liu, and Han (2006b)]. A comprehensive
study was carried out by Dong, Alotaibi, Mohiuddine, and Atluri (2014) where
different computational methods were studied; various concepts were combined
together to obtain the numerical solutions of a fourth order ordinary differential e-
quation. This study provides simple, effective and detail explanations of meshless
method and finite element method.

In the typical finite element formulation of a Timoshenko beam, the shear locking
phenomenon is avoided by using a polynomial approximation of one order higher
for the transverse displacement than the slope and by using the reduced integration
[Reddy (2006)]. The assembly of the global matrix is a difficult task with such an
approximation as the transverse displacement and the slope have different degrees
of freedom within the element. The shape functions obtained by satisfying the
homogenous part of the Timoshenko beam equation overcome this problem.

In the meshless method, the improvements made in the conventional finite ele-
ment method domain were not addressed for the shear locking; the problem was
solved with the formulation of alternate equations [Cho and Atluri (2001)] and the
moving least squares interpolation was used. A similar formulation was used by
Raju, Phillips, and Krishnamurthy (2004) with the radial basis function interpola-
tion. The alternate formulation is a well thought out and elegant solution with the
meshless method but the locking-free shape function formulation for the meshless
method remains to be addressed.

In this paper, we derive a locking-free shape function formulation for the meshless
methods using the radial basis function interpolation. For the same nodal degrees
of freedom of the transverse displacement and the slope, we get higher order ap-
proximation for the transverse displacement than the slope. Results show better
convergence with the locking-free approximation and avoids the shear locking as-
sociated with the normal approximation.

2 Shear locking in the timoshenko beam finite element formulation

The governing differential equations of a non-rotating Timoshenko beam are given
by

d
dx

[
kGA

(
dw
dx
−θ

)]
+ f = 0 (1)
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EI
d2θ

dx2 + kGA
(

dw
dx
−θ

)
= 0 (2)

where, k is the shear correction factor, E is the Young’s modulus, G is the shear
modulus, w is the transverse displacement, A is the area of cross section and θ is
the slope.

For the thin beam case, dw
dx = θ and using a linear interpolation of w and θ , we reach

a condition that θ should be a constant, and in such a case, the bending energy
(1

2
∫ R

0 EI(dθ/dx)2dx) will be zero. Two solutions are possible to overcome this
problem: (1) Using a higher order approximation for the transverse displacement
than the slope and (2) Integrating the transverse shear energy (1

2
∫ R

0 GAk[(dw/dx)
−θ ]2dx) with the reduced integration [Reddy (2006)].

For a Timoshenko beam element, Mukherjee and Prathap (2002) have discussed the
delayed convergence and locking behavior with a higher order approximation. The
functionally-graded beams and composite beams were modeled with a locking-
alleviated 4-node mixed-collocation finite element approach [Dong, El-Gizaway,
Juhany, and Atluri (2014a)] and a similar approach was used for a 3D linear e-
lasticity problem [Dong, El-Gizaway, Juhany, and Atluri (2014b)], both of these
methods were found to be superior to the existing alternatives; these methods are
straight forward and computationally efficient.

3 Locking-free formulation of the Timoshenko beam for the meshless meth-
ods [Cho and Atluri (2001)]

The variational function associated with equation (1) and (2) is given by

1
2

R∫
0

[
EI
(

dθ

dx

)2

+ kGA
(

dw
dx
−θ

)2
]

dx (3)

For the thin beam, kGA
EI → ∞,γ → 0, and dw

dx −θ → 0. Linear interpolation approx-
imations for the transverse displacement and the slope are given by

w = a1 +b1x (4)

θ = a2 +b2x (5)

Substituting equations (4) and (5) and minimization of the variational functional
yields the conditions a2→ b1 and b2→ 0. This results in zero bending energy. To
overcome this problem, Cho and Atluri (2001) rewrite the variational function as

1
2

R∫
0

[
EI
(

dθ

dx

)2

+ kGA(γ)2

]
dx (6)
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where the dependent variables are the transverse displacement (θ) and the trans-
verse strain (γ). They write linear interpolation for θ and γ as

θ = a1 +b1x (7)

γ = a2 +b2x (8)

Substituting equations (7) and (8) and minimization of the variational functional
will give the conditions a2→ 0 and b2→ 0. These conditions do not lock the bend-
ing. Thus, equations (1) and (2) can be replaced with the locking-free formulation
as equations (9) and (10).

EI
d3

dx3

(
dw
dx
− γ

)
− f = 0 (9)

EI
d2

dx2

(
dw
dx
− γ

)
+ kAGγ = 0 (10)

4 Governing differential equations of the rotating timoshenko beam

The governing differential equations of the rotating Timoshenko beam are given as
[Kaya (2006)]

−ρA
∂ 2w(x, t)

∂ t2 +
∂

∂x

[
T (x)

∂w(x, t)
∂x

]
+

∂

∂x

{
kAG

[
∂w(x, t)

∂x
−θ(x, t)

]}
= 0 (11)

−ρA
∂ 2θ(x, t)

∂ t2 +ρIΩ
2
θ(x, t)+

∂

∂x

[
EI

∂θ(x, t)
∂x

]
+ kAG

[
∂w(x, t)

∂x
−θ(x, t)

]
= 0

(12)

where, ρ is the density, Ω is the angular velocity of the rotating beam, w and θ are
the transverse displacement and the slope, respectively. Here, T (x) is the centrifu-
gal force, which varies along the length of the beam and it is given as

T (x) =
R∫

x

ρAΩ
2xdx. (13)

Substituting w(x, t) = eiωtw(x), and θ(x, t) = eiωtθ(x) in equations (11) and (12)
we get

ρAω
2w(x)+

d
dx

[
T (x)

dw(x)
dx

]
+

d
dx

{
kAG

[
dw(x)

dx
−θ(x)

]}
= 0 (14)

ρAω
2
θ(x)+ρIΩ

2
θ(x)+

d
dx

[
EI

d2θ(x)
dx2

]
+ kAG

[
dw(x)

dx
−θ(x)

]
= 0 (15)
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In non-dimensional form, for a uniform rotating Timoshenko beam we can write
equations (14) and (15) as

d
dζ

[
(1−ζ 2)

2
dw(ζ )

dζ

]
+

ω2

Ω2 w(ζ )+
1

s2η2

[
d2w(ζ )

dζ 2 − dθ(ζ )

dζ

]
(16)

d2θ(ζ )

dζ 2 +η
2r2
(

1+
ω2

Ω2

)
θ(ζ )+

1
s2

[
dw(ζ )

dζ
−θ(ζ )

]
= 0 (17)

where, ζ =
x
R
,w(ζ ) =

w(x)
R

, r2 =
I

AR2 ,s
2 =

EI
kAGR2 ,η

2 =
ρAR4Ω2

EI
, and µ2 =

ρAR4ω2

EI
.

5 Weak formulation of the rotating Timoshenko beam differential equation

The weak form of equations (16) and (17) is given as∫
Ω0

vw
d

dζ

[
(1−ζ 2)

2
dw(ζ )

dζ

]
dζ+

∫
Ω0

vw
ω2

Ω2 w(ζ )dζ+
∫

Ω0

vw
1

s2η2

[
d2w(ζ )

dζ 2 −
dθ(ζ )

dζ

]
dζ

+
∫

Ω0

vθ

d2θ(ζ )

dζ 2 dζ+
∫

Ω0

vθ η
2r2
(

1+
ω2

Ω2

)
θ(ζ )dζ+

∫
Ω0

vθ

1
s2

[
dw(ζ )

dζ
−θ(ζ )

]
dζ

+αw [(w−w̃)vw]Ω0∩Γw
+αθ

[
(θ−θ̃)vθ

]
Ω0∩Γθ

=0 (18)

where, vw and vθ are the weight functions, αw and αθ are the penalty parameters,
and Ω0 is the complete domain.

The weak formulation can be written for a local sub-domain as

−
∫
Ωs

dvw

dζ

[
(1−ζ 2)

2
dw(ζ )

dζ

]
dζ+

∫
Ωs

vw
ω2

Ω2 w(ζ )dζ−
∫
Ωs

dvw

dζ

1
s2η2

[
dw(ζ )

dζ
−θ(ζ )

]
dζ

+
∫
Ωs

dvθ

dζ

dθ(ζ )

dζ
dζ+

∫
Ωs

vθ η
2r2
(

1+
ω2

Ω2

)
θ(ζ )dζ+

∫
Ωs

vθ

1
s2

[
dw(ζ )

dζ
−θ(ζ )

]
dζ

+ηx

[
1

s2η2 vw

(
dw(ζ )

dζ
−θ(ζ )

)
+

(
1−ζ 2

2

)
vw

dw(ζ )
dζ

]
Ωs∩Γw

+ηx

[
vθ

dθ(ζ )

dζ

]
Ωs∩Γθ

+αw [(w−w̃)vw]Ωs∩Γw
+αθ

[
(θ−θ̃)vθ

]
Ωs∩Γθ

=0 (19)

where, ηx is a unit vector and it is positive on the right hand side of the sub-domain
of the nodal test function. Ωs∩Γw and Ωs∩Γθ represent the intersection of the sub-
domain of the nodal test function with the boundary, where the transverse deflection
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and the slope are prescribed. The last two terms of equation (19) can be omitted
where the radial basis function approximation is used.

6 Inspiration from the finite element method

In the finite element method, to avoid the shear locking, we generally use quadratic
interpolation for the transverse displacement and linear interpolation for the slope,
or a one order higher approximation for the transverse displacement than the slope
[Reddy (2006)].

w(x) = a0 +a1x+a2x2 (20)

θ(x) = b0 +b1x (21)

The meshless approximations of the transverse displacement and the slope are giv-
en by

w(ζ ) = R1(ζ )a1+S1(ζ )b1+R2(ζ )a2+S2(ζ )b2+ · · ·+RN(ζ )aN+SN(ζ )bN (22)

θ(ζ ) = Rθ
1 (ζ )c1+Rθ

2 (ζ )c2+ · · ·+Rθ
n (ζ )cN (23)

where,

R j(ζ ) = e
−c

(|ζ−ζ j |)2

s2
t (24)

and

R(θ)
j (ζ ) = e

−c
(|ζ−ζ j |)2

s2
t (25)

The values of c and st are user defined and have their impact on accuracy. Equations
(24) and (25) represent normal approximations for the transverse displacement and
the slope, respectively.

6.1 First locking-free approximation

Since the transverse displacement approximation should be an order higher than
the slope approximation, we write the first locking-free approximation as

R1 j(ζ ) = ζ e
−c

(|ζ−ζ j |)2

s2
t (26)

Equation (26) follows a similar procedure as finite element method but at ζ = 0,
the first locking-free approximation R1 j(ζ ) has a value zero and does not serve
the purpose for all the boundary conditions. Therefore, we try to find a second
locking-free approximation in the next section.
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6.2 Second locking-free approximation

We write the second locking-free approximation as

R2 j(ζ ) = e
−c

ζ 2(|ζ−ζ j |)2

s2
t (27)

Equation (27) is the second locking-free approximation R2 j(ζ ) and it provides a
higher order approximation than the normal approximation R j(ζ ). Equations (28)
and (29) show the Taylor series expansion of R j(ζ ) and R2 j(ζ ) up to the first three
terms, respectively.

R j(ζ ) =

[
1+αζ

2
j +

1
2

α
2
ζ

4
j

]
+ζ

[
−2ζ jα−2α

2
ζ

3
j
]
+ζ

2 [
α +3α

2
ζ

2
j
]

−2α
2
ζ jζ

3 +
1
2

α
2
ζ

4 + · · · (28)

R2 j(ζ ) =1+αζ
2
j ζ

2−2αζ jζ
3 +ζ

4
[

α +
1
2

α
2
ζ

4
j

]
−2α

2
ζ

3
j ζ

5 +3α
2
ζ

2
j ζ

6−2α
2
ζ jζ

7 +
1
2

α
2
ζ

8 + · · · (29)

where, α = −c
s2
t

.

Equation (29) is a higher order polynomial. The term ζ 2 is multiplied within the
exponential term of R2 j(ζ ) for the smoothness of the curve, otherwise term ζ could
have been a solution as well. R2 j(ζ ) serves the purpose for the cantilever boundary
condition.

In this section, equations (24), (26), and (27) represent the normal approximation,
the first locking-free approximation, and the second locking-free approximation,
respectively. Based on the arguments discussed, we finalize our locking-free ap-
proximation as equation (27): the second locking-free approximation R2(ζ ). We
follow an approach in the meshless method similar to the finite element method
and use a higher order approximation for the transverse displacement relative to
the slope. The numerical accuracy depends on the numerical integration.

In this paper, we will obtain the results with both these R j(ζ ) and R2 j(ζ ); the re-
sults will be indicated by “Normal approximation” for equation (24) and “Locking-
free approximation” for equation (27).

Note that for the hinged boundary condition, one should try e
−c

ζ (|ζ−ζ j |)2

s2
t as the

locking-free approximation, where only a ζ term is multiplied within the expo-
nential than approximation where the ζ 2 term is multiplied within the exponential
of R2 j(ζ ).
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7 Graphical representations of the normal approximation R j(ζ ) and the
locking-free approximation R2 j(ζ )

Both these functions are drawn in Figures (1a)–(1f). The dotted lines show the
normal radial basis approximation while continuous lines show the locking free
approximation. The Figures (1a)–(1f) show a distribution over the beam of length
5m and 6 nodes are considered at the distance of 0m,1m,2m,3m,4m, and 5m, re-
spectively.

In figures (1a)–(1f), we see that the locking-free approximation is sensitive to the
increasing length of the beam and does not show a uniform distribution shown by
the normal approximation. In figure (1b), we see a different behavior of the locking-
free curve as ζ → 0, but the function does serve the purpose for the cantilever
boundary conditions.

7.1 Shape function formulation for the transverse displacement

The transverse displacement can be approximated with the radial basis function as
Raju, Phillips, and Krishnamurthy (2004)

w(ζ ) = R1(ζ )a1 +S1(ζ )b1 +R2(ζ )a2 +S2(ζ )b2 + · · ·+RN(ζ )aN +SN(ζ )bN (30)

where, N is the number of nodes, and a1,b1,a2,b2, . . . ,aN ,bN are the arbitrary con-
stants.

The derivative of the radial basis function is given by

S j(ζ ) =
dR j(ζ )

dx
(31)

We write the derivative of the transverse displacement by differentiating equation
(30) with respect to ζ as

dw(ζ )
dζ

=
dR1(ζ )

dζ
a1 +

dS1(ζ )

dζ
b1 +

dR2(ζ )

dζ
a2 +

dS2(ζ )

dζ
b2

+ · · ·+ dRN(ζ )

dζ
aN +

dSN(ζ )

dζ
bN (32)

We can rewrite the transverse displacement as

w(ζ ) = [Q(ζ )](1,2N) [c]
T
(2N,1) (33)

where,

[Q(ζ )](1,2N) = [R1 (ζ ) S1(ζ ) R2(ζ ) S2(ζ ) · · · RN(ζ ) SN(ζ )] (34)
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(a) (b)

(c) (d)

(e) (f)

Figure 1: a and b: Variations of the approximations at nodal points 0 and 1, respec-
tively, c and d: Variations of the approximations at nodal points 2 and 3, respective-
ly, e and f: Variations of the approximations at nodal points 4 and 5, respectively
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and

[c](1,2N) = [a1 b1 a2 b2 · · · aN bN ] (35)

We can rewrite the slope as

dw(ζ )
dζ

=

[
dQ(ζ )

dζ

]
(1,2N)

[c]T(2N,1) (36)

where,[
dQ(ζ )

dζ

]
(1,2N)

=

[
dR1(ζ )

dζ

dS1(ζ )

dζ

dR2(ζ )

dζ

dS2(ζ )

dζ
· · · dRN(ζ )

dζ

dSN(ζ )

dζ

]
(37)

Substituting the displacement and its derivative values at the nodal points in equa-
tions (33) and (36), we get

[QM](2N,2N) [c]
T
(2N,1) = [d](2N,1) (38)

where,

[d]T(1,2N) =

[
w1

dw1(ζ )

dζ
w2

dw2(ζ )

dζ
· · ·wN

dwn(ζ )

dζ

]
(39)

and

[QM] =



R1(ζ1) S1(ζ1) R2(ζ1) S2(ζ1) . . . RN(ζ1) SN(ζ1)
dR1(ζ1)

dζ

dS1(ζ1)

dζ

dR2(ζ1)

dζ

dS2(ζ1)

dζ
. . .

dRN(ζ1)

dζ

dSN(ζ1)

dζ

R1(ζ2) S1(ζ2) R2(ζ2) S2(ζ2) . . . RN(ζ2) SN(ζ2)
dR1(ζ2)

dζ

dS1(ζ2)

dζ

dR2(ζ2)

dζ

dS2(ζ2)

dζ
. . .

dRN(ζ2)

dζ

dSN(ζ2)

dζ
...

...
...

... . . .
...

...
R1(ζN) S1(ζN) R2(ζN) S2(ζN) . . . RN(ζN) SN(ζN)

dR1(ζN)

dζ

dS1(ζN)

dζ

dR2(ζN)

dζ

dS2(ζN)

dζ
. . .

dRN(ζN)

dζ

dSN(ζN)

dζ


(40)

We can rewrite equation (38) as

[c]T(2N,1) = [QM]−1
(2N,2N) [d](2N,1) (41)
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From equations (41) and (33), we get

w(ζ ) = [Q(ζ )](1,2N) [QM]−1
(2N,2N) [d](2N,1) (42)

w(ζ ) = [N(ζ )](1,2N) [d](2N,1) (43)

where, [N(ζ )] is the shape function vector.

[N(ζ )](1,2N) = [Q(ζ )](1,2N) [QM]−1
(2N,2N) (44)

[N(ζ )](1,2N) =

[
φ
(w)
1 (ζ ) φ

(
dw
dζ

)
1 (ζ ) φ

(w)
2 (ζ ) φ

(
dw
dζ

)
2 (ζ ) · · ·φ (w)

N (ζ ) φ

(
dw
dζ

)
N (ζ )

]
(45)

where, φ
(w)
i (ζ ) and φ

(
dw
dζ

)
i (ζ ) are the shape functions associated with node i.

The approximate trial function can be written as

w(ζ ) =
N

∑
j=1

(φ
(w)
j (ζ )w j +φ

(
dw
dζ

)
j (x)w′j) (46)

Figures (2a) and (2b) show the variations of the shape function and its derivative.

(a) (b)

Figure 2: a and b: Variations of the shape function and the shape function deriva-
tive, respectively.

7.2 Shape function formulation for the slope

R(θ)
j (ζ ) = e

−c
(|ζ−ζ j |)2

s2
t (47)
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Note that the length of the sub-domain of the trial function st and parameter c
remains same for the transverse displacement and the slope approximation but basis
function for the slope is of reduced order than the transverse displacement.

θ(ζ ) = Rθ
1 (ζ )c1 +Rθ

2 (ζ )c2 + · · ·Rθ
n (ζ )cN (48)

We can write the slope as

θ(ζ ) =
[
Qθ (ζ )

]
(1,N)

[
cθ

]T

(N,1)
(49)

where,[
Qθ (ζ )

]
(1,N)

=
[

Rθ
1 Rθ

2 · · · R
θ
N

]
(50)[

cθ

]
(1,N)

=
[
cθ

1 cθ
2 · · · cθ

N

]
(51)

Substituting the nodal values in equation (49) we get[
Qθ

M

]
(N,N)

[
cθ

]T

(N,1)
=
[
dθ

]
(52)

where,

[
Qθ

M

]
(N,N)

=


Rθ

1 (ζ1) Rθ
2 (ζ1) . . . Rθ

N(ζ1)
Rθ

1 (ζ2) Rθ
2 (ζ2) . . . Rθ

N(ζ2)
...

... . . .
...

Rθ
1 (ζN) Rθ

2 (ζN) . . . Rθ
N(ζN)

 (53)

[
dθ

]T

(1,N)
= [θ1 θ2 · · · θN ] (54)

From equations (52) and (49) we can write

θ(ζ ) =
[
Qθ (ζ )

]
(1,N)

[
Qθ

M

]−1

(N,N)

[
dθ

]T

(N,1)
(55)

The shape function for the slope can be written as

[H(ζ )](1,N) =
[
Qθ (ζ )

]
(1,N)

[
Qθ

M

]−1

(N,N)
(56)

[H(ζ )](1,N) =
[
φ

θ
1 (ζ ) φ

θ
2 (ζ ) · · ·φ θ

N (ζ )
]

(57)

Where, φ
(θ)
i (ζ ) is the shape functions associated with node i, and the slope can be

approximated as

θ(ζ ) =
N

∑
j=1

φ
(θ)
j (ζ )θ j (58)

Figures (3a) and (3b) show the variation of the shape function and its derivative.
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(a) (b)

Figure 3: a and b: Variations of the shape function (slope) and the shape function
derivative, respectively.

8 Test functions for the meshless local Petrov-Galerkin method

Basis function for the test function can be chosen arbitrarily such that it is zero
outside the sub-domain of the nodal test function and it is given by Raju, Phillips,
and Krishnamurthy (2004)

χ
(w)
i (ζ ) =


[

1−
(
|ζ−ζi|

sv

)2
]4

0≤ |ζ −ζi| ≤ sv

0 |ζ −ζi|> sv

(59)

χ

(
dw
dζ

)
i =

dχ(w)(ζ )

dζ
(60)

where, χ
(w)
i (ζ ) and χ

(
dw
dζ

)
i (ζ ) are the basis functions for node i, ζi is the spatial

location of the node and 2sv is the sub-domain length of the test function given by

vw = δwiχ
(w)
i (ζ )+δw′iχ

(
dw
dζ

)
i (ζ ) (61)

For the slope approximation, we write

χ
(θ)
i (ζ ) =


[

1−
(
|ζ−ζi|

sv

)2
]2

0≤ |ζ −ζi| ≤ sv

0 |ζ −ζi|> sv

(62)
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where, χ
(θ)
i (ζ ) is the basis function for node i.

vθ = δθiχ
(θ)
i (ζ ) (63)

Figures (4a) and (4b) show the variations of basis functions for the transverse dis-
placement and the slope, respectively. Where, d is the distance between the two
consecutive nodes. Two curves are shown for the sub-domain length of the test
function 2d and 4d. Figure (5) shows the overlapping of the sub-domains of the
test functions.

(a) (b)

Figure 4: a and b: Variations of test functions within the sub-domain for transverse
displacement and slope, respectively.

9 Meshless local petrov-galerkin formulation

Based on the weak form of the problem, the algebraic equations can be written
for each nodal test function. One advantage the meshless method shows over the
conventional finite element method is that for a higher order approximation of the
transverse displacement than the slope, we get the same degrees of freedom over
the complete domain, while in the finite element approximation, we get the higher
degrees of freedom for the transverse displacement within the element. From equa-
tions (19), (46), (58), (61), and (63) we write the equation for the ith sub-domain of
the test function.

ω
2[M](node)[φ ] = ([K](node)+[K](bound))[φ ] (64)
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Figure 5: Overlapping of the sub-domains of the test functions, sub-domain of the
ith node in dotted line.

For the ith node, we write the mass matrix as

[M](i
th node) =

∫
Ω

(i)
s

1
Ω2

 χ
(w)
i

χ

(
dw
dζ

)
i


(2,1)

[N(ζ )](1,2N)dζ [0](1,2N)

[0](2,N)

∫
Ω

(i)
s

r2

Ω2 [χ
(θ)
i ](1,1)[H(ζ )](1,N)dζ


(3,3N)

(65)

and the stiffness matrix as

[K](i
th node) =

[
[A1](2,2N) [A2](2,N)

[A3](1,2N) [A4](1,N)

]
(3,3N)

(66)

where,

[A1] =
∫

Ω
(i)
s

1
s2η2

 dχ
(w)
i

dζ

dχ

(
dw
dζ

)
i
dζ


(2,1)

[
d [N(ζ )]

dζ

]
(1,2N)

dζ

+
∫

Ω
(i)
s

(
1−ζ 2

2

) dχ
(w)
i

dζ

dχ

(
dw
dζ

)
i
dζ


(2,1)

[
d [N(ζ )]

dζ

]
(1,2N)

dζ ,
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[A2] =−
∫

Ω
(i)
s

1
s2η2

 dχ
(w)
i

dζ

dχ

(
dw
dζ

)
i
dζ


(2,1)

[H(ζ )](1,N) dζ ,

[A3] =−
∫

Ω
(i)
s

1
s2η2

[
χ
(θ)
i

]
(1,1)

[
d [N(ζ )]

dζ

]
(1,2N)

dζ ,

and

[A4] =
∫

Ω
(i)
s

1
η2

[
dχ

(θ)
i

dζ

]
(1,1)

[
d [H(ζ )]

dζ

]
(1,N)

dζ +
∫

Ω
(i)
s

1
s2η2

[
χ
(θ)
i

]
(1,1)

[H(ζ )](1,N)

−
∫

Ω
(i)
s

r2
[
χ
(θ)
i

]
(1,1)

[H(ζ )](1,N) dζ

Nodes contributing to the boundary will give the additional stiffness term as

[K](bound) =

[
[b1] [b2]
[b3] [b4]

]
(67)

where,

[b1] =−
1

s2η2

[
χ
(w)
i

χ
( dw

dx )
i

]
(2,1)

[
d [N(ζ )]

dζ

]
(1,2N)

−
(

1−ζ 2

2

)[
χ
(w)
i

χ
( dw

dx )
i

]
(2,1)

[
d [N(ζ )]

dζ

]
(1,2N)

,

[b2] =
1

s2η2

[
χ
(w)
i

χ
( dw

dx )
i

]
(2,1)

[H(ζ )](1,N) ,

[b3] = [0](1,2N), and

[b4] =−
1

η2

[
χ
(θ)
i

]
(1,1)

[
d [H (ζ )]

dζ

]
(1,N)

.

We can write the free vibration problem in a matrix form as

ω
2 [M]i

th node
(3,3N)

[
[w](2N,1)
[θ ](N,1)

]
=
(
[K]i

th node
(3,3N) +[K]

(bound)
(3,3N)

)[[w](2N,1)
[θ ](N,1)

]
(68)
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Equation (68) contains the local mass and the local stiffness matrix for a single
sub-domain of the test function. Writing equations for all the sub-domains of the
test function, we get

ω
2 [MG](3N,3N)

[
[w](2N,1)
[θ ](N,1)

]
= [KG](3N,3N)

[
[w](2N,1)
[θ ](N,1)

]
(69)

where, [MG] and [KG] are the global mass and the global stiffness matrices. The
natural frequencies can be calculated with the direct application of the essential
boundary condition.

Table 1: Non-dimensional fundamental frequency of a rotating Timoshenko beam
for different non dimensional rotating speeds (η).

r =
1
30

and
E
kG

= 3.059

η Baseline [Kaya (2006)] Locking-free Approximation p = 7
0 3.4798 3.4890
1 3.6445 3.6543
2 4.0971 4.1069
3 4.7516 4.7618
4 5.5314 5.5428
5 6.3858 6.3991

10 11.0643 11.0986

Table 2: Non-dimensional natural fundamental frequency at η = 0, for different
values of Timoshenko parameter (r).

η = 0,
E
G

=
8
3

, and k =
2
3

r Baseline [Kaya (2006]
Locking-free

Approximation p = 7
Normal

Approximation p = 7
0.001 3.5160 3.4900 15.5381i
0.01 3.5119 3.5210 3.1067
0.1 3.1738 3.1806 3.1754
0.15 2.8692 2.8737 2.8710



Meshless Local Petrov-Galerkin Method for Rotating Timoshenko Beam 233

10 Results and discussion

The Timoshenko rotating beam free vibration results are shown in Tables (1)–(5).
Results in Tables (2)–(5) clearly show that the locking free shape function formu-
lation is better than the normal shape function formulation. We use 7 nodes in one
sub-domain length of the trial function. Table (1) shows the non-dimensional fun-
damental natural frequency for varying non-dimensional rotating speeds, where, p
is the number of nodes in one sub-domain length of the trial function.

Table 3: Non-dimensional natural fundamental frequency at η = 4, for different
values of Timoshenko parameter (r).

η = 4,
E
G

=
8
3

, and k =
2
3

r Baseline [Kaya (2006]
Locking-free

Approximation p = 7
Normal

Approximation p = 7
0.001 5.5850 5.6129 15.2516i
0.01 5.5791 5.5893 5.3330
0.1 5.1448 5.1658 5.1621
0.15 4.8262 4.8518 4.8503

Table 4: Non-dimensional natural fundamental frequency at η = 8, for different
values of Timoshenko parameter (r).

η = 8,
E
G

=
8
3

, and k =
2
3

r Baseline [Kaya (2006]
Locking-free

Approximation p = 7
Normal

Approximation p = 7
0.001 9.2568 9.3568 13.9329i
0.01 9.2447 9.2642 9.1056
0.1 8.5735 8.6200 8.6184
0.15 8.1406 8.1886 8.1885

Tables (2)–(5) show the non-dimensional fundamental natural frequency for the
varying non-dimensional rotating speeds and for the varying Timoshenko param-
eter values. We get shear locking when r → 0, and it is observed with the nor-
mal radial basis function approximation, where we get complex eigenvalues. The
locking-free approximation avoids the shear locking and we get accurate values of
the non-dimensional frequencies.
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Table 5: Non-dimensional natural fundamental frequency at η = 12, for different
values of Timoshenko parameter (r).

η = 12,
E
G

=
8
3

, and k =
2
3

r Baseline [Kaya (2006]
Locking-free

Approximation p = 7
Normal

Approximation p = 7
0.001 13.170 13.3278 10.8293i
0.01 13.148 13.1881 13.0726
0.1 12.247 12.3228 12.3231
0.15 11.398 11.4582 11.4574

11 Conclusion

A locking-free shape function formulation is obtained for the meshless local Petrov-
Galerkin method using the radial basis function. The locking-free approximation
avoids the ill conditioning associated with the normal approximation. The current
work encourages the use of the locking free shape function formulation for other
meshless basis functions and permits keeping the governing differential equation of
a Timoshenko beam unchanged. Results are validated for the fixed-free boundary
condition and show good agreement with existing literature.
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