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A DMLPG Refinement Technique for 2D and 3D Potential
Problems
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Abstract: Meshless Local Petrov Galerkin (MLPG) methods are pure meshless
techniques for solving Partial Differential Equations (PDE). MLPG techniques are
nowadays used for solving a huge number of complex, real–life problems. While
MLPG aims to approximate the solution of a given differential problem, its “dual”
Direct MLPG (DMLPG) technique relies upon approximating linear functionals.
Assume adaptive methods are to be implemented. When using a mesh–based
method, inserting and/or deleting a node implies complex adjustment of connec-
tions. Meshless methods are more apt to implement adaptivity, since they does
not require such adjustments. Nevertheless, ad–hoc insertion and/or deletion al-
gorithms must be devised, in order to attain a good accuracy. In this paper we
introduce a fresh refinement technique for DMLPG methods. Nodes are inserted
in a discretization cloud where the local variation in the solution is supposed to be
“large”. The variation is estimated using the (local) Total Variation (TV). DMLPG
allows to directly estimate the partial derivatives, in order to compute the TV.
MLPG must rely upon approximating the derivatives of the shape functions, hence
MLPG refinement results to be more involved than its DMLPG counterpart. We
show that our DMLPG refinement procedure allows one to efficiently solve a given
diffusion problem whose solution undergoes large variations on a small portion of
the domain. The accuracy afforded by a fine uniform cloud can be attained by using
far less non–uniformly arranged nodes.
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1 Introduction

Meshless methods nowadays supply a good alternative or integrative technique to
Finite Element (FE) methods. As an example, meshless methods apply as an eli-
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gible choice for fracture analysis, see Yang, Budarapu, Mahapatra, Bordas, Zi, and
Rabczuk (2015).

Meshless methods are particularly attractive when meshing is a time–consuming
and cumbersome task [Gerace, Erhart, Kassab, and Divo (2013)], as it happens in
adaptive methods.

Kriging was proposed as a method to identify a suitable discretization cloud [Chen
and Liew (2011)]. This is a quite involved procedure. A key element for adaptivity,
is a refinement procedure, which allows one to refine a discretization only where
the solution u of the given differential problem undergoes large variations. In this
paper, we introduce a refinement procedure, based on approximating the variation
in u by estimating the (local) Total Variation (TV) of the numerical solution ũ.

Meshless Petrov Galerkin (MLPG) methods [Atluri (2004)] are truly meshless, and
widely used. Our previous paper [Mazzia, Pini, and Sartoretto (2014)] deals with
devising a refinement procedure for MLPG, that is based on the Moving Least
Squares (MLS) method proposed in Lancaster and Salkauskas (1981).

Direct MLPG (DMLPG) [Mirzaei and Schaback (2013)], exploits the Generalized
Moving Least Squares method (GMLS) [Mirzaei, Schaback, and Dehghan (2012)].
While MLS aims at approximating a multivariate function, GMLS approximates
linear functionals. The solution of a linear Partial Differential Equation (PDE),
formulated in strong or weak form, can be computed by approximating via GMLS
the associated functionals. DMLPG exploits GMLS to approximate weak forms of
PDE problems. DMLPG can be seen as a “dual” method to MLPG.

To identify the domain regions where any refinement is required, we adopted the
(local) Total Variation (TV) as an indicator of the local variation in u. Estimat-
ing the TV entails computing the partial derivatives. DMLPG enables us to ap-
proximate the partial derivatives directly, while other meshless methods, MLPG
included, must exploit expensive approximations of the partial derivatives of u.

To analyze the numerical properties of a refinement method, one must consider
sound test problems and ad–hoc, simple domains. In the sequel, we numerically
analyze the accuracy and efficiency achieved with our DMLPG–based refinement
procedure when solving Poisson problems on either [0,1]2 or [0,1]3.

This paper is organized as follows. Section 2 recalls basic facts about the approx-
imating schemes exploited by MLPG and DMLPG. Section 3 sketches the funda-
mental concepts underlying MLPG and DMLPG techniques. Section 4 identifies
the trial and test spaces, which are a key ingredient of our numerical methods. Sec-
tion 5 details our refinement strategy. Section 6 describes our distinguished test
problems. Section 7 describes and discusses our numerical results. Section 8 sum-
marizes our conclusions.
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2 Approximation schemes

The Moving Least Squares (MLS) method [Lancaster and Salkauskas (1981)] has
been proposed for approximating a function, u(x), inside a region Ω ⊂ Rd given
a number, N, of its values, u(xi), xi ∈ Ω. In the context of MLPG methods, in
order to approximate a given d-dimensional problem, MLS is exploited for gener-
ating a set of d-dimensional trial functions on the grounds of a suitable “weight”
function [Mazzia, Pini, and Sartoretto (2008); Mazzia and Sartoretto (2010)]. The
ensuing trial functions are called the “shape” functions of MLS.

The Generalized Moving Least Squares (GMLS) method [Mirzaei, Schaback, and
Dehghan (2012)], is a technique which generalizes the MLS formulation [Levin
(1998)], aiming to approximate continuous linear functionals in the dual of C k(Ω),
for any k ≥ 0. GMLS aims to approximate a linear functional, λ (u), based on a
given set of N linear functionals λi(u). One obtains an approximation

λ̂ (u) =
N

∑
i=1

φi(λ )λi(u). (1)

Each coefficient φi(λ ), called a GMLS shape function, must be linear in λ . As an
example, λ (u) can be a partial derivative of u, while λi(u) = u(xi) can be a given
set of u values on given nodes xi ∈ Ω; λ̂ (u) in this case can be interpreted as a
generalization of Finite Difference methods, based on all u(xi) values, instead of a
given stencil.

For a given continuous linear functional λ (u), the polynomial–based GMLS com-
putes an approximation λ̂ (u)= λ (p∗), where p∗ minimizes a weighted least–squares
error functional [Mazzia, Pini, and Sartoretto (2012)].

For more details on the algorithm, see e.g. Levin (1998); Mirzaei and Schaback
(2013).

3 MLPG and DMLPG techniques

Let us consider the linear Poisson equation on the domain Ω

−∇
2u(x) = f (x), (2)

where f is a given source function, x being any point in Ω. Dirichlet and Neumann
boundary conditions are imposed on the domain boundary ∂Ω

u = ū on Γu,
∂u
∂n
≡ q = q̄ on Γq (3)
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where ū and q̄ are the prescribed potential and normal flux, respectively, on the
Dirichlet boundary, Γu, and on the Neumann boundary, Γq, being ∂Ω = Γ = Γu∪
Γq, Γu∩Γq = /0. The outward normal direction to Γ is denoted by n.

In order to compute an approximation ũ = ∑i ũiξi of the solution, a finite set of trial
functions ξi is chosen.

Let us assume that the residual of eq. (2) is multiplied by a suitable test function τ .
The divergence theorem is applied, thus obtaining the weak formulation for (2)∫

Ω

∇u ·∇τdΩ−
∫

Γ

(∇u ·n)τdΓ =
∫

Ω

f τ dΩ, ∀τ ∈S , (4)

for any τ in a suitable functional space S . Many MLPG methods have been pro-
posed [Atluri (2004); Fries and Matthies (2004)], each of which can be identified
by an appropriate choice of trial and test functions.

In order to approximate the solution of our weak formulation, a set of discretization
nodes must be given. Let N be the total number of nodes.

A set of trial functions, ξi, is usually adopted, each of which is “centered” on node
xi. The support of ξi, Sξi is a ball centered at xi, whose radius is ri. Actually, for
each i we set ξi = 0 outside Ω, which is equivalent to considering Sξi ∩Ω, instead
of Sξi . The support of each test function τi, Sτi = Ωi, is a ball (or a cuboid) centered
at xi, whose radius (or half side length) is ρi. We assume τi = 0 outside Ω, thus
considering Sτi ∩Ω. We assume that τi = 0 is on ∂Ωi, a typical setting in many
MLPG schemes [Mirzaei and Schaback (2013); Mazzia and Sartoretto (2010)]. In
principle the test functions need not necessarily be centered on the xi. For the sake
of simplicity, we use as support centers the xi nodes, for both the trial and the test
functions.

A set of Local Weak Forms (LWF) is obtained by writing eq. (4) for each test
function∫

Ωi

∇u ·∇τidΩ−
∫

Γ
(u)
i

(∇u ·n)τidΓ =
∫

Ωi

f τi dΩ+
∫

Γ
(q)
i

(∇u ·n)τidΓ, (5)

where Γ
(u)
i = ∂Ωi∩∂Γu is the intersection of our local integration domain boundary

with the Dirichlet boundary. Similarly, Γ
(q)
i = ∂Ωi∩∂Γq is the intersection of our

local integration domain boundary with the Neumann boundary. Integrals on Γi =

∂Ωi\(Γ(u)
i ∪Γ

(q)
i ), the portion of ∂Ωi lying inside Γ, contribute nothing, since τi = 0

is on ∂Ωi. The boundary conditions are managed using suitable techniques [Atluri
(2004); Mazzia, Pini, and Sartoretto (2008)].

The DMLPG technique is implemented by applying GMLS to the weak prob-
lem (5). The solution of our Poisson problem is approximated by using a poly-
nomial space.
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All the details of our implementation of the DMLPG technique for diffusion prob-
lems are given in Mazzia, Pini, and Sartoretto (2012).

4 Finite dimensional spaces

On the grounds of our previous 2D and 3D results [Mazzia, Pini, and Sartoretto
(2008); Mazzia and Sartoretto (2010); Mazzia, Pini, and Sartoretto (2014)], we ex-
ploit appropriate weight functions w(t) [Atluri and Zhu (2002); Belytschko, Kron-
gauz, Organ, Fleming, and Krysl (1996); Lancaster and Salkauskas (1981); Mazzia,
Pini, and Sartoretto (2008)], in order to identify suitable trial and test spaces.

4.1 Generating functions

Let us assume that w(t) is a given, differentiable, compact supported, generator
function; when t > 1, w(t) = 0 holds.

Our i-th trial function ξi is a Radial Based Function (RBF) associated with node xi.
After identifying a support radius ri (see the sequel), we set

ξi = w
(
‖x− xi‖2

ri

)
,

where w(t) is a Gaussian generator according to Lu, Belytschko, and Gu (1994),
i.e.

w(t) =


exp(−(σt)2)− exp(−σ2)

1− exp(−σ2)
0≤ t ≤ 1

0 t ≥ 1.
(6)

Note that σ is a parameter controlling the function shape. Throughout this paper
we assume that σ = 1.

Our test functions τi are Tensor Product Functions (TPF). We give the definitions
for 3D problems; 2D problems are treated by disregarding the z values. With each
node, xi, we associate the TPF test function

τi(x,y,z) = f (|x− xi|/ρ
(x)
i ) · f (|y− yi|/ρ

(y)
i ) · f (|z− zi|/ρ

(z)
i ), (7)

by choosing the appropriate ρ
(∗)
i factors. For the sake of simplicity, we assume that

ρ
(x)
i = ρ

(y)
i = ρ

(z)
i = ρi, so the support of τi(x) is a cube centered at xi. The value ρ

is called the “radius” of the cube.

The function f (t) is in turn a polynomial generator according to Liu (2009)

f (t) =

{
1− t2, 0≤ t ≤ 1,
0, t ≥ 1.

(8)
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4.2 Identifying the radiuses

A crucial step in obtaining accurate (D)MLPG schemes involves identifying the
support trial basis radiuses ri, and the test basis ones ρi, i = 1, . . . ,N [Mazzia and
Sartoretto (2010)].

For each node we arrange in ascending order its distances from the closest nc� N
neighbors. The nc integer value was identified by suitable numerical experiments
(see below).

Let us assume a given irregular discretization I.

In the case of 2D domains, for each node xi in I we compute the nc = 7 nodes closest
to xi. We arrange their distances in ascending order d(1)

i ≤ d(2)
i ≤ . . .≤ d(nc)

i .

(a) If dk = d, k = 1, . . . ,4, we can assume that the node distribution around the i-th
node is “practically uniform”. We set ri = βd, ρi = αd, α , β are parameters
to be tuned. See the sequel for details.

(b) If not, we set

ri = βd(nc)
i , ρi = αd(nc)

i . (9)

The boundary nodes are treated in the same way as the internal nodes.

The parameters α and β were identified by means of numerical experiments: They
fall in not too large ranges [Mazzia and Sartoretto (2010)]. Typical intervals are

0.5≤ α ≤ 1.5, 1.0≤ β ≤ 5.0, α < β . (10)

Throughout this paper we assume that α = 1. This setting proved suitable for all
the test problems shown in the sequel.

As for 3D problems, it should be noted that there are six faces of a cube centered
on any given point xi. We perform step (a) on six points, i.e. “local uniformity”
corresponds to d(k)

i = d for k = 1, . . . ,6.

Alternatively, we perform step (b) by assuming that nc = 9.

As we saw before, the parameter setting α = 1 was adopted.

5 Discretizations

5.1 Uniform grids

Let us assume for the sake of simplicity that our domain is either the [0,1]2 square,
for 2D problems, or the [0,1]3 cube for 3D problems.
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When dealing with 2D problems, let us start with the uniform grid on [0,1]2 iden-
tified by intersecting the sides of the square and those three x–parallel and three
y–parallel lines that divide the x- and y-side evenly into nx = ny = 4 parts. Let us
call this uniform discretization U1, the “level” ` = 1 uniform discretization. The
interval spacing is h1 = 1/4, N = 5× 5 = 25 nodes are identified. Each finer uni-
form discretization level is obtained by halving each sub–interval. We thus obtain
N = 25,81,289,1089,4225 nodes, corresponding to levels `= 1,2,3,4,5.

The 3D uniform discretization grids on [0,1]3 are obtained in a similar manner,
by setting nx = ny = nz = 4. On the initial level ` = 1, we thus have h1 = 1/4,
N = 5×5×5= 125 nodes are enrolled. Each finer level is obtained by halving each
sub–interval. We obtain N = 125,729,4913,35937,274625 nodes, corresponding
to levels N = 1,2,3,4,5.

5.2 Refinement strategy

The efficacy for DMLPG computations of the irregular discretizations built using
our refinement strategy has to be tested.

For any irregular discretization, there are two measures worth considering. They
are the fill distance hI,Ω, and the separation distance, qI , i.e. Fasshauer (2007)

hI,Ω = sup
x∈Ω

min
1≤i≤N

‖x− xi‖, qI =
1
2

min
k 6=i
‖xk− xi‖, 1≤ k, i≤ N. (11)

5.2.1 2D problems

The first discretization level `= 1 is set to I1 =U1, the N = 25 node uniform grid.

To refine a given discretization Ik at level ` = k, we consider on each node xi the
“local” Total Variation (TV) of the solution u, defined as

‖u‖TV,i = ‖∇u‖1,i =
∫ ∫

Ωi

(|ux|+ |uy|) dΩ,

where ux and uy are the partial derivatives of the solution. The advantages of this
“variation measure” are clearly explained in Strang, (2007), pag. 415: The vari-
ational methods which use the TV norm “allow for discontinuities but disfavor
oscillations”.

To approximate the TV on node xi by taking our numerical solution ũ into account,
we set

‖ũ‖TV,i ' (|ũx(xi)|+ |ũy(xi)|) |Ωi|,

|Ωi| being the area of the i-th DMLPG integration subdomain. One can prove that,
due to our previous assumptions on the domains of the trial and test functions, Ωi
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i

old nodes

inserted nodes

x

Figure 1: Node insertion 2D strategy, when a “locally–uniform” discretization is
detected around node xi.

is the support of the i-th test function, i.e. the square centered at xi, the radius of
which is ρi.

The partial derivatives ũx(xi), ũy(xi), are in turn approximated by exploiting the
GMLS approach. Note that, using the MLPG approach, the partial derivatives are
estimated by differentiating the MLS solution [Mazzia, Pini, and Sartoretto (2014)].
Now, using DMLPG enables the derivatives to be approximated directly. From this
point of view, DMLPG is superior to MLPG.

Let

µ = max
i=1,...,N

‖ũ‖TV,i.

If we assume a given threshold parameter γ , we refine our discretization around
each given node xi if and only if

‖ũ‖TV,i > γµ.

Our refinement procedure around node xi involves adding one node in the middle
of each line joining xi with the n′c nodes closest to it. The value n′c must be guessed
on the grounds of geometrical considerations. We set n′c = 8 for 2D problems, so
that all “diagonal” nodes are added on an uniform grid (see Figure 1).

Note that when a node being inserted overlaps an old one, its insertion is skipped.

Once all the nodes in a given discretization Ik have been processed, we say that a
new “discretization level” Ik+1 is ready.

Our refinement procedure is repeated until a maximum number Nmax of nodes has
been reached, or a maximum number of “discretization levels” `max has been com-
puted. The maximum number of nodes depends on the storage space available.

Note that, under the previous assumptions, uniform refinements are obtained when
γ = 0 and an initial uniform distribution has been adopted, On the other hand,
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uniform refinements can be easily computed by evenly dividing intervals, whereas
performing our refinement procedure demands some more assessments. That is
why, although the nodes are the same, the CPU time spent on computing an uni-
form refinement U` by setting γ = 0 is considerably longer than the time needed to
compute the nodes directly in U`. This applies to the 3D domain, [0,1]3 too.

5.2.2 3D problems

The first discretization level `= 1 is set to I1 =U1, the N = 125 node uniform grid
on [0,1]3.

When dealing with 3D problems, the straightforward generalization of our 2D “lo-
cal” TV applies, where subdomain volumes are involved instead of areas.

Our refinement strategy is updated accordingly by setting n′c = 24. When a (local)
uniform discretization is detected, all the “diagonal” nodes in a cube. As in 2D
domains, the setting γ = 0 produces uniform clouds.

5.3 Implementation issues

We implemented our algorithm in FORTRAN 77 codes, compiled via XLF v9.1.
They were run on a machine operating under Ubuntu with an Intel Core i7-2600K,
3.40 GHz (quad core) processor, and 2x4GB, 1333 MHz, RAM.

No complicated data structures were needed to deal with our discretizations be-
cause they are mere clouds of points.

Our Fortran codes use a CSR sparse matrix storage representation to deal with the
large number of nodes needed for volume discretizations in non–structural, (e.g.
flow, heat) problems.

To arrange in ascending order the distances of each node from its neighbors, we
used the Fortran subroutine SORT2 available in the NAPACK library.

6 Test problems

To check our adaptive strategy, we assign the forcing function f and compute the
boundary conditions in eq. (2), so that its “test” solution is a function u undergoing
large variations on a small portion of the domain.

6.1 2D problems

First, we consider the classical Gaussian function, centered on a given point P0 =
(x0,y0), i.e.

u(x,y) = exp(−c
(
(x− x0)

2 +(y− y0)
2)
)
. (12)
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Figure 2: Contour regions for the solution of the test problem P2(T ).

The parameter c is a large positive value that generates a high “hump” around P0.
In the sequel, we set c = 200 unless stated otherwise.

Let us assume that we numerically solve the Poisson problem (2) in Ω = [0,1]2,
having set the Dirichlet boundary conditions such that its solution is the func-
tion (12). The setting P0 = (1/2,1/2), the centroid of our domain, corresponds
to the 2D problem called P2(GC) in the sequel, where “GC” stands for “Gaussian–
centroid”.

Any adaptive procedure is likely to be effective when finer discretizations adopt a
large number of discretization nodes near the point P0 where a large variation in u
occurs. On the other hand, “far” away from P0 the u values are small, and u does
not display large variations, so the nodes can be distributed quite coarsely with no
appreciable loss of accuracy.

As a further test problem we consider, as in Kee, Liu, Zhang, and Lu (2008)

u(x,y) = tan−1(1000x2 y2−1). (13)

This function displays a “hill” rising from the bottom left of [0,1]2. Figure 2 shows
the contour levels of the surface.

Let us assume that we numerically solve the Poisson problem (2) in Ω = [0,1]2,
having set the Dirichlet boundary conditions such that its solution is the func-



A DMLPG Refinement Technique for 2D and 3D Potential Problems 249

tion (13).

The ensuing differential problem is labeled test problem P2(T ), where “T” stands
for the “arcTan–based” solution.

6.2 3D problems

Simply extending our 2D test problems, we consider Gaussian functions centered
at a given point P0 = (x0,y0,z0)

u(x,y,z) = exp(−c
(
(x− x0)

2 +(y− y0)
2 +(z− z0)

2) . (14)

When dealing with 3D problems, we set c = 200 unless stated otherwise.

Let us assume that we aim to solve the Poisson problem on [0,1]3 with Dirichlet
boundary conditions such that the function (14) is its solution. We exploited many
settings, corresponding to Gaussian “centers” on suitable domain points, either in-
side or on the boundary of our domain.

• The setting P0 = (1/2,1/2,1/2), is called test problem P3(GC). The label
“GC” stands for “Gaussian–Centroid”.

• When we set P0 = (1/2,1/2,0), we are speaking of test problem P3(GXY ).
The label “GXY” reminds us that the Gaussian is centered on X = Y = 1/2.

• The setting P0 = (1/2,0,0), is called test problem P3(GX). The label “GX”
stands for “Gaussian centered on X = 1/2” (and Y = Z = 0).

• The setting P0 = (1/2,1/2,0), c = 500, is called test problem P3(GXY 5).
The “GXY5” is a mnemonic for the GXY case, where “c = 500 was set”.

We also consider the function

u(x,y,z) = tan−1(1000x2 y2 z2−1).

By applying the Dirichlet boundary conditions to the 3D Poisson equation, the
ensuing test problem is called P3(T ). The label “T” stands for “arcTan”.

7 Numerical results

N being the number of discretization nodes, we define the numerical error

e = eu,N =
maxN

i=1 |ui− ũi|
maxN

i=1 |ui|
' ‖u− ũ‖

∞

‖u‖
∞

,
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Table 1: Number of nodes, fill distance hU`,[0,1]2 and separation distance qU`
com-

puted for uniform and refined 2D clouds, when solving problem P2(GC). The re-
fined clouds were obtained by setting γ = 10−3.

Uniform γ = 10−3

` N hU`,[0,1]2 qU`
N hR`,[0,1]2 qR`

1 25 1.77E-001 1.25E-001 25 1.77E-001 1.25E-001
2 81 8.84E-002 6.25E-002 81 8.84E-002 6.25E-002
3 289 4.42E-002 3.13E-002 289 4.42E-002 3.13E-002
4 1089 2.21E-002 1.56E-002 497 4.42E-002 1.56E-002
5 4225 1.10E-002 7.81E-003 1790 4.42E-002 7.81E-003

where ui is the exact value on node xi, while ũi is the corresponding approximated
value.

When solving 2D problems, we exploited cubic polynomials in the GMLS ap-
proximation. When solving 3D problems, we exploited the quadratic polynomial
approximation space.

We are mainly interested in comparing the accuracy achieved by means of our
refinement procedure as opposed to uniform discretizations.

7.1 2D Numerical Results

We performed several 2D numerical experiments, but to summarize here our 2D
results we only report here on two test problems. Our procedure actually proves
most effective on 3D problems, which demand a large number of nodes in order to
be solved accurately.

Let us assume that β = 3.5 for 2D problems.

Based on our previous experiments with MLPG refinements [Mazzia, Pini, and
Sartoretto (2014)], and extensive numerical experiments, we set the refinement pa-
rameter γ in the range of 0≤ γ ≤ 10−2.

7.1.1 Discretizations

For reasons of storage and efficiency, our finest uniform cloud is the one with N =
4,225 nodes obtained at level ` = 5. This is the finest uniform cloud that we used
in all our 2D numerical experiments.

Table 1 shows the number of nodes, and the fill and separation distance for some
discretization levels ` generated when solving the test problem P2(GC). We con-
sider the uniform clouds U` and the corresponding refined ones R` obtained by
setting γ = 10−3. When using other γ values, and dealing with the other test prob-
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Figure 3: Cloud nodes adopted by setting γ = 10−3 at the refinement level ` = 5,
when Problem P2(T ) is solved.

(a) (b)

Figure 4: Errors recorded when our 2D test problems are solved. The errors ob-
tained using uniform clouds coincide with the γ = 0 refinement levels. Frame (a)
refers to Problem P2(GC). Frame (b) applies to Problem P2(T ), where the curve
for γ = 0 overlaps those corresponding to γ = 1e-4, 1e-3.

lems, the distances recorded come between the “uniform” and the γ = 10−3 types
of behavior.

As we can see from the columns labeled “Uniform” in Table 1, at each new level the
fill and separation distances are halved when an uniform refinement is performed,
as expected. The refinement with γ = 10−3 produces the same separation distances
qR`

, while the fill distance hR`,[0,1]2 remains unchanged at levels `= 3,4,5. Recall-
ing the definitions (11) one can argue that our refinement procedure generates “fine
sub–regions” the distances of which are larger than their internal separation, while
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Table 2: The cloud level needed for attaining the HUA is given for some values of
the refinement parameter γ . The corresponding number of nodes N, and the error e
obtained are also shown.

Problem γ ` N e
0 5 4225 1.34E-2

P2(GC) 1.00E-4 5 1681 1.34E-2
1.00E-3 5 1790 1.72E-2
1.00E-2 4 1172 1.90E-2

0 5 4225 4.83E-2
P2(T ) 1.00E-4 5 4225 4.83E-2

1.00E-3 5 4172 4.83E-2
1.00E-2 5 2504 5.33E-2

the uniform refinement does not.

We could show that the refined (non–uniform) clouds cluster around the Gaussian
center P0, but we prefer to show the more interesting behavior seen when dealing
with Problem P2(T ). Figure 3 shows the nodes identified by our refinement pro-
cedure. The refinement level ` = 5 is considered. By comparing Figure 3 with
Figure 2, one can see that the nodes coalesce well around the “hill” corresponding
to the region of greatest variation in the solution.

Recalling our considerations on the cloud distance measures, we argue that our
refinement technique effectively clusters the nodes around the regions of high vari-
ation in the solution.

7.1.2 Convergence history

Figure 4 plots the behavior of the errors vs the number of nodes in the discretiza-
tions. The refinement parameter γ = 0, 1e-4, 1e-3, 1e-2 values were set. Looking
at Figure 4, one can see that the error is almost always lower when the number of
refined nodes is larger. Frame (b) in Figure 4 shows that the error increases slightly
when we go form U1 to U2, and this applies to non–uniform refinements too.

Figure 4 shows that, by setting γ = 0, we can replicate the uniform clouds. Larger
and larger values γ values produce non–uniform clouds that enable the same accu-
racy to be achieved with a smaller number of nodes.

Table 2 reports the number of refined nodes needed to to obtain the same accuracy
order as with our finest, uniform discretization level, which contains N = 4225
nodes. In the sequel this is called the “Highest Uniform Accuracy” (HUA).

It is easy to see by comparing Figure 4 with Table 2 that our refinement procedure
enables the HUA to be reached using a considerably smaller number of nodes than
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Table 3: Fill distances and separation distances computed for uniform and refined
3D clouds when solving problem P3(GX), γ = 5×10−4.

Uniform γ = 10−3

` N hU`,[0,1]3 qU`
N hR`,[0,1]3 qR`

1 125 2.17E-01 1.25E-01 125 2.17E-01 1.25E-01
2 729 1.08E-01 6.25E-02 611 1.29E-01 6.25E-02
3 4913 5.41E-02 3.13E-02 1131 1.32E-01 3.13E-02
4 35937 2.71E-02 1.56E-02 1938 1.33E-01 1.56E-02

in our finest uniform cloud.

As an example, row 4 in Table 2 reports that when dealing with problem P2(GC),
by setting γ = 1.0e-2, only N = 1172 nodes in the refined cloud enable the HUA to
be reached, which corresponds to N = 4225 nodes in the uniform discretization.

We note that, as one can infer from Table 2, when dealing with the non–Gaussian
solution (Problem P2(T )), more nodes are required to reach the HUA. This comes
as no surprise: Gaussian solutions undergo large variations in the vicinity of the
Gaussian center, and small variations elsewhere, while the “arcTan–based” test so-
lution undergoes large variations over a much broader portion of the domain.

7.2 3D Numerical Results

By means of extensive numerical experiments we tuned 3.0 ≤ β ≤ 4.0, using the
value that afforded the best accuracy for each test problem.

Our analysis and numerical experiments showed that 0≤ γ ≤ 5×10−3.

7.2.1 Discretizations

Table 3 shows the fill and separation distance for our 3D clouds generated when
solving test problem P3(GX). The level ` = 1 corresponds to an uniform N = 125
node cloud, as mentioned earlier. We consider the uniform clouds and our refined
clouds obtained by setting γ = 10−3. The finest uniform cloud contains N = 35937
nodes. Table 3 shows that the refined clouds have the same separation distances as
the uniform grids. The fill distances in the uniform grids halve at each level, as one
can guess. On the other hand, the fill distances in the non–uniform, refined clouds
remain practically unchanged for levels `= 2,3,4. These results confirm that, as in
2D problems, our 3D refinement procedure generates fine sub–clouds containing
more nodes than in other regions where a coarser discretization is produced.

Figure 5 sketches the cloud obtained with our refinement procedure at level `= 5,
when Problem P3(GX) is dealt with. The refinement parameter value is γ = 5×
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Figure 5: Non–uniformly refined clouds at levels `= 5, 6, when dealing with Prob-
lem P3(GX). The Gaussian center is P0 = (1/2,0,0) The refinement parameter
value was set to γ = 5.0×10−4.

(a) (b)

Figure 6: Errors recorded when our 3D test problems are solved, using some γ

values. We recall that, by setting γ = 0, one generates uniform clouds. Frame (a)
refers to Problem P3(GC), and Frame (b) to Problem P3(GXY ).

10−4. As expected, many nodes are clustered around the Gaussian center P0 =
(1/2,0,0).

Note that the cloud obtained at level ` = 6 produces exactly the same Figure. The
refinement procedure adds points close to the “blob” shown, so in Figure 5 they
overlap with the nodes at level `= 5.
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Table 4: For each problem and refinement parameter value, we report the level `
and the number of nodes enrolled for reaching the HUA (see the error values e).
The CPU seconds Tγ spent on solving the Problem and the “speedup” with respect
to the time spent when using the finest uniform discretization TU are also shown.

Problem γ ` N e Tγ Sγ

Uniform 4 35937 2.28E-3 471.32 1.00
1.00E-4 4 12091 2.28E-3 95.28 4.95

P3(GC) 5.00E-4 4 8399 2.28E-3 61.89 7.62
1.00E-3 4 6957 2.86E-3 48.29 9.76
5.00E-3 4 5193 6.66E-3 29.61 15.92
Uniform 4 35937 1.56E-2 469.15 1.00
1.00E-4 4 25605 1.56E-2 305.57 1.54

P3(GXY 5) 5.00E-4 4 11401 1.56E-2 82.45 5.69
1.00E-3 4 7399 1.55E-2 45.62 10.28
5.00E-3 4 3014 1.55E-2 14.02 33.46
Uniform 4 35937 5.61E-3 470.66 1.00
1.00E-4 4 20151 5.61E-3 202.67 2.32

P3(GXY ) 5.00E-4 4 8037 5.58E-3 51.74 9.10
1.00E-3 4 5645 5.55E-3 22.10 21.30
5.00E-3 4 2808 5.38E-3 8.18 57.54
Uniform 4 35937 2.81E-3 470.00 1.00
1.00E-4 4 3009 2.81E-3 11.31 41.56

P3(GX) 5.00E-4 4 1938 2.80E-3 6.58 71.43
1.00E-3 4 1646 2.81E-3 5.38 87.36
5.00E-3 4 1315 2.91E-3 3.68 127.72
Uniform 4 35937 4.35E-3 481.23 1.00
1.00E-4 4 35866 4.35E-3 604.66 0.80

P3(T ) 5.00E-4 4 34699 4.44E-3 568.58 0.85
1.00E-3 4 33587 4.54E-3 533.74 0.90
5.00E-3 4 30165 4.92E-3 431.92 1.11

These considerations, supplemented with our previous analysis on Table 3, con-
firm that our 3D refinement procedure enables an effective clustering of the nodes
around the regions where the greatest variations in the solution occur.

7.2.2 Convergence history

Figures 6, 7, and 8 report the errors raised when various refinement parameter
values are set. Note that the error almost always decreases when the refining nodes
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(c) (d)

Figure 7: Same as in the previous Figure. Frame (c) refers to Problem P3(GX), and
Frame (d) to Problem P3(GXY 5).

Figure 8: Errors recorded when Prob-
lem P3(T ) is attacked. Note that the
curves overlap almost completely.

Figure 9: Number of nodes in the HUA
3D discretization level vs the refine-
ment parameter value γ .

are added to the discretization cloud. By inspecting these Figures, one can confirm
that, like for 2D problems, by setting γ = 0 one can replicate the uniform clouds,
whereas setting γ > 0 produces non–uniform clouds.

We aim to attain the highest accuracy afforded by the finest uniform mesh (HUA),
counting N = 35,937 nodes. The HUA can clearly be achieved with a far smaller
number of nodes, however, by exploiting our refinement procedure.

Table 4 summarizes our results. As shown in the Table, the larger the γ , the smaller
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Table 5: FEM errors when the level `= 5 uniform mesh of Type (a) or Type (b) is
used. To reach the HUA, ` = 5 levels were generated. The finest uniform meshes
adopt the same N = 274,625 nodes (though their connections differ).

Problem Type (a) Type (b)
P3(GC) 9.96E-003 1.01E-002

P3(GXY 5) 1.74E-002 2.04E-002
P3(GXY ) 7.00E-003 8.54E-003

P3(GX) 4.50E-003 7.97E-003
P3(T ) 4.03E-003 3.97E-003

the number of nodes required to attain the HUA. By setting γ = 5e-3 the HUA
is attained on Gaussian–based problems P3(GC), P3(GXY 5), P3(GXY ), P3(GX),
using less than 5200 nodes. The best case concerns Problem P3(GX), where N =
1315� 35937 nodes in the refined non–uniform cloud suffice to arrive at the HUA.

Now let us consider the curve pertaining to Problem P3(T ), whose solution is
“arcTan–based”. When γ = 5e-3, Table 4 shows that N = 30,165 nodes are re-
quired to reach the HUA. Such a large number is due to the large region where the
solution of problem P3(T ) undergoes high variations.

Figure 9 plots the number of discretization nodes needed to attain the HUA in
relation to the refinement parameter γ . We recall that γ = 0 corresponds to uniform
discretizations. By inspecting this Figure, it easy to see that our refinement is very
effective for Gaussian solutions, but less for the arcTan–based.

Let us compare our results with those obtained using a standard numerical method.
Figure 11 shows the errors raised using linear tetrahedral Finite Elements vs the
number of nodes. The plotted values were obtained using two types of 3D uniform
mesh, called “Type (a)” and “Type (b)” in the sequel. Level ` = 2 of our Type (a)
and Type (b) uniform meshes are plotted in Figure 10. Our two meshes differ
in the orientation of some sides of the triangles forming the base of some of the
tetrahedral elements discretizing the inside of the domain cube. Note the different
behavior of the errors in Frames (a) and (b) of Figure 11. One can see that using
the same uniform distributed nodes, but choosing the elements differently, gives
rise to a very different error behavior. This is a known FEM effect. The difference
is exacerbated when the Gaussian centroid is set on a boundary side of the domain
cube (see the curve for Problem P3(GX), X = 1/2, Y = Z = 0 in Figure 11).

These changes are not found when different clouds obtained by our refinement
procedure are used. This suggests that our meshless procedure is less prone to
node distribution in the discretization clouds than FEM is to mesh connections.

Table 5 shows the FEM errors. To reach the HUA by FEM, the level ` = 5 mesh,
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(a)

(b)

Figure 10: Sketch of the boundary triangles which form the bases of the tetrahedral
elements inside one of our 3D FEM meshes. Frame (a) shows a mesh of Type (a),
Frame (b) refers to Type (b).

containing N = 274,625 nodes, must be exploited. This number of mesh nodes is
far larger than in our refined clouds; we needed to use less than N = 35,937 nodes,
which is the number of nodes in the `= 4 uniform grid (see Table 4).

7.2.3 Efficiency

Let TU be the CPU seconds spent on computing the solution using our finest uni-
form cloud. We recall that performing our refinement procedure with the setting
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(a) (b)

Figure 11: Errors obtained when our 3D test problems are solved via linear
FEM using uniform, tetrahedral meshes. Frame (a) shows the results obtained by
Type (a) meshes. Frame (b) refers to Type (b) meshes.

γ = 0 produces the same nodes as in the uniform clouds. But the CPU time taken up
by the former procedure is longer than when using “pre–computed” uniform clouds.
When reporting CPU times, we must therefore distinguish between situations when
“pre–computed” uniform discretizations are used as opposed to computing refine-
ments with γ = 0. In order to perform a fair analysis, the CPU times labeled “Uni-
form” in Table 4 refer to when the less time–consuming, “pre–computed” uniform
clouds were used.

We recall that HUA stands for the highest uniform accuracy (achieved with our
finest uniform cloud). Let Tγ be the number of seconds spent on attaining the HUA
by means of our refinement procedure with a given refinement parameter value
γ > 0.

The last column in Table 4 shows the speed–up, Sγ = TU/Tγ . Note that SU =
TU/TU = 1. When Sγ > 1, our refined cloud at level ` enables the overall com-
putational cost to be reduced with respect to the uniform discretization U`.

By inspecting the Sγ column in Table 4, one can see that high speedups are recorded
for Gaussian–based problems P3(GC), P3(GXY 5), P3(GXY ), P3(GX).

The highest speedups are obtained when dealing with the P3(GX) problem. When
γ = 10−3, an extremely effective speedup value Sγ > 127.72 is attained.

By inspecting Table 4 one can see that the worst speedups are obtained with the
arcTan–based Problem P3(T ). Only the row corresponding to γ = 5×10−3 reports
a speedup larger than one.
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To explain this not exciting result, we recall that large variations in the solution
of problem P3(T ) occur over a far broader region than in the other test problems.
We recall that in the Gaussian 2D test problems, high variations occur inside a
small circle around the Gaussian center, whereas the solution of the “arcTan” 2D
test problem undergoes high variations on a wider “front” (see Figure 3). Corre-
spondingly, the solutions of the Gaussian 3D test problems undergo non-negligible
variations inside a small sphere around the Gaussian center, whereas the solution of
problem P3(T ) undergoes large variations over a large volume inside [0,1]3, hence
many more nodes are needed in order to obtain accurate approximations.

8 Conclusions

An effective, fresh refinement procedure for solving 2D and 3D diffusion problems
using DMLPG was introduced and numerically analyzed.

The following points are worth considering.

• Concerning 2D problems:

– our refinement procedure efficiently coalesces nodes around the re-
gions where the solution undergoes large variations. Elsewhere, the
discretization is left unchanged.

– A moderate to large improvement in efficiency over uniform clouds is
apparent. A far smaller number of nodes may be required to reach a
given accuracy by comparison with uniform discretizations.

• As for 3D problems:

– our refinement procedure clusters nodes around the regions of large
variation in the solution, as in 2D problems.

– By comparison with uniform discretizations, our refinement procedure
allows to significantly reduce the number of nodes, with a consequent
saving in CPU running time.

– Let us deal with a test problem in which the Gaussian 3D solution is
non–negligible only in the vicinity of the Gaussian “center”. On the
other hand, a very high speedup can be achieved by using our refine-
ment procedure instead of uniform clouds.

– Let us assume that the solution of a (test) problem undergoes a large
variation on a large portion of the domain. As one can guess, in order
to attain a given accuracy, a larger number of nodes is required than in
the Gaussian centered case. A smaller gain in efficiency is recorded.
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– Linear, tetrahedral FEM requires far more mesh nodes in order to achieve
the same accuracy as our DMLPG procedure. As FEM practitioners
know, for a given set of discretization nodes, the accuracy of (linear,
tetrahedral) FEM strongly depends on the connections in the discretiz-
ing mesh. Conversely, the accuracy of our DMLPG–based refinement
procedure does not rely on node connections, and it is more robust in
response to changes in the discretizations.
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