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Numerical Solutions of Fractional System of Partial
Differential Equations By Haar Wavelets

F. Bulut1,2, Ö. Oruç3 and A. Esen3

Abstract: In this paper, time fractional one dimensional coupled KdV and cou-
pled modified KdV equations are solved numerically by Haar wavelet method.
Proposed method is new in the sense that it doesn’t use fractional order Haar op-
erational matrices. In the proposed method L1 discretization formula is used for
time discretization where fractional derivatives are Caputo derivative and spatial
discretization is made by Haar wavelets. L2 and L∞ error norms for various ini-
tial and boundary conditions are used for testing accuracy of the proposed method
when exact solutions are known. Numerical results which produced by the pro-
posed method for the problems under consideration confirm the feasibility of Haar
wavelet method combined with L1 discretization formula.

Keywords: Haar wavelet method, Fractional coupled KdV equation, Fractional
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1 Introduction

In this paper we will consider time fractional coupled KdV (FCKdV) equation

Dα
t u = 6auux +2bvvx +auxxx, 0 < α ≤ 1

Dβ

t v =−3uvx− vxxx, 0 < β ≤ 1 (1)

where a and b are constants and time fractional coupled modified KdV (FCMKdV)
equation

Dα
t u =

1
2

uxxx−3u2ux +
3
2

vxx +3(uv)x−3λux, 0 < α ≤ 1

Dβ

t v =−vxxx−3vvx−3uxvx +3u2vx +3λvx, 0 < β ≤ 1 (2)
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3 İnonu University, Department of Mathematics, Malatya, TURKEY.



264 Copyright © 2015 Tech Science Press CMES, vol.108, no.4, pp.263-284, 2015

where

Dα
t f (t) =

∂ α

∂ tα
f (t) =

1
Γ(n−α)

∫ t

0
(t− τ)n−α−1 ∂ n f (τ)

∂ tn dτ n−1 < α < n

is the fractional derivative in the Caputo’s sense [Kilbas, Srivastava, and Trujillo
(2006); Podlubny (1999)], here n is an integer. When α = β = 1, Eq. (1) corre-
sponds to classical coupled KdV equation which was first introduced by Hirota and
Satsuma (1981) in 1981 and describes interaction of two long waves with different
dispersion relations. When α = β = 1, Eq. (2) corresponds to integer order coupled
modified KdV equation [Fan (2000, 2001, 2002)].

In recent years, fractional differential equations have been broadly used in different
branches of physics and engineering [West, Bolognab, and Grigolini (2003)]. For
example; nonlinear oscillation of earthquake [He (1999)], diffusion in a certain type
of porous medium [Podlubny (1999)], phenomenons occurred in electromagnetic-
s, acoustics electrochemistry and material science [Podlubny (1999); Chechkin,
Gorenflo, Sokolov, and Gonchar (2003); Miller and Ross (1993); Samko, Kilbas,
and Marichev (1993)], can be well modeled by the aid of fractional derivative.
Many researchers focus their attention to fractional differential equation due to
suitable applications of fractional differential equations in different fields of en-
gineering and science [Agrawal (2002)]. Even though there are some techniques
for getting analytical solutions of the fractional differential equations [Kilbas, S-
rivastava, and Trujillo (2006); Agrawal (2002)], usually their exact solutions are
not known. Therefore various numerical techniques devised by many researchers
for obtaining approximate solutions of fractional differential equations. Finite d-
ifference method [Sun, Chen, and Li (2012); Meerschaert, Scheffler, and Tadjeran
(2006); Yuste (2006); Yuste and Acedo (2005); Quintana-Murillo and Yuste (2011);
Sweilam, Khader, and Mahdy (2012); Celik and Duman (2012)], finite element
method [Sun, Chen, and Sze (3 Sep 2011); Esen, Ucar, Yagmurlu, and Tasbozan
(2013)], second kind Chebyshev wavelets method with differential operator matrix
and the product operation matrix (Chen, Sun, Li, and Fu, 2013), Bernstein poly-
nomials operational matrixes method [Chen, Liu, Li, and Sun (2014)], homotopy
analysis method [Hashim and Abdulaziz (2009)], generalized differential trans-
form method [Momani and Odibat (2007); Odibat and Momani (2008); L.J.Cun
and H.G.Lin (2010)], adomian decomposition method [Hosseini (2006); EI-Kalla
(2008); Yong and Hong-Li (2008)] and variational iteration method [Odibat (2010)]
are some of these techniques.

Recently, for getting numerical solutions of differential equations, a lot of tech-
niques related to Haar wavelet based methods are developed. We can put in or-
der some of studies specially devoted to fractional differential equations as fol-
lows. Fractional Volterra and Fredholm integral equations are solved by Lepik
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(2009). Wu (2009), solved some fractional partial differential equations by frac-
tional order Haar wavelet operational matrix. Li and Zhao (2010), solved Bagley-
Torvik, Ricatti and composite fractional oscillation equations with Haar wavelet
operational matrix of the fractional order. Mujeeb [Rehman and Khan (2013)] et
al., employed Haar wavelets for obtaining numerical solutions of boundary value
problems for linear fractional partial differential equations. Ray and Patra (2013)
solved fractional order nonlinear oscillatory Van der Pol system with Haar wavelet
operational matrix. Nonlinear fractional ordinary differential equations are solved
by Haar wavelet and a quasilinearization technique by Saeed and Rehman (2013).
Wang, Ma, and Meng (2014) solved some fractional partial differential equations
by Haar wavelet operational matrix. Neutron point kinetics equation is solved with
Haar wavelet operational method by Patra and Ray (2014b,a). Variable coefficient
fractional differential equations are solved by M.Yi and Huang (2014) with Haar
wavelet operational matrix of fractional order. Most of studies aforementioned use
Haar wavelet operational matrix of fractional order for obtaining numerical solu-
tions of fractional differential equations. As an alternative approach, in this study
we propose a relatively new and simple technique for obtaining numerical solu-
tions of fractional differential equations which consists of Haar wavelets and L1
discretization formula.

In this paper, to get numerical solutions of systems (1) and (2), we have applied
Haar wavelet method with L1 discretization formula. The paper organized as fol-
lows; In Section 2, Haar wavelets are introduced. Time and spatial discretizations
are described in Section 3. Numerical results are given in Section 4 and finally the
paper concluded in Section 5.

2 Haar wavelets

Haar wavelets were first introduced by Hungarian mathematician Alfred Haar in
1910 which are the simplest of possible wavelets with compact support. They are
piecewise constant functions which form an orthonormal system on the interval
[0,1) in the space of square integrable functions. Because of their discontinuity
they can not be directly used in solution process of differential equations. To al-
leviate this situation, Chen and Hsiao (1997) used the integral method, in which
the highest derivative appeared in the differential equation is expanded into Haar
series. In recent years, Haar wavelets are used widely to obtain numerical solutions
of differential equations and are favored by researchers because of their simplicity
and desirable computational features. The ith Haar wavelet is defined as follows
for x ∈ [0,1]
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hi(x) =


1, for x ∈

[
k
m
,
k+0.5

m

)
−1, for x ∈

[
k+0.5

m
,
k+1

m

]
0, elsewhere

(3)

where m = 2 j, j = 0,1, . . . ,J and k = 0,1, . . . ,m−1 is dilation parameter and trans-
lation parameter, respectively. The index of hi in Eq. (3) can be found by relation
i = m+k+1. For the lowest values of m = 1, k = 0, we have i = 2 and the greatest
value of i will be i= 2M = 2J+1; where J is the maximum resolution of the wavelet.
For i = 1 we have Haar scaling function

h1(x) =

{
1, for x ∈ [0,1)
0, elsewhere

.

Any function u(x) ∈ L2[0,1) can be expanded into Haar series as

u(x) =
∞

∑
i=1

cihi(x),

where ci can be found by

ci = 2 j
∫ 1

0
u(x)hi(x)dx, i = 2 j + k, j ≥ 0, 0≤ k < 2 j.

In practice, for approximating a function u(x) ∈ L2[0,1), finite terms of Haar series
are needed, hence one may write

u(x) =
2M

∑
i=1

cihi(x) = cT
(2M)h(2M)(x),

cT
(2M) = [c1,c2, . . . ,c(2M)]

h(2M)(x) = [h1(x),h2(x), . . . ,h(2M)(x)]
T

where M = 2 j and T denotes transpose.

While using Haar wavelet method for solving any order partial differential equation
one needs to following integrals in solution process.

pi,1(x) =
∫ x

0
hi(x)dx

pi,n+1(x) =
∫ x

0
pi,n(x)dx, n = 1,2,3, . . .
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The first three integrals can be calculated from Eq. (3) as follows;

pi,1(x) =


x−ζ1, for x ∈ [ζ1,ζ2)

ζ3− x, for x ∈ [ζ2,ζ3]

0, elsewhere

(4)

pi,2(x) =



(x−ζ1)
2

2
, for x ∈ [ζ1,ζ2)

1
4m2 −

(ζ3− x)2

2
, for x ∈ [ζ2,ζ3)

1
4m2 , for x ∈ [ζ3,1]

0, elsewhere

(5)

pi,3(x) =



(x−ζ1)
3

6
, for x ∈ [ζ1,ζ2)

x−ζ2

4m2 −
(ζ3− x)3

6
, for x ∈ [ζ2,ζ3)

x−ζ2

4m2 , for x ∈ [ζ3,1]

0, elsewhere

(6)

where ζ1, ζ2 and ζ3 defined as follow.

ζ1 =
k
m
, ζ2 =

k+0.5
m

, ζ3 =
k+1

m
.

3 Discretization scheme for the equations

3.1 Time discretization for FCKdV

In this section we start with the discretization of the fractional time derivative that
appears in Eq. (1) in the Caputo’s sense by L1 formula [Oldham and Spanier
(1974)]

∂ γu(t)
∂ tγ

∣∣∣∣
tn

=
(∆t)−γ

Γ(2− γ)

n−1

∑
k=0

η
γ

k [u(tn−k)−u(tn−1−k)]+O(∆t) (7)

where

η
γ

k = (k+1)1−γ − k1−γ , 0 < γ ≤ 1.
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We also take time averages of the other terms of Eq. (1), as follows

(∆t)−α

Γ(2−α)
(un+1−un)+

(∆t)−α

Γ(2−α)

n−1

∑
k=1

η
α
k [un−k+1−un−k]

=



6a
2
[(uux)n+1 +(uux)n]

+
2b
2
[(vvx)n+1 +(vvx)n]

+
a
2
[(uxxx)n+1 +(uxxx)n]

(∆t)−β

Γ(2−β )
(vn+1− vn)+

(∆t)−β

Γ(2−β )

n−1

∑
k=1

η
β

k [vn−k+1− vn−k]

=


−3

2
[(uvx)n+1 +(uvx)n]

−1
2
[(vxxx)n+1 +(vxxx)n]

We apply Rubin Graves linearization [Rubin and Graves (1975)] formula un+1(ux)n

+un(ux)n+1− (uux)n to nonlinear term (uux)n+1. Similar linearization is made for
(vvx)n+1 and (uvx)n+1 terms. Hence we get

G1un+1−3a [un+1(ux)n +un(ux)n+1]−b [vn+1(vx)n + vn(vx)n+1]−
a
2
(uxxx)n+1 =

G1un−G1

n−1

∑
k=1

η
α
k [un−k+1−un−k]+

a
2
(uxxx)n

G2vn+1 +
3
2
[un+1(vx)n +un(vx)n+1]+

1
2
(vxxx)n+1 =

G2vn−G2

n−1

∑
k=1

η
β

k [vn−k+1− vn−k]−
1
2
(vxxx)n (8)

with initial conditions

u0 = f (x), v0 = g(x), x ∈ [a,b]

and boundary conditions

un+1(0) = f1(tn+1), un+1(1) = f2(tn+1), (ux) n+1(1) = f 3(tn+1),

n = 0,1, . . . ,N−1

vn+1(0) = g1(tn+1), vn+1(1) = g2(tn+1), (vx) n+1(1) = g3(tn+1),

n = 0,1, . . . ,N−1 (9)
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where un+1 and vn+1 are the solutions of the Eq.(8) at the (n+ 1)th time step, ∆t
denotes the step size in time so that tn = n×∆t and

G1 =
(∆t)−α

Γ(2−α)
, G2 =

(∆t)−β

Γ(2−β )
.

3.2 Time discretization for FCMKdV

Again the Caputo derivative appeared in Eq. (2) is discretized by L1 formula as
made in subsection and time averages used for some of the terms of Eq. (2) as
follows

(∆t)−α

Γ(2−α)
(un+1−un)+

(∆t)−α

Γ(2−α)

n−1

∑
k=1

η
α
k [un−k+1−un−k]

=


[
(uxxx)n+1 +(uxxx)n

]
2.2

−
3
[(

u2ux
)

n+1 +
(
u2ux

)
n

]
2

+
3
[
(vxx)n+1 +(vxx)n

]
2.2

+3 [(uv)x]n−3λ (ux)n

(∆t)−β

Γ(2−β )
(vn+1− vn)+

(∆t)−β

Γ(2−β )

n−1

∑
k=1

η
β

k [vn−k+1− vn−k]

=


−
[
(vxxx)n+1 +(vxxx)n

]
2

−
3
[
(vvx)n+1 +(vvx)n

]
2

−3(uxvx)n +3(un)
2 (vx)n +3λ (vx)n

In the above equation by using linearizations
(
u2ux

)
n+1 = 2un+1un(ux)n+unun(ux)n+1

−2unun(ux)n and (vvx)n+1 = vn+1 (vx)n + vn (vx)n+1− (vvx)n we get

G1un+1−
(uxxx)n+1

2.2
−

3(vxx)n+1

2.2
+

3 [2un+1un(ux)n +unun(ux)n+1−unun(ux)n]

2

= G1un−G1

n−1

∑
k=1

η
α
k [un−k+1−un−k]+

(uxxx)n
2.2

+
3(vxx)n

2.2
+3 [(uv)x]n−3λ (ux)n

G2vn+1 +
(vxxx)n+1

2
+

3 [vn+1 (vx)n + vn(vx)n+1]

2

= G2vn−G2

n−1

∑
k=1

η
β

k [vn−k+1− vn−k]−
(vxxx)n

2
−3(uxvx)n +3(un)

2 (vx)n +3λ (vx)n

(10)

with initial conditions

u0 = f (x), v0 = g(x), x ∈ [a,b]
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and boundary conditions

un+1(0) = f1(tn+1), un+1(1) = f2(tn+1), (ux) n+1(1) = f 3(tn+1),

n = 0,1, . . . ,N−1

vn+1(0) = g1(tn+1), vn+1(1) = g2(tn+1), (vx) n+1(1) = g3(tn+1),

n = 0,1, . . . ,N−1 (11)

where un+1 and vn+1are the solutions of the Eq. (10) at the (n+1)th time step, ∆t
denotes the step size in time so that tn = n×∆t and

G1 =
(∆t)−α

Γ(2−α)
, G2 =

(∆t)−β

Γ(2−β )

η
α
k = (k+1)1−α − k1−α , η

β

k = (k+1)1−β − k1−β 0 < α,β ≤ 1.

3.3 Space discretization by Haar wavelets

In this subsection we describe discretization of spatial derivatives that appeared in
Eqs. (1), (2). We start with the highest derivative by Haar wavelets. To do so we
assume

(uxxx)n+1 (x) =
2M

∑
i=1

cihi(x). (12)

Integrating Eq. (12) with respect to x from 0 to x, we get the following equation

(uxx)n+1 (x) =(uxx)n+1 (0)+
2M

∑
i=1

ci pi,1(x). (13)

In Eq. (13), (uxx)n+1 (0) is unknown so to find it, we need to integrate Eq. (13)
from 0 to 1. After that, using boundary conditions (9) we get

(ux)n+1 (1)− (ux)n+1 (0) = (uxx)n+1 (0)+
2M

∑
i=1

ci pi,2(1)

(uxx)n+1 (0) = f 3(tn+1)− (ux)n+1 (0)−
2M

∑
i=1

ci pi,2(1). (14)

Substituting (14) into Eq. (13) results in the following equation

(uxx)n+1 (x) =
2M

∑
i=1

ci pi,1(x)+ f 3(tn+1)− (ux)n+1 (0)−
2M

∑
i=1

ci pi,2(1). (15)
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Now, if we integrate Eq. (15) from 0 to x we get

(ux)n+1 (x) = (ux)n+1 (0)+
2M

∑
i=1

ci pi,2(x)+ x
(

f3(tn+1)− (ux)n+1 (0)
)
− x

2M

∑
i=1

ci pi,2(1).

(16)

In Eqs. (14), (15) and (16),(ux)n+1 (0) term is unknown. So to find (ux)n+1 (0) term
we integrate Eq. (16) from 0 to 1 and use boundary conditions (9). Therefore we
have

(ux)n+1 (0) =2

[
f2(tn+1)− f1(tn+1)−

1
2

f3(tn+1)−
2M

∑
i=1

ci pi,3(1)+
1
2

2M

∑
i=1

ci pi,2(1)

]

Now by plugging the calculated value of (ux)n+1 (0) into Eq. (16) we obtain

(ux)n+1 (x) = 2

[
f2(tn+1)− f1(tn+1)−

1
2

f3(tn+1)−
2M

∑
i=1

ci pi,3(1)+
1
2

2M

∑
i=1

ci pi,2(1)

]

(1− x)+ x( f3(tn+1))+
2M

∑
i=1

ci pi,2(x)− x
2M

∑
i=1

ci pi,2(1) (17)

Finally, integrating (17) from 0 to x, we obtain

(u)n+1 (x) = 2

[
f2(tn+1)− f1(tn+1)−

1
2

f3(tn+1)−
2M

∑
i=1

ci pi,3(1)+
1
2

2M

∑
i=1

ci pi,2(1)

]
(

x− x2

2

)
+

x2

2
( f3(tn+1))+

2M

∑
i=1

ci pi,3(x)−
x2

2

2M

∑
i=1

ci pi,2(1)+ f1(tn+1) (18)

If we summarize, we have

(uxxx)n+1 (x) =
2M

∑
i=1

cihi(x),

(uxx)n+1 (x) =
2M

∑
i=1

ci pi,1(x)+ f3(tn+1)−
2M

∑
i=1

ci pi,2(1)

−2

[
f2(tn+1)− f1(tn+1)−

1
2

f3(tn+1)−
2M

∑
i=1

ci pi,3(1)+
1
2

2M

∑
i=1

ci pi,2(1)

]
,

(ux)n+1 (x) = 2

[
f2(tn+1)− f1(tn+1)−

1
2

f3(tn+1)−
2M

∑
i=1

ci pi,3(1)+
1
2

2M

∑
i=1

ci pi,2(1)

]
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·(1− x)+ x( f3(tn+1))+
2M

∑
i=1

ci pi,2(x)− x
2M

∑
i=1

ci pi,2(1), (19)

(u)n+1 (x) = 2

[
f2(tn+1)− f1(tn+1)−

1
2

f3(tn+1)−
2M

∑
i=1

ci pi,3(1)+
1
2

2M

∑
i=1

ci pi,2(1)

]
(

x− x2

2

)
+

x2

2
( f3(tn+1))+

2M

∑
i=1

ci pi,3(x)−
x2

2

2M

∑
i=1

ci pi,2(1)+ f1(tn+1).

Similarly, we have

(vxxx)n+1 (x) =
2M

∑
i=1

dihi(x),

(vxx)n+1 (x) =
2M

∑
i=1

di pi,1(x)+g3(tn+1)−
2M

∑
i=1

di pi,2(1)

−2

[
g2(tn+1)−g1(tn+1)−

1
2

g3(tn+1)−
2M

∑
i=1

di pi,3(1)+
1
2

2M

∑
i=1

di pi,2(1)

]
,

(vx)n+1 (x) = 2

[
g2(tn+1)−g1(tn+1)−

1
2

g3(tn+1)−
2M

∑
i=1

di pi,3(1)+
1
2

2M

∑
i=1

di pi,2(1)

]

·(1− x)+ x(g3(tn+1))+
2M

∑
i=1

di pi,2(x)− x
2M

∑
i=1

di pi,2(1), (20)

(v)n+1 (x) = 2

[
g2(tn+1)−g1(tn+1)−

1
2

g3(tn+1)−
2M

∑
i=1

di pi,3(1)+
1
2

2M

∑
i=1

di pi,2(1)

]
(

x− x2

2

)
+

x2

2
(g3(tn+1))+

2M

∑
i=1

di pi,3(x)−
x2

2

2M

∑
i=1

di pi,2(1)+g1(tn+1).

For FCKdV system, if we substitute Eqs. (19), (20) into Eq. (8) and discretize
the results at the collocation points xl =

l−0.5
2M , l = 1,2, . . . ,2M we obtain following

system of equations

Al,ici +Bl,idi = G1un−G1η
α −G1S1 +3a [(ux)nS1 +unP1]

+b [(vx)nS2 + vnP2]+
a
2
(uxxx)n

Dl,ici +El,idi = G2vn−G1η
β −G2S2−

3
2
[(vx)nS1 +unP2]−

1
2
(vxxx)n (21)

where

Al,i =

(
2
[
−pi,3(1)+

1
2

pi,2(1)
](

xl−
x2

l
2

)
+ pi,3(xl)−

x2
l

2
pi,2(1)

)
(G1−3a.(ux)n)
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−3a.un

(
2
[
−pi,3(1)+

1
2

pi,2(1)
]
(1− xl)+ pi,2(xl)− xl pi,2(1)

)
− a

2
hi(xl),

Bl,i =−b
((

2
[
−pi,3(1)+

1
2

pi,2(1)
](

xl−
x2

l
2

)
+ pi,3(xl)−

x2
l

2
pi,2(1)

)
(vx)n

)
−bvn

(
2
[
−pi,3(1)+

1
2

pi,2(1)
]
(1− xl)+ pi,2(xl)− xl pi,2(1)

)
,

Dl,i =
3
2
(vx)n

(
2
[
−pi,3(1)+

1
2

pi,2(1)
](

xl−
x2

l
2

)
+ pi,3(xl)−

x2
l

2
pi,2(1)

)
,

El,i =G2

(
2
[
−pi,3(1)+

1
2

pi,2(1)
](

xl−
x2

l
2

)
+ pi,3(xl)−

x2
l

2
pi,2(1)

)
+

3
2

un

(
2
[
−pi,3(1)+

1
2

pi,2(1)
]
(1− xl)+ pi,2(xl)− xl pi,2(1)

)
+

1
2

hi(xl),

η
α =

n−1

∑
k=1

η
α
k [un−k+1−un−k] , η

β =
n−1

∑
k=1

η
β

k [vn−k+1− vn−k]

S1 =2
[

f2(tn+1)− f1(tn+1)−
1
2

f3(tn+1)

](
xl−

x2
l

2

)
+

x2
l

2
( f3(tn+1))+ f1(tn+1),

S2 =2
[

g2(tn+1)−g1(tn+1)−
1
2

g3(tn+1)

](
xl−

x2
l

2

)
+

x2
l

2
(g3(tn+1))+g1(tn+1),

P1 =2
[

f2(tn+1)− f1(tn+1)−
1
2

f3(tn+1)

]
(1− xl)+ xl ( f3(tn+1)) ,

P2 =2
[

g2(tn+1)−g1(tn+1)−
1
2

g3(tn+1)

]
(1− xl)+ xl (g3(tn+1)) ,

ci and di are wavelet coefficients. By solving Eq. (21), wavelet coefficients ci and
di can be calculated successively. Then by plugging these coefficients into the Eqs.
(19) and (20), the numerical solutions can be constructed.

For FCMKdV system, if we substitute Eqs. (19), (20) into Eq. (10) and discretize
the results at the collocation points xl =

l−0.5
2M , l = 1,2, . . . ,2M we obtain following

system of equations

Al,ici +Bl,idi = G1un−G1η
α +(−G1−3un(ux)n)S1−

3
2
(un)

2 [P1− (ux)n]

+
3

2.2
R1 +

3
2.2

(vxx)n +3((uv)x)n−3λ (ux)n +
1

2.2
(uxxx)n

0l,ici +El,idi = G2vn−G1η
β +

(
−G2−

3
2
(vx)n

)
S2−

3
2

vnP2−
1
2
(vxxx)n

−3(ux)n(vx)n +3(un)
2 (vx)n +3λ (vx)n (22)
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where

Al,i =

(
2
[
−pi,3(1)+

1
2

pi,2(1)
](

xl−
x2

l
2

)
+ pi,3(xl)−

x2
l

2
pi,2(1)

)
(G1 +3un(ux)n)

+
3
2
.un

(
2
[
−pi,3(1)+

1
2

pi,2(1)
]
(1− xl)+ pi,2(xl)− xl pi,2(1)

)
− 1

2.2
hi(xl)

Bl,i =−
3

2.2
(pi,1(x)− pi,2(1))

El,i =

(
G2 +

3
2
(vx)n

)(
2
[
−pi,3(1)+

1
2

pi,2(1)
](

xl−
x2

l
2

)
+ pi,3(xl)−

x2
l

2
pi,2(1)

)
+

3
2

vn

(
2
[
−pi,3(1)+

1
2

pi,2(1)
]
(1− xl)+ pi,2(xl)− xl pi,2(1)

)
+

1
2

hi(xl)

0l,i = Zero matrix

η
α =

n−1

∑
k=1

η
α
k [un−k+1−un−k] , η

β =
n−1

∑
k=1

η
β

k [vn−k+1− vn−k]

S1 =2
[

f2(tn+1)− f1(tn+1)−
1
2

f3(tn+1)

](
xl−

x2
l

2

)
+

x2
l

2
( f3(tn+1))+ f1(tn+1),

S2 =2
[

g2(tn+1)−g1(tn+1)−
1
2

g3(tn+1)

](
xl−

x2
l

2

)
+

x2
l

2
(g3(tn+1))+g1(tn+1),

P1 =2
[

f2(tn+1)− f1(tn+1)−
1
2

f3(tn+1)

]
(1− xl)+ xl ( f3(tn+1)) ,

P2 =2
[

g2(tn+1)−g1(tn+1)−
1
2

g3(tn+1)

]
(1− xl)+ xl (g3(tn+1)) ,

R1 =g3(tn+1)−2
[

g2(tn+1)−g1(tn+1)−
1
2

g3(tn+1)

]
,

ci and di are wavelet coefficients. By solving Eq. (22), wavelet coefficients ci and
di can be calculated successively. Again by plugging these coefficients into the
Eqs. (19) and (20), the numerical solutions can be constructed.

3.4 Error analysis

To analyze the convergence of the method, we use the asymptotic expansion of Eq.
(18) as given in Kumar and Pandit (2014), the resulting equation is as follows

u(x) = 2

[
f2(tn+1)− f1(tn+1)−

1
2

f3(tn+1)−
∞

∑
i=1

ci pi,3(1)+
1
2

∞

∑
i=1

ci pi,2(1)

](
x− x2

2

)
+

x2

2
( f3(tn+1))+

∞

∑
i=1

ci pi,3(x)−
x2

2

∞

∑
i=1

ci pi,2(1)+ f1(tn+1)
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Lemma 1. Suppose that u(x) ∈ L2(R) with
∣∣∣ ∂u(x)

∂x

∣∣∣ ≤ K, ∀x ∈ (0,1); K > 0 and

u(x) = ∑
∞
i=1 cihi(x). Then |ci| ≤ K2(−3 j−2)/2 [Ray (2012)].

Lemma 2. Let u(x) ∈ L2(R) be a continuous function defined in (0,1). Then the
error norm at J th level satisfies the following inequality∥∥E j
∥∥2 ≤K2

12
2−2J

where
∣∣∣ ∂u(x)

∂x

∣∣∣ ≤ K, ∀x ∈ (0,1); K > 0, M is a positive number related to the J th

level resolution of the wavelet given by M = 2J [Ray (2012)].

Theorem: Suppose that u(x) is exact and u2M(x) is approximate solution of the Eq.
(18), then

∥∥E j
∥∥= ‖u(x)−u2M(x)‖ ≤

√
CK2−3(2J)−1

1−2−3/2

Proof. See Kumar and Pandit (2014)

Similar approach is valid for v2M(x). It is clear from above equation that the level
of resolution J of the Haar wavelet is inversely proportional to the error bound.
Therefore the accuracy of the method increases as we increase the level of resolu-
tion J.

4 Numerical Examples

Free software package GNU Octave is used in this study for numerical compu-
tations and Matplotlib package is used [Hunter (2007)] for graphical outputs. In
order to check accuracy of the proposed methods we considered the error norms L2
and L∞ defined by

L2 =

√
∆x

2M

∑
i=1
|uexact

i −unum
i |2

L∞ = max
i

∣∣uexact
i −unum

i

∣∣ .
4.1 Example 1

Firstly, we consider following initial conditions for the Eq. (1)

u(x,0) = 2λ
2sech2(ξ ), v(x,0) =

1
2
√

w
sech(ξ )
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and the boundary conditions

u(x1, t) = u(x2, t) = ux(x2, t) = 0 t ∈ [0,T ]

v(x1, t) = v(x2, t) = vx(x2, t) = 0 t ∈ [0,T ].

This problem have the following exact solution [Hirota and Satsuma (1981)] for
α = β = 1.

u(x, t) = 2λ
2sech2(ξ ), v(x, t) =

1
2
√

w
sech(ξ )

where

ξ = λ (x−λ
2t)+

1
2log(w)

, w =
−b

8(4a+1)λ 4 .

We solve the problem for the various values of 2M in the interval −25 ≤ x ≤ 25
and tabulated the L2, L∞ error norms when α = β = 1 in Table 1. We can easily
see from the table that when we increase the collocation points the error norms
decrease and they are sufficiently small for t = 0.1. To see the accuracy of the
Haar wavelet method we depicted the evolution of numerical solutions of u and v
at α = β = 1 in Fig. 1. also for α = 1/2, β = 1/3 in Fig. 2. The comparison of
these figures shows that these results are almost same and this verifies the accuracy
of Haar wavelet method.

Table 1: Numerical results for ∆t = 0.005, λ = 0.5, a = −0.125, b = −3 and
α = β = 1 at t = 0.1

2M L2(u) L2(v) L∞(u) L∞(v)
128 1.122876e-005 6.881984e-006 6.828475e-005 3.964352e-005
256 2.774834e-006 1.737210e-006 1.650130e-005 9.694622e-006
512 6.950655e-007 5.226886e-007 4.149853e-006 2.450309e-006

4.2 Example 2

Secondly, we consider the Eq. (1) with following initial conditions

u(x,0) =− 1+a
3+6a

k2 +4k2 ekξ(
1+ ekξ

)2 , v(x,0) =

√
−24a

b
k2ekξ(

1+ ekξ
)2
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(a) (b)

Figure 1: Exact solutions for α = β = 1, ∆t = 0.005 and 2M = 256 at t = 0.1

(a) (b)

Figure 2: Numerical solutions for α = 1/2, β = 1/3, ∆t = 0.005 and 2M = 256 at
t = 0.1

where ξ = x− t ak2

1+2a , a 6= 1/2, ab < 0 and k is an arbitrary constant. The exact
solutions for the special case where α = β = 1 is given by Lu and Wang (1999) as
follows.

u(x, t) =− 1+a
3+6a

k2 +4k2 ekξ(
1+ ekξ

)2 , v(x, t) =

√
−24a

b
k2ekξ(

1+ ekξ
)2 .

Boundary conditions are taken from exact solutions, computer simulations for this
problem are done with parameters k = 1, a = 1 and b =−1 in the interval −10 ≤
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x ≤ 10. L2 and L∞ error norms for α = β = 1 at different time levels are tabulated
in Table 2. We see from the table that as t gets larger so as the error norms. We
depicted the exact solutions of the problem for α = 1, β = 1 in Fig. 3., and to see
the evolution of numerical solutions of u and v for fractional derivatives we also
depicted them for α = 1/2, β = 1/3 in Fig. 4. Comparison of these figures also
proves that the present method gives results with high accuracy.

Table 2: Numerical results for 2M = 128, ∆t = 0.005, k = 1, a = 1, b = −1 and
α = β = 1 at different times.

t L2(u) L2(v) L∞(u) L∞(v)
0.1 4.2024e-005 5.2887e-005 1.5864e-004 2.0719e-004
0.5 2.1815e-004 2.1387e-004 6.7778e-004 7.3855e-004
1.0 2.1078e-003 3.6879e-004 9.1166e-003 1.1608e-003

(a) (b)

Figure 3: Exact solutions for α = β = 1, ∆t = 0.005 and 2M = 256 at t = 0.1

4.3 Example 3

Finally, we consider Eq. (2) with initial conditions

u(x,0) =
b
2k

+ ktanh(kx), v(x,0) =
λ

2

(
1+

k
b

)
+btanh(kx).

The exact solutions of this problem for α = β = 1 given by Fan (2000, 2001, 2002)
as follows

u(x, t) =
b
2k

+ ktanh(kξ ), v(x, t) =
λ

2

(
1+

k
b

)
+btanh(kξ )
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(a) (b)

Figure 4: Numerical solutions for α = 1/2, β = 1/3, ∆t = 0.005 and 2M = 256 at
t = 0.1

(a) (b)

Figure 5: Exact solutions for α = β = 1, ∆t = 0.001 and 2M = 256 at t = 0.05

where

ξ =x+
1
4

(
−4k2−6λ +

6kλ

b
+

3b2

k2

)
t, k 6= 0, b 6= 0.

The boundary conditions taken from exact solutions. Numerical simulation of this
problem are done for b = 1, λ = 0.1 and k = 1/3 in the interval −15≤ x≤ 15 for
growing times, L2 and L∞ error norms are tabulated when α = β = 1 in Table 3.
We see from the table the error norms are sufficiently small. We depicted the exact
solutions for ∆t = 0.001, α = 1, β = 1 at t = 0.05 in Fig. 5. also we depicted the
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numerical solutions for α = 1/2, β = 2/3 in Fig. 6. Comparison of these figures
proves that high accuracy results can be achieved by using Haar wavelet method.

Table 3: Numerical results for ∆t = 0.005, k = 1/3, λ = 0.1, b = 1, 2M = 128 and
α = β = 1.

L2(u) L2(v) L∞(u) L∞(v)
t = 0.05 3.5712e-004 1.1651e-003 1.3252e-003 3.0867e-003
t = 0.1 8.9437e-004 2.2636e-003 4.4984e-003 5.9635e-003

(a) (b)

Figure 6: Numerical solutions for α = 1/2, β = 2/3, ∆t = 0.001 and 2M = 256 at
t = 0.05

5 Conclusion

In this paper, we applied Haar wavelet method integrated with L1 discretization for-
mula in the Caputo’s sense to time fractional nonlinear coupled partial differential
equations with various initial and boundary conditions. The main idea of the pro-
posed method is using L1 formula for fractional time derivatives and Haar wavelets
for spatial derivatives. This approach gives a system of algebraic equations which
can be solved easily with suitable methods. Also the proposed method is novel in
the sense that it doesn’t use fractional order Haar operational matrices which is a
more complex method when compared with the proposed method. The numeri-
cal results are quite good in the cases where the exact solutions are known. The
proposed method can easily handle similar fractional system of partial differential
equations.
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