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Solving a Class of PDEs by a Local Reproducing Kernel
Method with An Adaptive Residual Subsampling

Technique

H. Rafieayan Zadeh1, M. Mohammadi1,2 and E. Babolian1

Abstract: A local reproducing kernel method based on spatial trial space spanned
by the Newton basis functions in the native Hilbert space of the reproducing kernel
is proposed. It is a truly meshless approach which uses the local sub clusters of do-
main nodes for approximation of the arbitrary field. It leads to a system of ordinary
differential equations (ODEs) for the time-dependent partial differential equations
(PDEs). An adaptive algorithm, so-called adaptive residual subsampling, is used to
adjust nodes in order to remove oscillations which are caused by a sharp gradient.
The method is applied for solving the Allen-Cahn and Burgers’ equations. The nu-
merical results show that the proposed method is efficient, accurate and be able to
remove oscillations caused by sharp gradient.

Keywords: Local reproducing kernel method, method of lines, Newton basis
functions, adaptive residual subsampling algorithm.

1 Introduction

During last decades, meshless methods are considered by many researchers. Unlike
traditional numerical methods in solving PDEs, meshless methods [Belytschko,
Krongauz, Organ, Fleming, and Krysl (1996)] need no mesh generation. Tak-
ing translates of kernels as trial functions in collocation methods, which are tru-
ly meshless, leads to a highly successful method [C. Franke (1998); Huang, Ren,
and Russell (1990a); Huang, Ren, and Russell (1990b)]. Implementation of these
methods is easy and allow good accuracy at low computational cost. In addition,
it was proven recently [Schaback (2015)] that symmetric collocation using kernels
is optimal along all linear PDE solvers using the same input data. There are plenty
of papers which use kernel-based methods for solving various problems [Abbas-

1 Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Ave., Tehran
1561836314, Iran

2 Corresponding author



376 Copyright © 2015 Tech Science Press CMES, vol.108, no.6, pp.375-396, 2015

bandy, Azarnavid, and Alhuthali (2014); Atluri and Shen (2003); Dong, Alotaibi,
Mohiuddine, and Atluri (2014); Elgohary, Dong, Junkins, and Atluri (2014); Han
and Atluri (2014); Hon and Schaback (2008); Mohammadi and Mokhtari (2014);
Mohammadi and Mokhtari (2011); Mohammadi and Mokhtari (2013); Moham-
madi, Mokhtari, and Panahipour (2013); Mohammadi, Mokhtari, and Panahipour
(2014); Mohammadi, Mokhtari, and Schaback (2014); Mohammadi, Mokhtari, and
Isfahani (2014); Mokhtari, Isfahani, and Mohammadi (2012)].

It is well known that representations of kernel-based approximants in terms of the
standard basis of translated kernels are notoriously unstable. A more useful basis,
so-called Newton basis, is offered in [Muller and Schaback (2009)]. The Newton
basis turns out to be orthonomal in the reproducing native Hilbert space, and it is
complete, if infinitely many data locations are reasonably chosen. A timesaving
calculation of Newton basis arising from a pivoted Cholesky factorization has been
introduced in [Pazouki and Schaback (2011)].

For the time-dependent PDEs, a spatial interpolation is applied by using expansion
in terms of kernel functions. But since the coefficients are time-dependent, a sys-
tem of ODEs is obtained. This is the well-known method of lines (MOL), and it
turns out to be approximately useful in various cases. In this paper, we use ex-
pansion in terms of the Newton basis functions (NBFs) for constructing the spatial
interpolation.

In global collocation methods, collocation matrix is made by considering the whole
domain, since the obtained matrix will be full. This limits the applicability of those
methods to solve large scale problems. But local methods [Chen, Ganesh, Golberg,
and Cheng (2002); Lee, Liu, and Fan (2003); Mai-Duy and Tran-Cong (2002)] use
overlapping sub-domains of the whole domain, thus a sparse matrix is obtained.
A general idea behind the local reproducing kernel method is the use of the local
sub clusters of domain nodes, named local influence domain, for approximation of
the arbitrary field. With the selected influence domain, an approximation function
is introduced as a sum of weighted NBFs. Then the collocation approach is used
to determine weights. After the successful approximation function creation all the
needed differential operators can be constructed by applying an arbitrary operator
on the approximation function. The main advantage to using the local method is
that less computer storage and flops are needed.

The kernel functions are defined by using a set of points called centers or trial
points. The centers can set anywhere of given domain independently, therefore,
center points can be moved or added or removed in the domain and this is the base
of adaptive algorithms. Positions of the centers set influence on approximation
quality and stability of the interpolation [Schaback (1995)], in addition, increasing
number of centers causes large condition numeber of interpolation matrix. Adap-
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tive algorithms are often applied for problems containing rapid variations in the
given domain. Different kinds of adaptive methods have been developed in the
literature, e.g. Greedy algorithm [Ling, Opfe, and Schaback (2006); Ling and Sch-
aback (2009)], upwind technique [Lin and Atluri (2000); Lin and Atluri (2001)],
r-adaptive mesh method (moving mesh strategy) [Huang, Ren, and Russell (1994)].
Four kinds of center choosing algorithms with some algorithmic analysis are intro-
duced in [Gong, Wei, Wang, Feng, and Wang (2010)]. In this paper, we use adaptive
residual subsampling method [Driscoll and Heryudono (2007)], where nodes can
be added or removed based on interpolation residuals evaluated at a finer point set.
In the adaptive residual subsampling algorithm, an interpolant has been computed
for the center set, the residual of the resulting approximation is sampled on a finer
node set. Nodes from the finer set are added to or removed from the set of centers
based on the size of the residual of the interpolation at those points. The interpolant
is then recomputed using the new center set for a new approximation.

In this study, we use a local reproducing kernel method based on spatial trial space
spanned by the NBFs accompanied with an adaptive residual subsampling tech-
nique for the numerical solution of a class of PDEs including the Allen-Cahn and
Burgers’ equations with different kinds of initial and boundary conditions. The
Allen-Cahn equation describes the motion of anti-phase boundaries in crystalline
solids. It has been widely used in material science applications. The Burgers’ equa-
tion is the simplest nonlinear model equation for diffusive waves in fluid dynamics.
The Burgers’ equation arises in many physical problems including one- dimension-
al turbulence, sound waves in a viscous medium, shock waves in a viscous medium,
waves in fluid filled viscous elastic tubes, and magneto-hydrodynamic waves in a
medium with finite electrical conductivity. The Burgers’ equation is similar to the
one dimensional Navier-Stokes equation without the stress term.

The rest of the paper is organized as follows. In section 2, the kernel-based tri-
al functions and the NBFs are reviewed. The proposed local reproducing kernel
method is given in section 3. The method is illustrated in section 4 by solving the
nonlinear Allen-Cahn equation with mixed boundary conditions. In section 5, the
adaptive residual subsampling algorithm is illustrated. Numerical experiments are
given in section 6. The last section is devoted to a brief conclusion.

2 Kernel-based trial functions

Let Ω be a nonempty set. A function K : Ω×Ω→ R is called a kernel on Ω. Let
K : Ω×Ω→ R be a symmetric positive definite kernel on Ω. This means that
for all finite sets {xi ∈ Ω, i = 1, . . . ,n} the kernel matrix A = [K(xi,x j)]i, j=1,...,n is
symmetric and positive definite. These kernels are reproducing in “native” Hilbert
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space NK = span{K(x, ·) |x ∈Ω} of functions on Ω in the sense

〈 f ,K(x, ·)〉NK = f (x) for all x ∈Ω, f ∈NK .

The most important examples are the Whittle-Matern kernels rm−d/2Km−d/2(r),
r = ‖x− y‖, x,y ∈ Rd , reproducing in the Sobolev space W m

2 (Rd) for m > d/2,
where Kν is the modiffed Bessel function of the second kind [Scahabck (2011)].
The following will be independent of the kernel chosen, but ones should be aware
that the kernel should be smooth enough to allow suffciently many derivatives for
the PDE and additional smoothness for fast convergence [Wendland (2005)]. For
scattered nodes {xi ∈ Ω, i = 1, . . . ,n} the translates K j(x) = K(x,x j) are the trial
functions. The Newton basis functions (NBFs) {Nk(x)}n

k=1 can be expressed by

Nk(x) =
n

∑
j=1

K(x,x j)c jk, k = 1, . . . ,n. (1)

Considering N(x) = [N1(x) · · ·Nn(x)], T (x) = [K(x,x1) · · ·K(x,xn)] and C =
[c jk] j,k=1,...,n, Eq. (1) can be written as

N(x) = T (x) ·C.

Subsequently, we have N = A ·C, where, N = [N j(xi)]i, j=1,...,n and A = [K(xi,
x j)]i, j=1,...,n. It has been proved [Pazouki and Schaback (2011)] that the Cholesky
decomposition A = L ·LT with a nonsingular lower triangular matrix L leads to the
Newton basis

N(x) = T (x) · (LT )−1, (2)

with

N = L, C = (LT )−1. (3)

Hence the condition number of the collocation matrix corresponding to the NBFs
is smaller than the one corresponding to translated kernels. Consequently, using
the NBFs for collocation will lead to more stable methods than using the basis of
translates. Note that,

L N(x) = L T (x) · (LT )−1, (4)

where, L can be any linear operator like derivatives. Moreover, for computing the
values of the Newton basis at the other points, for example {yi ∈ Ω, i = 1, . . . ,ny},
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(2) is used. The Newton basis commonly is constructed by positive definite kernels
like radial basis functions (RBFs). The RBF is defined as

φ j(x) = K(x,x j) = φ(‖x− x j‖2),

where {x j ∈ Ω, j = 1, . . . ,n} is a set of distinct points called centers. Some kinds
of RBFs are given in Tab. 1. The RBFs may have a free parameter, called the shape
parameter, denoted by ε . As the shape parameter changes, the shape of the RBFs
changes, and subsequently the accuracy of interpolant and the condition number of
the interpolation matrix will change. For interpolation of scattered data by RBFs,
an uncertainty relation between the error and the condition of the interpolation
matrix is proven. It states that the error and the condition number cannot both be
kept small [Schaback (1995)] and there is a trade-off between the accuracy and the
condition number. Note that the GA, IMQ and MS RBFs are examples of positive
definite kernels and can be used for constructing the NBFs.

Table 1: Some kinds of RBFs
Gaussian (GA) φ(r) = e−(εr)2

Powers (P) φ(r) = rε

Multiquadric (MQ) φ(r) =
√

1+(εr)2

Inverse Multiquadric (IMQ) φ(r) = 1/
√

1+(εr)2

Thin plate splines (TPS) φ(r) = r2ε log(r), 2ε > 0
Matern Sobolov (MS) φ(r) = rεKε(r), Kε is the modified

Bessel function of second kind

3 Local reproducing kernel method

Consider the following time-dependent PDE

L u(x, t) = f (x, t), x ∈Ω, t ∈ [0,T ], (5)

with boundary condition

Bu(x, t) = g(x, t), x ∈ ∂Ω, (6)

and initial condition

I u(x,0) = u0(x), x ∈Ω, (7)

where L : H→ F is a differential operator, H and F are Hilbert spaces of functions
on Ω, B is Dirichlet or Neumann or mixed boundary condition operator and I is
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a linear operator. It is assumed that the problem (5)–(7) is well-posed. We choose
discrete points X = {xi ∈ Ω, i = 1, . . . ,n} and a symmetric positive definite kernel
K : Ω×Ω→ R. Let XI = {xi, i = 1, . . . ,ni} be the interior points and XB = {xi, i =
ni+1, . . . ,n} be the boundary points, where ni is the number of interior points. For
each xi ∈ X , we consider a stencil Ωi = {xi

k}m
k=1 which contains the center xi and

its m−1 nearest neighboring points. In addition, Ni
1, . . . ,N

i
m are considered as the

NBFs corresponding to the stencil {xi
k}m

k=1. To approximate the solution u(x, t), we
consider kernel-based approximant in terms of the NBFs on the local domain Ωi

instead of the whole domain Ω. Then the approximate solution in the local domain
Ωi will be in the following form

u(x, t) =
m

∑
k=1

α
i
k(t) Ni

k(x). (8)

Therefore, for xi ∈Ωi we have

u(xi, t) =
m

∑
k=1

α
i
k(t) Ni

k(xi). (9)

Consequently, (9) can be written as the following vector form

u(xi, t) = Ni ·α i, xi ∈Ωi, (10)

where, Ni = [Ni
1(xi) · · ·Ni

m(xi)] and α i = [α i
1(t) · · ·α i

m(t)]
T . By using (8) the linear

system

U i = Ni ·α i

is obtained, where

U i = [u(xi
1, t) · · ·u(xi

m, t)]
T ,

and

Ni = [Ni
k(x

i
p)]k,p=1,...,m,

thus

α
i = (Ni)

−1 ·U i. (11)

By substituting (11) in (10) we have

u(xi, t) = Ni · (Ni)
−1 ·U i.
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We now write the PDE (5) at a point xi ∈ XI as follows

L
(

Ni · (Ni)
−1 ·U i

)
= f (xi, t), i = 1, . . . ,ni. (12)

The boundary condition (6) implies that

B
(

Ni · (Ni)
−1 ·U i

)
= g(xi, t), i = ni+1, . . . ,n. (13)

Moreover, (7) results

IU(0) =U0, (14)

where IU(0) = [I u(x1,0) · · ·I u(xn,0)]T and U0 = [u0(x1) · · ·u0(xn)]
T . The e-

quations (12)–(13) with the initial condition (14) lead to a system of ODEs at which
the unknown vector U = [u(x1, t) · · ·u(xn, t)]T is to be determined. In order to ob-
tain a matrix form for the ODE system, matrices of spatial derivatives must be
calculated. For the spatial partial derivatives, we have

∂ s

∂xs u(xi, t) = Ni
(s) · (N

i)
−1 ·U i =Ci

(s) ·U
i,

where

Ni
(s) = [

∂ s

∂xs Ni
1(xi) · · ·

∂ s

∂xs Ni
m(xi)],

and

Ci
(s) = Ni

(s) · (N
i)
−1
.

Now for constructing global derivative matrices from local contributions, we define
global ni-by-n sparse matrices D(s), according to derivatives appeared in (5), of the
form

D(s)(i, Ii) =Ci
(s), i = 1, . . . ,ni,

where Ii is a vector that contains the indices of center xi and it’s m− 1 nearest
neighboring points. To clarify proposed method, it is applied for solving the Allen-
Cahn equation in the next section.



382 Copyright © 2015 Tech Science Press CMES, vol.108, no.6, pp.375-396, 2015

4 Method validation

In this section, we apply the proposed method for solving the Allen-Cahn equation
of the form

ut −u(1−u2) = νuxx, x ∈ [a,b], t ∈ [0,T ], (15)

with mixed boundary conditions,

β1u(a, t)+ γ1
∂

∂x
u(a, t) = g1(t), t ∈ [0,T ], (16)

β2u(b, t)+ γ2
∂

∂x
u(b, t) = g2(t), t ∈ [0,T ], (17)

and initial condition,

u(x,0) = u0(x), x ∈ [a,b], (18)

where β1, β2, γ1, and γ2 are known parameters, g1(t) and g2(t) are known functions,
and ν is the kinematics viscosity. Let X = {x1,x2, . . . ,xn−1,xn} be discretization
points in the interval [a,b] where x1 = a, and xn = b. Based on the methodology
and notation described in the previous section, we write the PDE (15) at a point
xi, i = 2, . . . ,n−1, as follows

ut(xi, t)−u(xi, t)
(
1− (u(xi, t))2)= νNi

(2) · (N
i)
−1 ·U i, i = 2, . . . ,n−1. (19)

Then the equation (19) leads to the following matrix form

U ′I =UI.∗ (1−UI.∧2)+νD(2) ·U, (20)

where .∗ and .∧ denote the pointwise product and power between two matrices or
vectors,

D(2)(i, Ii+1) =Ci+1
(2) , i = 1, . . . ,n−2,

UI = [u(x2, t) · · ·u(xn−1, t)]T ,

U ′I = [ut(x2, t) · · ·ut(xn−1, t)]T ,

and 1 is a (n−2)-by-1 vector with 1 in its entries. Now we implement the boundary
conditions (16)–(17) at the points x1 and xn as follows

β1u(x1, t)+ γ1C1
(1) ·U

1 = g1(t), (21)

β2u(xn, t)+ γ2Cn
(1) ·U

n = g2(t). (22)
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Let the 2-by-n sparse matrix W be as follows:

W (1, I1) = β1 (11)+ γ1 (C1
(1)),

W (2, In) = β2 (1n)+ γ2 (Cn
(1)),

where 1i is a 1×n vector with 1 in the ith entry and zero elsewhere. Then the Eqs.
(21)–(22) lead to

W ·U = (gi(t), i = 1,2)T .

So the unknown vector (u(xi, t), i = 1,n)T can be written in terms of the unknown
vector UI by solving the following equations:

W (:, [1,n]) · (u(xi, t), i = 1,n)T = (gi(t), i = 1,2)T −W (:,2 : n−1) ·UI. (23)

By subsituting (23) in (20), we get the system of ODEs with the initial conditions

UI(0) = (u0(xi),2≤ i≤ n−1).

Note that the nonlinearity of the PDE is preserved, and a good ODE solver will au-
tomatically use a reasonable time-stepping and detect stiffness of the ODE system.

5 Adaptive residual subsampling algorithm

Since kernel-based methods are completely meshfree, some adaptive algorithms
for finding optimal point sets may be devised. For example, in problems that exist
rapid variations in given domain, such as steep gradients, corners, and topologi-
cal changes resulting from nonlinearity, adaptive methods may be preferred over
fixed grid methods. In order to achieve accuracy and stability, adaptive methods
select optimal centers by moving, adding or removing points. In adaptive residual
subsampling algorithm, some points may be added or removed by using computed
residuals [Driscoll and Heryudono (2007)]. In this section, we describe adaptive
residual subsampling algorithm for a local reproducing kernel method based on
spatial trial space spanned by the NBFs.

Implementation of adaptive residual subsampling technique for time-dependent
PDEs is to alternate time stepping with adaptation. First, initial centers {xi, i =
1, . . . ,n} are generated using n equally spaced points in the given domain. Then,
using NBF interpolation at centers and initial condition of the PDE, unknown co-
efficients vector α = [α1 · · ·αn]

T is calculated from the linear system

Nα =U0,
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where, N = [N j(xi)]i, j=1,...,n is the NBF matrix, U0 = [u0(x1) · · ·u0(xn)]
T and u0(x)

is the initial condition function of the PDE. Now, the set {yi =
1
2(xi+1− xi), i =

1, . . . ,n− 1} is considered halfway between the centers. The residuals vector r is
calculated by

r = |Ny
α−Uy

0 |,

where, Ny is the NBF matrix for the points {yi}n−1
i=1 , which is calculated by (2)–

(3), Uy
0 = [u0(y1) · · ·u0(yn−1)]

T , and r = [r1 · · ·rn−1]
T . Points at which the residual

exceeds a threshold θr are to become centers, and centers that lie between two
points whose error is below a smaller threshold θc are removed. This means, if
ri > θr, then yi will be added to centers set, and if ri < θc and ri+1 < θc, then
xi+1 will be removed. This process is called coarse–refine (coarse for removing
centers and refine for adding new points). Therefore, a new centers set is given
and the coarse–refine process is repeated while any new point can not be added.
After ending coarse–refine processes, a new centers set is obtained. These new
centers are used to advance the discrete solution up to a predetermined time t = τ

by using the local method, which is described in the previous section. τ must be
large enough to avoid excessive adaptation steps, while keeping it small enough
that the adaptation can keep up with emerging or changing features in the solution.
So solution is obtained at the time t = τ . Now residual subsampling algorithm is
applied by using the solution at this time level as a new initial state for further time.
This process continues to achieve t = T .

6 Numerical results

In this section, we present the results of our scheme for the numerical solution
of some equations. Functions with steep variation in the domain are often em-
ployed. The obtained results state the ability of the method for adapting centers
to the regions with steep variations. Some results without using adaptive method
are presented to show unstability in regions with rapid variations. In this work, we
take the MS and IMQ RBFs for constructing the Newton basis, in addition, we take
τ = 0.01. In examples, ν = 1/Re, where Re is the Reynold number and ν is the
kinematics viscosity.

Example 1: Consider the Allen-Cahn equation [Driscoll and Heryudono (2007)]

ut −u(1−u2) = νuxx, x ∈ [−1,1], t ∈ [0,T ], (24)

with Re = 106, Dirichlet boundary condition,

u(±1, t) =±1, (25)
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and initial condition,

u(x,0) = 0.6x+0.4 sin
(

π

2
(x2−3x−1)

)
. (26)

As shown in Fig. 1, the solution of the equations (24)–(26), without using the
adaptive residual subsampling method, have small oscillations in regions with steep
gradients that are corrected by using the adaptive method. Adapting the nodes in
steep gradients is shown in Fig. 2. In this example, we use the MS RBF with the
shape parameter ε = 1, θr = 10−3 and θc = 10−9. In addition, the number of nodes
starts with 30 and finally grows to 176 at T = 10.
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Figure 1: Solution of the Allen-Cahn equation, (left) without the adaptive method,
(right) with the adaptive method.

Example 2: Consider the moving front problem given by the Burgers’ equation
[Driscoll and Heryudono (2007)]

ut =−uux +νuxx, x ∈ [−1,1], t ∈ [0,T ], (27)

with Re = 1000, Dirichlet boundary condition,

u(0, t) = u(1, t) = 0, (28)

and initial condition,

u(x,0) = sin(2πx)+
1
2

sin(πx). (29)
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Figure 2: Solution of the Allen-Cahn equation with the adaptive method. Number
of nodes increases in region with steep gradients.

As the previous example, the solution of the equations (27)–(29) generate steep
front and consequently have unstabilities in steep front. Correction of these unsta-
bilities and adaption of nodes by using the adaptive method are shown in Figures
3 and 4 respectively. Here, we employed the MS RBF with the shape parameter
ε = 1, θr = 10−4 and θc = 10−8. Furthermore, number of nodes at T = 1 grows to
76.
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Figure 3: Solution of the equations (27)–(29), (left) whitout the adaptive method,
(right) with the adaptive method.
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Figure 4: Solution of the equations (27)–(29); Adaption of nodes.

Table 2: Numerical results of the equations (30)–(32) for Re = 0.1,10,100.

Re = 0.1 (T = 0.02) Re = 10 (T = 1) Re = 100 (T = 1)
x Exact Approx Exact Approx Exact Approx

0.1 0.0428 0.0428 0.0663 0.0663 0.0754 0.0754
0.2 0.0815 0.0815 0.1312 0.1312 0.1506 0.1508
0.3 0.1122 0.1122 0.1928 0.1927 0.2257 0.2259
0.4 0.1320 0.1320 0.2480 0.2480 0.3003 0.3006
0.5 0.1389 0.1389 0.2919 0.2919 0.3744 0.3748
0.6 0.1322 0.1322 0.3161 0.3160 0.4478 0.4482
0.7 0.1125 0.1125 0.3081 0.3081 0.5203 0.5207
0.8 0.0818 0.0818 0.2537 0.2537 0.5915 0.5919
0.9 0.0430 0.0430 0.1461 0.1460 0.6600 0.6600
θr 10−4 10−4 10−2

θc 10−9 10−9 10−9

Example 3: Consider the Burgers’ equation [Hon and Mao (1998)]

ut =−uux +νuxx, x ∈ [−1,1], t ∈ [0,T ], (30)

with Dirichlet boundary condition,

u(0, t) = u(1, t) = 0, (31)
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Figure 5: Solution of the equations (30)–(32), (a) Re = 0.1 for T = 0.02, (b) Re = 1
for T = 0.25, (c) Re = 10 for T = 1, (d) Re = 100 for T = 1.

and initial condition,

u(x,0) = sin(πx). (32)

The exact solution of equations (30)–(32) is given by [Caldwell and Smith (1982)]

u(x, t) =
4πν ∑

∞
n=1 nIn(1/2πν) sin(nπx) e(−n2νπ2t)

I0(1/2πν)+2∑
∞
n=1 In(1/2πν) cos(nπx) e(−n2νπ2t)

,

where In denotes the modiffed Bessel function of order n. In this example, we
use the IMQ RBF with the shape parameters ε = 5,5,5,5.8 for Re = 0.1,1,10,100
respectively. The numerical solutions are shwon in Fig. 5. Furthermore, for Re =
0.1,10,100, comparison with the exact solutions and the thersholds are represented
in Tab. 2.
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For Re = 1000,10000, the solution of equations (30)–(32) generates steep gradient
toward x = 1, subsequently the approximate solution has oscillations in regions
with steep gradient. For Re= 1000, by implementing the proposed method with the
MS RBF with the shape parameter ε = 1.5, without using the adaptive algorithm,
the oscillations are gradually disappeared when the number of nodes increases (Fig.
6). The adaptive residual subsampling method starts with 30 nodes and gradually
grows to maximum of 53 nodes, and consequently obtains solution at T = 1 with
50 nodes (Fig. 7).
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Figure 6: Solution of the equations (30)–(32), for Re = 1000 whit MS RBF, (left)
200 nodes, (right) 1000 nodes.
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Figure 7: Solution of the equations (30)–(32) by using the adaptive method with 50
nodes at T = 1.

For Re = 10000, the oscillations do not vanish even if the number of nodes be very
large. Fig. 8 shows the oscillations with 1000 nodes and 2000 nodes in this case. As
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shown in Fig. 9, by using the adaptive residual subsampling algorithm and MS RBF
with ε = 1, the oscillations are disappeared at T = 1 with 108 nodes (Fig. 9). For
Re = 10000, the numerical solution has been compared with the Christie accurate
solution given in [Hon and Mao (1998)]. Absolute error graph of implementation
of the proposed method for Re = 10000 is shown in Fig. 9. In addition, adaption
of nodes are shown in Fig. 10.
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Figure 8: Solution of the equations (30)–(32), for Re = 10000 with MS RBF, (left)
1000 nodes, (right) 2000 nodes.
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Figure 9: (left) Solution of the equations (30)–(32) for Re = 10000 with the adap-
tive method, (right) Absolute error graph at x = 0, 0.05, 0.11, 0.16, 0.22, 0.27, 0.33,
0.38, 0.44, 0.50, 0.55, 0.61, 0.66, 0.72, 0.77, 0.83, 0.88, 0.94, 1.

Example 4: Consider the Burgers’ equation [Pugh (1995)]

ut =−uux +νuxx + f (x, t), x ∈ [0,1], t ∈ [0,T ], (33)
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Figure 10: Solution of the equations (30)–(32); Adaption of nodes.

with Neumann boundary condition,

ux(0, t) = ux(1, t) = 0, (34)

initial condition,

u(x,0) =
1
4

cos(πx), (35)

and

f (x, t) =−1
4

e−νtcos(πx)
(

ν +
π

4
e−νtsin(πx)−νπ

2
)
, (36)

and the exact solution

u(x, t) =
1
4

e−νtcos(πx).

The equations (33)–(35) are solved for Re = 60,120,240,1000,10000 by the pro-
posed method with the MS RBF with the shape parameter ε = 1.5. The absolute
error graphs at T = 0.5 are also shown in Fig. 11.

7 Conclusion

In this paper, a local reproducing kernel method based on spatial trial spaces s-
panned by the Newton basis functions was used for solving some time-dependent
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(b) Re = 120
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(c) Re = 240
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(d) Re = 1000
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(e) Re = 10000

Figure 11: Absolute error graphs for solution of the equations (33)–(35) at T = 0.5.
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PDEs. In addition, the adaptive residual subsampling algorithm was employed
to correct oscillations. Numerical results show that the method works properly
for problems with oscillatory behaviour due to steep gradients. It seems that this
method can be applied for solving higher dimensional time dependent PDEs. We
leave this to our further work.
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