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bending and free vibration analysis of FG beams by employing the refined third-
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the analytical solutions and numerical results given by the proposed models are
validated against the results reported in the literature or the 2D finite element re-
sults solved by the authors. The results show that the present models are capable of
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1 Introduction

Functionally graded materials (FGMs) are a special type of composite material-
s that material properties change smoothly and continuously from one surface to
the other of a structural component by gradually varying the volume fraction of
the constituent materials. Compared with traditional composite materials, FGMs
possess various advantages, for instance, smooth transition of stress distributions,
minimization or elimination of stress concentration, and can be designed to achieve
specific properties for different applications etc. [Birman and Byrd (2007)]. Thus
micro/nano-beams, plates and membranes made of FGMs are widely used as struc-
tural or functional members in MEMS and NEMS [Ebrahimi and Salari (2015)].
FGMs also have broad potential applications in modern engineering including aero-
space, automobile, electronic, optic industries [Birman and Byrd (2007)]. Struc-
tural components made of ceramic–metal FGMs are able to combine the advantages
of ceramics and metals, and they are now developed as very useful and efficient
structural members in high temperature environments. Consequently, the static and
dynamic analyses of FGM structures are identified as an interesting and important
field of study in recent years [Birman and Byrd (2007); Thai and Kim (2015)].

Many investigations on the thermoelastic analysis of FG beams are reported in the
literature in the past two decades. Noda (1999) addressed the problem of ther-
mal stresses in FGMs and studied the optimal composition profiles to decrease
the thermal stresses in FGMs. Sankar and Tzeng (2002) presented an exact elas-
ticity solution for thermal stresses of FG beams, in which the Young’s modulus
and temperature field varies exponentially in the thickness direction. Chakraborty,
Gopalakrishnan, and Reddy (2003) developed a beam element to study the ther-
moelastic behavior of FG beams, in which the beam element formulation was based
on Timoshenko beam theory (TBT) and accounting for an exponential and a pow-
er law variation of the material properties of FG beam. Lü, Chen, Xu, and Lim
(2008) developed semi-analytical elasticity solutions for the bending and thermal
deformation of 2D FG beams with various boundary conditions, exponential vari-
ation of material properties were adopted in it. Giunta, Crisafulli, Belouettar, and
Carrera (2013) presented a thermoelastic analysis of FG beams where the beam
models are hierarchically derived by means of a unified formulation that makes the
formulation independent from the displacements polynomial approximation order
over the cross-section. Most of them considered thermal loadings, but the studies
of FG beams accounting for the temperature-dependent characteristics of FGMs
are rather limited. Mahi, Adda Bedia, Tounsi, and Mechab (2010) presented an
analytical method for thermoelastic vibration analysis of symmetric FG beam sub-
jected to initial thermal stresses with general boundary conditions. Zhang (2013)
used the physical neutral surface and a high order shear deformation theory for the
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nonlinear bending analysis of FG beams in thermal environments. Shen and Wang
(2014) investigated the nonlinear analysis of shear deformable FG beams resting
on elastic foundations in thermal environments.

The accuracy of the resulting stresses is more important than the accuracy of result-
ing displacements in the real applications of shear deformable FG beams, thus it is
important to develop FG beam models that are capable of accurately calculating the
stresses of FG beams. By using the mixed-collocation with over-integration, Dong,
El-Gizawy, Juhany, and Atluri (2014a) developed a 4-node quadrilateral membrane
element for the analysis of homogeneous, FG or laminated thick-section beams.
Later, they extended the 4-node membrane element to an 8-node solid element for
the analysis of FG or laminated thick-section plates and shells [Dong, El-Gizawy,
Juhany, and Atluri (2014b)]. The numerical results show that the over-integration
along beam thickness or plate thickness is a good scheme to accurately compute the
stresses. The aforementioned 4-node quadrilateral plane element was also extended
to the analysis of smart composite beams [Ray, Dong, and Atluri (2015)]. The 2D
4-node element and 3D 8-node element developed by Dong, El-Gizawy, Juhany,
and Atluri (2014a, 2014b) with over-integration can yield accurate axial stress and
transverse shear stress. However they are not computational efficient as the over-
integration used in the evaluations of element stiffness matrix and stresses demands
more computations. By employing a more rigorous kinematics of displacements,
Shi and Voyiadjis (2011) proposed a refined third-order shear deformation beam
theory. Wang and Shi (2012) demonstrated that this new beam theory is capable
of yielding accurate transverse stresses and predicting correct boundary layer solu-
tions at the locations with displacement boundary conditions. Wattanasakulpong,
Gangadhara, and Kelly (2010) employed the aforementioned beam theory to in-
vestigate thermal buckling and thermoelastic vibration of FG beams under uniform
temperature field, and they demonstrated that this refined third-order shear defor-
mation beam theory possess some significant features in comparison with Euler–
Bernoulli beam theory and Timoshenko beam theory in particular for the high shear
flexible FG beams. Zhang, He, Liu, Gan, and Shen (2014) used the beam theory
proposed by Shi and Voyiadjis (2011) and a strain gradient elasticity theory to de-
velop an analytical model for static and dynamic analyses of size-dependent FG
microbeam resting on elastic foundations. And their results showed that the beam
theory proposed by Shi and Voyiadjis is very accurate. Nevertheless, the modeling
of FG beams based on this beam theory for bending analysis of FG beams with
thermoelastic coupling is not found in the open literature.

The issue of computational efficiency of FG beam elements is also desirable in the
real engineering application. Shi and Voyiadjis (1991) demonstrated that the as-
sumed strain method which is based on the quasi-conforming element technique
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[Tang, Chen, and Liu (1980)] is an approach to formulate accurate and efficient
shear flexible arch/beam elements and shell elements, since the resulting elements
are not only free from shear locking, but also free from the time consuming nu-
merical integration. The objectives of this paper are two-folded. The first objective
is to use the refined third-order shear beam theory proposed by Shi and Voyiadjis
(2011) for the theoretical modeling of FG beams with thermoelastic coupling. The
other is to present a reliable, accurate and efficient two-noded FG beam element for
the bending and free vibration analyses of FG beams with thermoelastic coupling,
in which the beam element is formulated based on the refined third-order shear de-
formation beam theory and the quasi-conforming element technique [Tang, Chen,
and Liu (1980); Shi, Lam, and Tay (1998)]. The accuracy of both the analytical
solutions and the numerical results given by the proposed models is validated by
the comparison of the present results with the results reported in the literature or the
2D finite element results solved by the authors. The results show that the present
models are capable of yielding not only accurate displacements but also accurate
stresses and higher-order frequencies of free vibration for the FG beams with ther-
moelastic coupling.

2 Effective material properties of FGMs

A typical simply-supported FG beam composed of ceramic and metal is depicted
in Fig. 1, where the dimensions of the beam are of length L, thickness h and width
b. It is assumed that the composition of a FG beam is varied from the top surface
of the beam to its bottom surface, i.e., the top surface (z = h/2) of the beam is
ceramic-rich whereas the bottom surface (z =−h/2) is metal-rich, where z is in the
coordinate along the upward normal of the beam middle surface.

Figure 1: Schematic of a typical simply-supported FG beam

The volume fraction of ceramic, Vc, of the FG beam follows the Voigt model defined
by a simple power law as

Vc =

(
z
h
+

1
2

)N

(1)
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where N is the volume fraction index and takes only positive values (0≤ N < ∞).
Then the effective material properties Pf , such as Young’s modulus E f and coeffi-
cient of thermal expansion α f , can be characterized by

Pf = PcVc +PmVm (2)

in which Pc and Pm represent the material properties of ceramic and metal respec-
tively; Vm is the metal volume fraction and it satisfies the relationship of Vc +Vm =
1.

From Eqs. (1) and (2), one has

Pf (z) = [Pc−Pm]

(
2z+h

2h

)N

+Pm (3)

Since FG structures are most commonly used in high temperature environmen-
t where significant changes in mechanical properties of the constituent materials
are to be expected, it is essential to take account of the temperature-dependency of
material properties for the accurate prediction of the mechanical response. There-
fore, the effective Young’s modulus E f and coefficient of thermal expansion α f of
FG beams are assumed to be temperature-dependent. They can be expressed as the
following nonlinear function of temperature [Touloukian (1967)]

Pi(T ) = P0(P−1T−1 +1+P1T +P2T 2 +P3T 3), i = c,m (4)

where P0, P−1, P1, P2 and P3 are the coefficients of temperature T (K) which are
unique to the constituent materials. Since the mass density ρ f depends weakly
on temperature change, it is assumed in this study that ρ f is a function of z on-
ly. The effective material properties of selected Si3N4/SUS304 FGM are listed in
Table 1 [Reddy and Chin (1998)]. A constant value of Poisson ratio is used for
Si3N4/SUS304 FGM because there is only a small difference between the Poisson
ratios of ceramic and metal and the influence of the manor change of Poisson ratio
on the structural response is negligible. The average value ν = 0.28 can be used
for Si3N4/SUS304 FGM [Wattanasakulpong, Gangadhara, and Kelly (2010)].

The temperature field is assumed to be linearly distributed through the beam thick-
ness when the FG beam is subjected to steady-state thermal loading, that is

T (z) =
(Tt −Tb)z

h
+

Tt +Tb

2
(5)

The linear variation of temperature across FG beam thickness is justified when the
thickness of a FG beam is within the dimension of milimeter. Substituting Eq. (5)
into Eq. (4), the variation of FGM material properties through the beam thickness
can be determined.
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Table 1: Coefficients in temperature-dependent functions for ceramic and metals

Materials Proprieties P0 P−1 P1 P2 P3

Si3N4 Ec (GPa) 348.43e+9 0 3.070e-4 2.160e-7 8.946e-11
αc
(
K−1

)
5.8723e-6 0 9.095e-4 0 0

νc 0.24 0 0 0 0
ρc
(
kg/m3

)
2370 0 0 0 0

SUS304 Em (GPa) 201.04e+9 0 3.079e-4 −6.534e-7 0
αm
(
K−1

)
12.330e-6 0 8.086e-4 0 0

νm 0.3262 0 −2.002e-4 3.797e-7 0
ρm
(
kg/m3

)
8166 0 0 0 0

3 Analytical modeling of FG beams

3.1 Kinematics of the refined shear deformable beam theory and the corre-
sponding trains

The displacement field in the refined third-order shear deformation beam theory
proposed by Shi and Voyiadjis (2011) is of the form

u(x,z) = u0(x)+
5
4

(
z− 4

3h2 z
)

φx +

(
1
4

z− 5
3h2 z3

)
∂w0

∂x
(6)

w(x,z) = w0(x) (7)

in which the quantities with subscript “0” denote the values at the middle surface
of the beam where z = 0; u0 and w0 are the axial displacement and the deflection
of a point on the beam reference plane respectively; φx is the averaged rotation of
the beam cross-section through the beam thickness.

It follows from Eqs. (6) and (7) that the nonzero linear strains of a beam take the
form

εx = em + ebz+ ehsz3

γxz = 2εxz =

(
5
4
− 5

h2 z2
)

es
(8)

where

em =
∂u0

∂x
,eb =

1
4

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
,ehs =−

5
3h2

(
∂φx

∂x
+

∂ 2w0

∂x2

)
,es = φx +

∂w0

∂x
(9)
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3.2 Constitutive relations of FG beams

Under the bending in the x-z plane induced by thermal-mechanical coupling load-
ing, the constitutive relations of shear flexible FG beams made of isotropic material
are of the form

{σ}=
{

σxx

τxz

}
=

⌊
Q11 0
0 Q55

⌋{
εx−α(z,T )∆T (z)

γxz

}
(10)

in which

Q11(z) = E(z,T ), Q55 =
E(z,T )
2(1+ v)

(11)

where ∆T (z) = T (z)−T0 is the temperature rise from the reference temperature T0
at which there are no thermal strains.

3.3 Variational consistent equilibrium equations and the corresponding bound-
ary conditions

It follows from Eqs. (8–10) that the strain energy of a FG beam with a length L and
an area of cross section A can be defined in terms of the generalized displacements
u0, w0 and φx as

∏(u0,φx,w0) =
1
2

∫ L

0

∫ h/2

−h/2

[
Q11ε

2
x +Q55γ

2
xz
]
dAdx

=
1
2

∫ L

0

{
A11

(
∂u0

∂x

)2

+
B11

2

(
5

∂u0

∂x
∂φx

∂x
+

∂u0

∂x
∂ 2w0

∂x2

)
+

D11

16

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)

− 10E11

3h2

(
∂u0

∂x
∂φx

∂x
+

∂u0

∂x
∂ 2w0

∂x2

)
−5

F11

h2

[
5
6

(
∂φx

∂x

)2

+
∂φx

∂x
∂ 2w0

∂x2 +
1
6

(
∂ 2w0

∂x2

)2
]

+
25H11

9h4

(
∂φx

∂x
+

∂ 2w0

∂x2

)2

+S11

(
φx +

∂w0

∂x

)2

−2NT

(
∂u0

∂x

)
− 1

2
MT

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
+

10
3h2 PT

(
∂φx

∂x
+

∂ 2w0

∂x2

)}
dx (12)

where

(A11,B11,D11,E11,F11,H11) =
∫ h/2

−h/2
Q11(z,T )(1,z,z2,z3,z4,z6)dA,

S11 =
∫ h/2

−h/2
Q55(z,T )

[
5
4

(
1− 4

h2 z2
)]

dA (13)
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(NT ,MT ,PT ) =
∫ h/2

−h/2
Q11(z,T )α(z,T )∆T (z)(1,z,z3)dA

The various coefficients in the above expression are: A11 is the extensional stiff-
ness, B11 is bending–extension coupling stiffness, D11 is bending stiffness, E11 is
warping–extension coupling stiffness, F11 is warping–bending coupling stiffness,
H11 is warping–higher order bending coupling stiffness, S11 is shear stiffness; and
NT , MT , PT are, respectively, the axial forces, bending moments and supplementary
bending moment induced by thermal loading.

When the distributed bending moment is not considered, the external work of a
beam performed by the distributed load q(x) per unit length acting on the beam
surface is of the form

We(w) =−
∫ l

0
q(x)w(x)dx (14)

Consequently, for a transverse shear deformable beam with the external load de-
fined above, the corresponding variational principle leads to

δ
[
∏(u0,φx,w0)+We(w0)

]
= 0 (15)

By substituting Eqs. (12) and (14) into Eq. (15), using integration by parts and
collecting the terms corresponding to δu0,δφx and δw0 in the line integral, one
obtains the following three differential equations:

∂

∂x

[
−A11

(
∂u0

∂x

)
− B11

4

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
+

5E11

3h2

(
∂φx

∂x
+

∂ 2w0

∂x2

)]
= 0 (16)

∂ 2

∂x2

[
B11

4

(
∂u0

∂x

)
+

D11

16

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
− 5E11

3h2

(
∂u0

∂x

)
− 5F11

2h2 (17)(
∂φx

∂x
+

1
3

∂ 2w0

∂x2

)
= 0 +

25H11

9h4

(
∂φx

∂x
+

∂ 2w0

∂x2

)]
−S11

∂

∂x

(
φx +

∂w0

∂x

)
−q = 0

∂

∂x

[
−5B11

4

(
∂u0

∂x

)
− 5D11

16

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
+

5E11

3h2

(
∂u0

∂x

)
+

5F11

2h2(
5
3

∂φx

∂x
+

∂ 2w0

∂x2

)
−25H11

9h4

(
∂φx

∂x
+

∂ 2w0

∂x2

)]
+S11

(
φx +

∂w0

∂x

)
= 0 (18)

Denoting the generalized axial force corresponding to axial displacement u0 as F∗x ,
the generalized bending moment acting on the beam cross section corresponding
to φx as M∗x , the generalized transverse force corresponding to deflection w0 as
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Q∗x and the supplementary bending moment corresponding to ∂w/∂x as MS
x , these

quantities take the form

F∗x = A11
∂u0

∂x
+

B11

4

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
− 5E11

3h2

(
∂φx

∂x
+

∂ 2w0

∂x2

)
−NT (19)

Q∗x =
∂

∂x

[
−B11

4

(
∂u0

∂x

)
− D11

16

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
+

5E11

3h2

(
∂u0

∂x

)
(20)

+
5F11

2h2

(
∂φx

∂x
+

1
3

∂ 2w0

∂x2

)
−25H11

9h4

(
∂φx

∂x
+

∂ 2w0

∂x2

)]
+S11

(
φx +

∂w0

∂x

)
M∗x =

[
5B11

4

(
∂u0

∂x

)
+

5D11

16

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
− 5E11

3h2

(
∂u0

∂x

)
− 5F11

2h2

(
5
3

∂φx

∂x
+

∂ 2w0

∂x2

)
+

25H11

9h4

(
∂φx

∂x
+

∂ 2w0

∂x2

)
− 5

4
MT +

5
3h2 PT

]
(21)

MS
x =

[
B11

4

(
∂u0

∂x

)
+

D11

16

(
5

∂φx

∂x
+

∂ 2w0

∂x2

)
− 5E11

3h2

(
∂u0

∂x

)
− 5F11

2h2

(
∂φx

∂x
+

1
3

∂ 2w0

∂x2

)
+

25H11

9h4

(
∂φx

∂x
+

∂ 2w0

∂x2

)
− 1

4
MT +

5
3h2 PT

]
(22)

Utilizing the generalized stress resultants and stress couples defined in Eqs. (19–
22), the boundary conditions at the typical supports of transverse shear deformable
beams take the following form.

1. At a clamped support,

u0 = w0 = φx =
∂w0

∂x
= 0 (23)

2. At the end with displacement free but with specified stresses,

F∗x = F̃x, Q∗x = Q̃x, M∗x = M̃x, MS
x = M̃S

x (24)

3. At a pin support,

u0 = 0, w0 = 0, M∗x = M̃x, MS
x = M̃S

x (25a)

4. At a roller support,

w0 = 0, F∗x = F̃x, M∗x = M̃x, MS
x = M̃S

x (25b)

The quantities with “∼” in the above expressions denote the values given by
the specified stresses acting on the cross-section of beam end. The boundary
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conditions of a simply supported beam are of the combination of Eqs. (25a and
25b). It should be noted that under the action of thermal loading, the response
of a simple beam supported by the pin support at its both ends is different from
that a simple beam supported by a pin support at one end and by a roller support
at the other.

4 Two-noded beam element of FG beams

The present formulation of FG beam element is based on the refined third-order
shear deformation beam theory proposed by Shi and Voyiadjis (2011), which has
been proved a high accuracy and efficiency in both static and dynamic analyses
[Wang and Shi (2013)].

4.1 Strains of shear deformable FG beams

By using a shear variable γ defined as [Shi, Lam, and Tay (1998)]

γ =
∂w0

∂x
+φx (26)

then Eq. (6) can be rewritten as

u(x,z, t) = u0(x, t)− x(
∂w0

∂x
− γ)+(αz−β z3)γ (27)

with α = 1/4 and β = 5/(3h2).

It follows from Eq. (27) and Eq. (7) that the new expressions of the axial strain and
the transverse shear strain under consideration take the forms

εx = e∗m +αe∗bz−βe∗hsz
3− εT , γxz = 2εxz =

(
5
4
− 5z2

h2

)
e∗s (28)

in which

e∗m =
∂u0

∂x
, e∗b = 5

∂γ

∂x
−4

∂ 2w0

∂x2 , e∗hs =
∂γ

∂x
, e∗s = γ, εT = α(z,T )∆T (z) (29)

The strains defined above are the functions of the deflection and transverse shear
deformation, and they results in a C1-continuity element under the displacement-
based formulation. Corresponding to the strains defined in Eq. (29), the simplest
nodal degrees of freedom at node i, qi, for a two-noded beam element can be chosen
as

qi = [u0i,w0i,(
∂w0

∂x
)i,γi]

T , i = 1,2 (30)
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Fig. 2 illustrates the two-noded FG beam element in this study. The nodal variables
in Eq. (30) lead to a cubic approximation for deflection w0 and a linear transverse
approximation for shear strain γ . Then it follows from second expression of Eq.
(29) that the resulting bending strain of the beam element is linear. Because the
bending strain is the dominant term in bending problems, then in finite element
analysis, the strain expressions derived from the displacement defined in Eq. (27)
should lead to a more accurate result than those higher-order beam theories in which
the bending strain is merely approximated as a constant over an element, even
though these beam elements have the same number of degrees of freedom at each
node [Shi, Lam, and Tay (1998)].

Figure 2: The nodal variables of the present two-noded element of shear flexible
FG beams

4.2 Element stiffness matrix of shear flexible FG beam

Now let consider a FG beam element of length l and rectangular cross-section with
thickness h and width b. The strain energy of the beam element with the strains
defined in Eqs. (28) and (29), Πe, is of the form

Πe = b
∫

l

∫ h/2

−h/2

[
1
2
(εxQ11εx + γxzQ55γxz)− εxQ11εT

]
dzdx

=
∫

l

{
1
2
[
e∗mA11e∗m + e∗bα

2D11e∗b + e∗hsβ
2H11e∗hs +α (e∗mB11e∗b + e∗bB11e∗m)

−αβ (e∗bF11e∗hs + e∗hsF11e∗b)−β (e∗mE11e∗hs + e∗hsE11e∗m)+ e∗s S11e∗s ]

−
(
e∗m +αe∗bz−βe∗hsz

3)
εT
}

dx

(31)

The stiffness parameters in Eq. (31) are defined in Eq. (13). The element strains in
Eq. (31) can be expressed in terms of the element nodal displacement qe and the
element strain matrices as follows

e∗m = Bmqe, e∗b = Bbqe, e∗hs = Bhsqe, e∗s = Bsqe (32)
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Consequently, the element strain energy Πe in Eq. (31) takes the form

Πe =
∫

l

{
1
2

qT
e
[
BT

mA11Bm +BT
b α

2D11Bb +BT
hsβ

2H11Bhs +BT
s S11Bs

+α
(
BT

mB11Bb +BT
b B11Bm

)
−αβ

(
BT

b F11Bhs +BT
hsF11Bb

)
(33)

−β
(
BT

mE11Bhs +BT
hsE11Bm

)]
qe −qT

e
(
BT

mNT +αBT
b MT −βBT

hsPT
)}

dx

If one defines element membrane, bending, shear gradient, transverse shear and
coupling stiffness matrix, respectively, as the following

Km = BT
mA11Bm (34)

Kb = BT
b α

2D11Bb (35)

Khs = BT
hsβ

2H11Bhs (36)

Ks = BT
s S11Bs (37)

Kc = α
(
BT

mB11Bb +BT
b B11Bm

)
−αβ

(
BT

b F11Bhs +BT
hsF11Bb

)
−β

(
BT

mE11Bhs +BT
hsE11Bm

)
(38)

then the element stiffness matrix K obtained from Eq. (33) is of the form

K = Km +Kb +Khs +Ks +Kc (39)

The thermal loading vector PT is of the form

PT = BT
mNT +αBT

b MT −βBT
hsPT (40)

4.3 Element strain matrix evaluated by the quasi-conforming element tech-
nique

The quasi-conforming element technique [Tang, Chen, and Liu (1980)] is employed
in this work to evaluate the element strain matrices in Eq. (32). The element
strain field in a quasi-conforming element is interpolated directly over the element
domain rather than differentiated from the assumed displacement field, and the
compatibility in an element domain is satisfied in a weak form. Let a prime signify
the assumed element strain field, then the element strain energy in Eq. (31) can be
modified as

∗

∏
e
=∏

e
+
∫

l
M̃(e∗b− e′b)dx+

∫
l
Ñ(e∗m− e′m)dx+

∫
l
Q̃(e∗s − e′s)dx+

∫
l
P̃(e∗hs− e′hs)dx

(41)
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where M̃, Ñ, Q̃ and P̃ are the test functions corresponding to their relevant strains.
According to the nodal degrees of freedom shown in Fig. 2, a linear displacement
u0, a cubic displacement w0, and a linear transverse shear strain γ can be interpo-
lated over the element. Then suitable element stains corresponding to the strains
defined in Eq. (29) can be approximated as

e∗m =
du0

dx
≈ e′m = αm

e∗b = 5
∂γ

∂x
−4

∂ 2w0

∂x2 ≈ e′b = αb1 + xαb2

e∗hs =
dγ

dx
≈ e′hs = αhs

2e∗s = γ ≈ 2e′s = αs

(42)

where αm,αbi (i= 1, 2), αhs and αs are the strain parameters of the assumed element
field which can be determined from the weak form of compatibility given in Eq.
(41) at the element level.

Let the integrals for the weak form of strain compatibility in Eq. (41) be satisfied
individually, and let the test functions in Eq. (41) be the same as the trial functions.
Then the last four integrals in Eq. (41) lead to the strain matrices defined in Eq.
(32) as

Bm =
[
−1/l 0 0 0 1/l 0 0 0

]
(43)

Bb =
{

1 x
}[1/l 0

0 12/l3

][
0 0 4 −5 0 0 −4 5
0 −4 −2l 0 0 4 −2l 0

]
(44)

Bs =
[
0 0 0 1/2 0 0 0 1/2

]
(45)

Bhs =
[
0 0 0 −1/l 0 0 0 1/l

]
(46)

By substituting B matrices above into Eqs. (34–38), the element stiffness matrix
can be obtained. Since the B matrices given in Eqs. (43–46) are either constant or
involved with linear function, the resulting element stiffness matrix can be evalu-
ated explicitly, i.e. no numerical integration is needed, which makes the resulting
beam element very computationally efficient.

5 The FE modeling for dynamic analysis of FG beams

5.1 Velocities of shear deformable beams

It follows from the Eq. (27) and Eq. (7) that the velocities in the x-direction and
z-direction respectively take the forms

vx =
∂u
∂ t

=
∂u0

∂ t
− ∂

∂ t
(
∂w0

∂x
− γ)z+(αz−β z3)

∂γ

∂ t
, vz =

∂w0

∂ t
(47)
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5.2 Equations of motion of FG beam element

In dynamic analysis, the equation of motion is expressed in terms of the element
stiffness matrix and the mass matrix obtained from Hamiltonian principle. Let Πe

and Te be the element strain energy and kinetic energy respectively, then Hamilto-
nian principle states that

δ ∑
elem

∫ t

t0
(Ue−Te)dt = 0 (48)

In the analysis of natural frequency of a system, the work done by external forces is
neglected and the damping is not considered. Then Eq. (48) leads to the equilibrium
equations of a system as

Mq̈+Kq = 0 (49)

where M and q̈ are respectively the global mass matrix and acceleration vector of
the system. Consequently, the frequency ω can be evaluated by

(K−ω
2M)q = 0 (50)

The mass matrix based on the shear deformation beam theory will be presented in
next section.

5.3 Consistent mass matrix of shear deformable beams

The kinetic energy of a FG beam element with density ρ(z), Te, corresponding to
the refined shear deformable beam theory used in this work takes the form

Te =
b
2

∫
l

∫ h/2

−h/2

(
v2

x + v2
z
)
ρ (z)dzdx

=
b
2

∫
l

∫ h/2

−h/2

[
(
∂w
∂ t

)2 +(
∂u
∂ t

)2
]

ρ (z)dzdx

=
b
2

∫
l

∫ h/2

−h/2

{(
∂w0

∂ t

)2

+

(
∂u0

∂ t

)2

+ z2
(

∂ 2w0

∂ t∂x

)
−2z

∂u0

∂ t
∂ 2w0

∂ t∂x
(51)

+2
[
(−1−α)z2 +β z4] ∂γ

∂ t
∂ 2w0

∂ t∂x
+2
[
(α +1)z−β z3] ∂u0

∂ t
∂γ

∂ t

+
[(

1+2α +α
2)z2−2(β +αβ )z4 +β

2z6](∂γ

∂ t
)2
}

ρ (z)dzdx

By defining

JA,JB,JD,JE ,JF ,JH = b
∫ h/2

−h/2
(1,z,z2,z3,z4,z6)ρ(z)dz (52)
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the element kinetic energy Te can be written as

Te =
1
2

{∫
l
JA

(
∂w0

∂ t

)2

+ JA

(
∂u0

∂ t

)2

+ JD

(
∂ 2w0

∂ t∂x

)2

−2JB
∂u0

∂ t
∂ 2w0

∂ t∂x

+
[
(1+2α +α

2)JD−2(β +αβ )JF +β
2JH
](∂γ

∂ t

)2

(53)

+2 [(α +1)JB−βJE ]
∂u0

∂ t
∂γ

∂ t
+2 [(−1−α)JD +βJF ]

∂γ

∂ t
∂ 2w0

∂ t∂x

}
dx

The expression above shows that similar to the stretching and bending coupling
in the stiffness matrix, there is also an axial and rotary velocity coupling in the
mass matrix when the density is not symmetric about the reference plane of the
FG beams. The coupling of the transverse shear velocity and the deflection slope
velocity is always non-zero as long as the transverse shear deformation is not zero.

The element displacement interpolations are needed to evaluate the velocities de-
fined in Eq. (47). The displacements over the beam element depicted in Fig. 2 can
be interpolated in terms of the element nodal displacement vector qe as

u0 = Nuqe,w0 = Nwqe,
∂w0

∂x
= Nwxqe,γ = Nγqe (54)

where Nj ( j = u,w and γ) are the interpolation matrices. By substituting Eq. (53)
and Eq. (54) into Eq. (48), one obtains the consistent element mass matrix Me as

Me= Mw+Mu+Mwx+Mγ+Muw+Muγ+Mwxγ (55)

where

Mw =
∫

l
NT

wJANwdx (56)

Mwx =
∫

l
NT

wxJDNwxdx (57)

Mu =
∫

l
NT

u JANudx (58)

Mγ =
∫

l
NT

γ [(1+α)2JD−2β (1+α)JF +β
2JH ]Nγdx (59)

Muw =−
∫

l
[NT

u JBNw +NT
wJBNu]dx (60)

Muγ =
∫

l
[NT

u ((α +1)JB−βJE)Nγ +NT
γ ((α +1)JB−βJE)Nu]dx (61)

Mwxγ =
∫

l
[NT

wx((−α−1)JD +βJF)Nγ +NT
γ ((−α−1)JD +βJF)Nwx]dx (62)
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Mw, Mu and Mwx is, respectively, the usual transverse, axial and rotary inertia
matrices; Mγ is the mass matrix resulting from the higher-order displacement; and
Muw, Muγ and Mwxγ are the coupling terms of different components of the axial
displacement. The variational consistent mass matrix defined above can account
for the contribution of the higher-order displacement to the mass matrix and the
results show that the consistent mass matrix can provide more accurate results than
those given by lump mass matrix.

6 Examples of static analysis of FG beams

Analytical and numerical analyses based on the governing equations and the FG
beam element given in the previous sections are carried out to evaluate static de-
flections and stresses of FG beams. The effects of the material distribution and
thermal loading on the defections and stresses of various FG beams are studied by
the numerical results given by the present FG beam element, and the validation a-
gainst other results is carried out to show the accuracy and efficiency of the present
FG beam element.

6.1 Convergence and accuracy study of the present FG beam element

A clamped-clamped FG beam with aspect ratio of L/h= 15 and subjected to a point
load F at the midspan is considered here. The beam is made of Si3N4/SUS304 with
volume fraction index N = 1000 (metal rich). Table 2 shows the convergence of
the deflection given by the present FG beam element, in which the deflections of
FG beam are normalized as:

w̄ =
w×Em×h3×b

F×L3

The non-dimensional deflections obtained from different beam elements and the
analytical solution given by the present governing equations are tabulated in the
table. It can be seen from the results in the table that the present FG element
is more accurate than FGM-HSDT-RN and HSDT-FGM-SR presented by Kadoli,
Akhtar, and Ganesan (2008), particularly when a coarse mesh is used.

6.2 Deflections of FG beams under mechanical loading

The influence of the volume fraction index on the deflections of FG beams is shown
by the bending analysis of simply-supported FG beams under action of uniformly
distributed lateral load. The width of the beam is 0.1m and different aspect ratios
of L/h are considered. The FG beam is composed of Aluminum (Al: Em = 70 GPa,
νm = 0.3) and Zirconia (ZrO2: Ec = 200 GPa, νc = 0.3). The top surface of the
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Table 2: Calculated deflections of clamped FG beam with L/h = 15 and loaded at
the midspan

No. of
Elements

FGM-HSDT-SR
[Kadoli (2008)]

FGM-HSDT-RN
[Kadoli (2008)]

Present FE
results

Present analytical
solution

2 3.602 3.384 3.604 3.618
5 3.602 3.573 3.604

20 3.605 3.604 3.604

beam is metal-rich whereas the bottom surface is ceramic-rich [Şimşek (2009)] (it
should be noted that the volume fraction of ceramic Vc in the present example is
defined differently from that defined in Eq. (1)). The defections of the FG beam are
normalized by the static deflection of the fully aluminum beam under the uniformly
distributed load, w̄ = w/(5ql4/384EAlIz).

The maximum non-dimensional deflections of the FG beams with different values
of volume fraction indexes and aspect rations are listed in Table 3, where HOSDT
stands for the higher-order shear deformation theory [Şimşek (2009)] and BSWI
stands for the B-spline wavelet on the interval finite element method [Zuo, Yang,
Chen, Xie, Zhang, and Liu (2014)]. The use of the B-spline wavelet can achieve
very accurate approximation for the field variables of one-dimensional beam prob-
lems with the price of higher cost of computation. 20 elements are used in the
present FEA to take account of the distributed load. Table 4 shows that the present
results agree well with the results reported by Şimşek (2009) and Zuo, Yang, Chen,
Xie, Zhang, and Liu (2014), which demonstrates that the present FG beam element
is very accurate.

6.3 Axial stresses of modulus graded plate under uniaxial loading

The structures with FGMs behave differently from the structures made of conven-
tional materials. Thus it is interesting and worthwhile to examine the axial stress
distribution of a structural member with graded modulus under the action of simple
tensile loading. To this end, a cantilevered plate with modulus grading subjected
to a uniformly distributed tensile load at the free edge is considered. As shown in
Fig. 3, the non-dimensional width, length and thickness of the plate are 10, 10, and
1 respectively [Dong, El-Gizawy, Juhany, and Atluri (2014b)]. Non-dimensional
Young’s modulus of the plate is exponentially varying in the thickness direction z
where E = eβ z with β = log5. Thus E = 1 at the lower surface and E = 5 at the
upper surface of the plate. Poisson ratio v = 0 in this numerical example.

The cantilevered plate shown in Fig. 3 can be directly modeled as a cantilevered
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Table 3: Maximum non-dimensional deflections of FG beams with various values
of volume fraction indexes and different aspect ratios

Volume fraction index Theory L/h = 4 L/h = 16
Full metal TBT [Şimşek (2009)] 1.13002 1.00812

HOSDT [Şimşek (2009)] 1.15578 1.00975
BSWI [Zuo (2014)] 1.15600 1.00975
Present FEA 1.15568 1.00967

N = 1 TBT [Şimşek (2009)] 0.62936 0.56615
HOSDT [Şimşek (2009)] 0.64271 0.56699
BSWI [Zuo (2014)] 0.64283 0.56700
Present FEA 0.64266 0.56695

N = 5 TBT [Şimşek (2009)] 0.49176 0.44391
HOSDT [Şimşek (2009)] 0.49978 0.44442
BSWI [Zuo (2014)] 0.50196 0.44455
Present FEA 0.49974 0.44439

Full ceramic TBT [Şimşek (2009)] 0.39550 0.35284
HOSDT [Şimşek (2009)] 0.40452 0.35341
BSWI [Zuo (2014)] 0.40460 0.35341
Present FEA 0.40449 0.35345

Figure 3: A cantilevered modulus graded plate subjected to a tensile load

beam with a width of 10 since the Poisson ratio v = 0 in this plate. The axial
stress at x = 5, y = 0 of the cantilevered plate with the graded modulus is computed
by one element of the present FG beam element. The distribution of the resulting
axial stress across the plate thickness is displayed in Fig. 4, and the 3D elemen-
t results obtained from the CEH8 C0 brick element given by Dong, El-Gizawy,
Juhany, and Atluri (2014b) and the analytical solution given by Zhong and Yu
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(2007) are also given in the figure. It should be noted that vertical axis z in Fig.
4 denotes the plate thickness coordinate which is different from the coordinate sys-
tem used by Dong, El-Gizawy, Juhany, and Atluri (2014b). The analytical solution
of Zhong and Yu (2007) was considered as the exact solution in the paper of Dong,
El-Gizawy, Juhany, and Atluri (2014b). It should be pointed out that the present
stress results are deduced directly from the constitutive relations described in the
previous section. It can be seen from Fig. 4 that the axial stress prediction giv-
en by the present FG beam element for this modulus graded plate coincides with
the exact solution even with a coarse mesh composed of only one beam element,
which demonstrates that the present FG element are very computational efficient
and accurate in the stress prediction.

Figure 4: Axial stress distribution across the plate thickness at x = 5, y = 0 for a
cantilevered modulus graded plate under uniformly distributed tensile load (N =
1/length) at the free end.

6.4 Stresses of modulus graded beam under transverse force

A cantilevered beam with modulus grading subjected to a unit transverse force
at the free end is considered in this example. As illustrated in Fig. 5, the non-
dimensional length and thickness of the beam are 5 and 1 respectively [Dong, El-
Gizawy, Juhany, and Atluri (2014a)]. Non-dimensional Young’s modulus is expo-
nentially varying in the beam thickness direction, i.e. E = eβ z with β = log5. Thus
E = 1 at the bottom surface of the beam, and E = 5 at its top surface. Poisson ratio
v = 0 in this numerical example.

The axial stress of the cantilevered beam at x = 0.5 and the transverse shear stress
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Figure 5: A cantilevered beam with graded modulus subjected to a transverse force

at x = 2.5 are computed by the present FG beam element. The distributions of the
axial stress and transverse shear stress across the cantilevered FG beam thickness
are plotted in Fig. 6 and Fig. 7 respectively, where the 2D membrane element
results obtained from the mixed-collocation element (CEQ4) developed by Dong,
El-Gizawy, Juhany, and Atluri (2014a) and the analytical solution given by Zhong
and Yu (2007) are also displayed in the figures for comparison. Fig. 6 shows
that the neutral axis of this modulus graded beam is shifted toward the top surface
because of the higher value of Young’s modulus at the top surface. One can also
find it from Fig. 6 that the present FG beam element yields very accurate axial
stress prediction for this modulus graded beam even with a coarse mesh composed
of only three beam elements, which demonstrates that the present two-noded FG
element possesses not only highly computational efficiency but also high accuracy.

Figure 6: Axial stress distribution across the thickness of the cantilevered modulus
graded beam (x = 0.5) under a unit transverse force at the free end

The present shear stresses shown in Fig. 7 agree well with the exact solution, but
they are not as accurate as the present results of the axial stress. This can be at-
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tributed to that the shear deformable beam theory proposed by Shi and Voyiadjis
(2011) was originally presented for the analysis of shear flexible beams made of
homogeneous materials, in which the shear function is symmetric with respect to
the beam middle surface. As a result the symmetric shear function would result
in some error when it is applied to the computation of transverse shear stress of
a modulus graded beam that is a beam made of inhomogeneous material. Never-
theless, the present shear stress results are satisfactory in general as shown in Fig.
7, and the shift of the maximum shear stress can also be characterized correctly in
the present result, which indicates that the refined shear deformation beam theory
proposed by Shi and Voyiadjis (2011) can be efficiently applied to the modeling of
modulus graded beams.

Figure 7: Shear stress distribution across the thickness of the cantilevered modulus
graded beam under a unit transverse force at the free end

6.5 Defections and stresses of FG beams under thermal loadings

Since FG structures are most commonly used in high temperature environments, it
is essential to take thermal loadings into consideration for the accurate validation
of any new model of FGMs. A Si3N4/SUS304 FG beam supported by a pin and a
roller, respectively, at each end of the beam is considered for the study. The aspect
ratio of the beam is of L/h = 20 and b = h [Shen and Wang (2014)]. 20 beam ele-
ments are used in the present FEA. Table 4 shows the maximum non-dimensional
deflections w̄ (wmax/h) of Si3N4/SUS304 FG beams under the non-uniform ther-
mal loading of Tt = 500 K, Tb = 300 K for different values of the volume fraction
indexes. The present results are validated by the comparison with 2D FEM results
obtained from the commercial code ANSYS by the authors. In the 2D finite ele-
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Table 4: Maximum non-dimensional defections of FG beams with different N un-
der thermal loading

T(K) Theory
N

1.0 2.0 5.0
ANSYS (40 laminae) 0.08437 0.09272 0.11268

Tt = 500, Tb = 300 ANSYS (80 laminae) 0.08442 0.09188 0.11281
Present FG beam element 0.08417 0.09182 0.11274

ment model of ANSYS, the gradations of Young’s modulus, coefficient of thermal
expansion and the temperature field across the beam thickness are modeled by an
equivalent multilayered FG beam in which each lamina is assumed to be homoge-
neous and equal thickness. Two lamination schemes of 40 laminae and 80 laminae
respectively along the FG beam thickness are used in the equivalent layered FG
beam models based on ANSYS to ensure the convergence of the numerical result-
s given by the equivalent multilayered FG beam. Each lamina in the equivalent
multilayered beam model of the FG beam is meshed by two layers of Plane183 el-
ements, and 800 elements are used in the beam axial direction. It can be seen from
Table 4 that the deflections given by the present FG beam element agree very well
with the numerical results obtained from the 2D plane stress elements of ANSYS.

The distributions of the calculated axial stresses through the cross-section of the
midspan of Si3N4/SUS304 FG beams induced by the thermal loading for the case
of volume fraction index N = 2 are plotted in Fig. 8. It can be seen from Fig. 8 that
the ANSYS 2D results of the equivalent multilayered beam are approaching to the
present FE results with the increase of the lamina number used for the equivalent
multilayered beam, which demonstrates the accuracy of the present stresses results.

The influence of non-uniform thermal loading on the maximum non-dimensional
deflections of Si3N4/SUS304 FG beams is depicted in Fig. 9, where different vol-
ume fraction indexes are considered. Fig. 10 illustrates the axial stress distributions
cross the FG beam thickness at the midspan of the Si3N4/SUS304 FG beams with
N = 2 under different non-uniform thermal loadings.

The stress in a FG beam subjected to thermal loading also depends on the distribu-
tion of its constituents. The influence of the volume fraction index of Si3N4/SUS304
FG beams on the axial stress induced by non-uniform thermal loading is illustrated
in Fig. 11, where Tt = 500 K, Tb = 300 K. It can be observed from Fig. 11 that
the shift of the neutral surface of the FG beams gets larger as the increase of the
volume fraction index N.

The accuracy of the predicted stress of the FG beam elements under thermo-mechanical
coupling loading is practically interested and important in the engineering applica-
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Figure 8: Axial stress distribution across the cross-section (at x = L/2) of
Si3N4/SUS304 FG beam with N = 2 under non-uniform thermal loading of Tt =
500 K and Tb = 300 K

Figure 9: Maximum non-dimensional deflections of FG beams versus non-uniform
temperature rise for different values of volume fraction index

tion of FG beam. Fig. 12 shows the axial stress distributions of Si3N4/SUS304 FG
beams with N = 2 under different thermo-mechanical coupling loadings.

7 Examples of free vibration analysis of FG beams

Numerical analyses based on the FG beam element given in the previous sections
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Figure 10: Axial stress distributions of FG beams with N = 2 under various non-
uniform thermal loadings

Figure 11: Axial stress distributions (at x = L/2) of the FG beams with different
values of volume fraction index under non-uniform thermal loading of Tt = 500 K
and Tb = 300 K

are carried out to study the free vibration of FG beams. The effects of the material
distribution and thermal loading on the frequencies of various FG beams are studied
by the numerical results given by the present FG beam element, and the validation
against other results are carried out to show the accuracy and efficiency of the
present FG beam element.
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Figure 12: Axial stress distributions (at x = L/2) of the FG beams with N = 2
under uniformly distributed load and non-uniform thermal loading of Tt = 400 K
and Tb = 300 K

7.1 Natural frequencies of FG beams

To verify the free vibration results given by the present FG beam element, some
numerical examples are solved for the FG beams without thermal loadings. The
simply supported FG beam under consideration is composed of ceramic (Ec =
380 GPa, νc = 0.3) and aluminum (Em = 70 GPa, νm = 0.3), and the aspect ra-
tio of the beam is L/h = 20. Constant density is assumed for FG beam with
ρ = 2700 kg/m3 [Aydogdu (2007)]. The non-dimensional frequency is defined
as ω̄ = ωL2/h

√
ρ/Em. In order to accurately calculate the higher- mode frequen-

cies of FG beam, 40 elements are used in the present FEA. The non-dimensional
fundamental frequencies given by different theories are tabulated in Table 5, and
the non-dimensional frequencies of the fifth-mode given by different theories are
listed in Table 6. In these two tables, CBT denotes Euler-Bernoulli beam theory,
FSDBT stands for Timoshenko beam theory, PSDBT stands for the parabolic shear
deformation beam theory and ESDBT stands for the exponential shear deformation
beam theory [Aydogdu and Taskin (2007)].

The results in Table 5 indicate that the fundamental frequencies given by different
theories are almost identical. However, the differences of the frequencies of the
fifth-mode given by different theories are quite considerable. CBT, in which the
transverse shear deformation is not taken into account, yields a much higher fre-
quency of the fifth-mode flexural vibration. The rest of the beam theories give quite
close prediction for the frequency of the fifth-mode, while the present FG beam el-
ement which is based on the refined third-order beam theory proposed by Shi and
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Table 5: Non-dimensional fundamental frequencies of simply supported FG beam
given by different theories

Beam theories/elements
N

0 0.1 1
CBT [Aydogdu (2007)] 6.951 6.599 4.907
FSDBT [Aydogdu (2007)] 6.931 6.580 4.895
PSDBT [Aydogdu (2007)] 6.932 6.581 4.895
ESDBT [Aydogdu (2007)] 6.933 6.582 4.896
Present FG beam element 6.935 6.584 4.896

Table 6: Non-dimensional frequencies of the fifth-mode of simply supported FG
beam given by different theories

Beam theories/elements
N

0 0.1 1
CBT [Aydogdu (2007)] 169.662 161.053 119.30
FSDBT [Aydogdu (2007)] 159.347 151.495 113.17
PSDBT [Aydogdu (2007)] 159.740 151.895 113.41
ESDBT [Aydogdu (2007)] 160.121 152.246 113.64
Present FG beam element 161.238 153.373 114.68

Voyiadjis (2011) gives a higher value. It was shown by Wang and Shi (2013) that
the present refined third-order shear beam theory yields almost the identical result-
s of the fundamental frequency with other higher-order beam theories, but yields
more accurate higher-mode frequencies than other higher-order shear deformation
beam theories. The accuracy of the higher-mode frequencies given by the present
FE modeling will be validated in next subsection by the comparison with the nu-
merical results obtained from the 2D element of ANSYS with very fine mesh.

7.2 Influence of temperature on frequencies of FG beams

Some examples are solved for the prediction of natural frequencies of the present
FG beams under thermal loadings. A movable simply-supported Si3N4/SUS304
FG beam with L = 2m, h = 0.1m, b = 0.1m [Shen and Wang (2014)] is consid-
ered. 20 elements are used in the present FEA. Table 7 and Table 8 tabulate the
results of the first three non-dimensional natural frequencies of Si3N4/SUS303 FG
beams (L/h = 20) under thermal environments obtained from the present FG beam
element and the analytical solutions given by Shen and Wang (2014). The non-
dimensional frequency in the tables is defined as ω̄ = ωL2/h

√
ρm/Em.
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Table 7: Comparisons of non-dimensional natural frequencies for Si3N4/SUS304
FG beams under uniform thermal loading

T(K) Modes Methods
N

0 1.0 2.0 5.0
Tt = 300, 1 [Shen (2014)] 6.5595 3.9590 3.5558 3.2334
Tb = 300 Present 6.5595 3.9584 3.5555 3.2337

2 [Shen (2014)] 25.9223 15.6481 14.0485 12.7666
Present 25.9258 15.6414 14.0463 12.7723

3 [Shen (2014)] 57.1845 34.5303 30.9795 28.1242
Present 57.2302 34.5029 30.9712 28.1580

Tt = 400, 1 [Shen (2014)] 6.4922 3.9003 3.4981 3.1875
Tb = 400 Present 6.4921 3.9233 3.5252 3.2070

2 [Shen (2014)] 25.6562 15.4914 13.9080 12.6468
Present 25.6597 15.5026 13.9266 12.6672

3 [Shen (2014)] 56.5976 34.2069 30.6960 27.8788
Present 56.6428 34.1973 30.7081 27.9271

Under a uniform thermal environment, the present results agree with the results of
Shen and Wang (2014). However, under the non-uniform thermal environment, the
natural frequencies given by the present FG beam element are different from the
results of Shen and Wang (2014), particularly the difference between the results
of Mode 1 of the FG beam with N = 5 are significant. Therefore, a numerical
analysis for the problem under consideration using ANSYS was carried out by the
authors to check the accuracy of these two results. 40 laminae across the FG beam
thickness are used in the ANSYS computational model to ensure the accuracy of
the numerical results. Each lamina in the equivalent multilayered beam model of
the FG beam is meshed by two layers of Plane183 elements, and 800 elements
are used along the beam axial direction. A mesh of 80 x 800 in the equivalent
multilayered model of the FG beam is fine enough to obtain an accurate numerical
result. The ANSYS results in Table 8 indicate that the present results are correct.

Because of the inhomogeneity, the temperature field affects the dynamic behav-
ior of FG beams. Fig. 13 illustrates the effects of uniform thermal loading and
non-uniform thermal loading on the fundamental frequencies of Si3N4/SUS303
FG beams with N = 2. The aspect ratio of the FG beam is L/h = 20, and the
beam is modeled by 20 beam elements. It can be seen from Fig. 13 that the funda-
mental frequencies decrease with the increase in temperature, and a uniform ther-
mal loading has a more significant influence on the fundamental frequencies of the
Si3N4/SUS303 FG beam than the given non-uniform thermal loading.
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Table 8: Comparisons of non-dimensional natural frequencies for Si3N4/SUS304
FG beams under non-uniform thermal loading

T(K) Modes Methods
N

0 1.0 2.0 5.0
Tt = 500, 1 [Shen (2014)] 6.4320 3.6691 3.0783 2.7052
Tb = 300 ANSYS (40 laminae) 6.4900 3.9177 3.5216 3.2025

Present 6.4940 3.9217 3.5234 3.2043
2 [Shen (2014)] 25.4184 15.3023 13.6138 12.3297

ANSYS (40 laminae) 25.6098 15.4577 13.8899 12.6267
Present 25.6671 15.4973 13.9200 12.6570

3 [Shen (2014)] 56.0730 34.0046 30.4411 27.6331
ANSYS (40 laminae) 56.3853 34.0045 30.5252 27.7427
Present 56.6587 34.1893 30.6974 27.9077

Figure 13: Non-dimensional fundamental frequencies of Si3N4/SUS304 FG beams
with N = 2 under uniform thermal loading and non-uniform thermal loading

8 Conclusion

This paper presents the analytical and FE modeling of FG beams for the static and
dynamic analyses of the FG beams with thermoelastic coupling. The governing
equations of FG beams are derived by using a refined third-order shear deformation
beam theory and the variational principle. An accurate and reliable two-noded
beam element is developed based on the refined third-order shear deformation beam
theory and the quasi-conforming element technique. The analytical solutions of



Analytical and FE Modeling of FG Beams Based on A Refined Shear Deformable 425

the bending problems of FG beams under thermal loading are solved using the
present governing equations of FG beams. A number of numerical examples of the
bending and free vibration of FG beams with thermoelastic coupling are solved by
the two-noded FG beam element, and the accuracy of the present numerical results
is validated with the results reported in the literature or the 2D finite element results
solved by the authors. Both the analytical solutions and the numerical results show
that the analytical model and the FG beam element presented in this work have the
following features.

1. The geometric middle surface of FG beams can be efficiently used as the
reference surface, i.e. the surface with z = 0, in the chosen refined third-
order shear deformation beam theory to achieve accurate results in the static
and dynamic thermoelastic analyses of FG beams with different values of the
volume fraction index and thermoelastic coupling.

2. The two noded FG beam element given in this study is not only efficient,
but also capable of yielding very accurate stresses and frequencies of higher-
mode vibration of FG beams with thermoelastic coupling, although merely a
coarse mesh of beam elements is used in the numerical analysis.
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